
. r* Micro-Professor
.. MPF-I Student Work Book

B

1520 Ма

MULTITECH INDUSTRIAL G@URPORATION

Copyright © 1982 by Multitech Electronics Inc.

and Multitech Industrial Corp.

No part of this publication may be reproduced,

stored in a retrieval system,

or transmitted,

in any form or by any means,

electronic, mechanical, photocopying,

recording, or otherwise,

without the prior written permission of the publisher

MULTITEGH INQUSTRIAL CORPORATION
OFFICE/ 977 MIN SHEN E. ROAD. TAIPEI, 105,

TAIWAN, R.O.C.
TEL:(02)769-1225(10 LINES)
TLX:23756 MULTIIC, 19162 MULTIIC.

FACTORY/5. TECHNOLOGY ROAD Ill,
HSINCHU SCIENCE-BASED INDUSTRIAL PARK
HSINCHU, TAIWAN, 300. R.O.C.
TEL:(035)775102(3 LINES)

Multitech Electronics Inc.

195 West EI Camino Real

Sunnyvale, CA. 94086

U.S.A.

Tel: 408-7738400

TIx: 176004 MAC SUVL

Fax: 408-7498032

[9 Micro-Professor ̀
MPF-I Student Work Book

СНАРТЕЕ 1.

к^ Pa Pa һа рл ма л ра =

°

COON ou + WD =

Program Explained --

Assembly Listing ---

Program Execution ..

Checking the Results-

CHAPTER 2.

More Keys:

CHAPTER 3.

3.1

3.2 Easier to Read -

33 Easier to Program:

3.4 Easier to Correct-

3.5

CHAPTER 4.

4%1 Сепіга! ааб Unit Ibis m

4.2 РІМ-00Т.. e

4-3 аның

4-4 RAM. кын

4.5 Dynamic ВАМ, Static RAM.

4.6 ROM- ЖИР -

4.7 Monitor бесік and ROM of the МРЕ-І -

Unpacking and Installation... 8s

Programming Languages -e-e ee

Testing & Familiarization- m

Program in English e "—À———— € notes

Checking for Data Entry Errors .. EE КЕМ

2.1 Reset or Monitor: What's the Difference?...................

2.2 15 the МРҒ-І a New ИЩИ 9 Artist? ss

о \о о)00uUuUu 2

ed.

AE

.....17

21

wu ae

ыш, 23

we w. w ——— eee nnn nnn nnn nn 873

24

...29

...30

...31

..32

.. 33

MEE

34

E ШИИБ tnt cv Женалин а B Ë

L6 Clock- ieedit koien бшнш шын oe ы жарын ДЇЇ]

Q Ü 1 Р@г einem omissisiee: ccn orani жак met tera Qu tee ws канон ass кек сазаны tas кесшш ii o Ө

4.13 Peripherals -- везне ga a ГГ ГЛ ГТ Г СЕ:

4.14 Parallel 1/0 Lines... T Sapay aasawa 5 TS

4-15 Advanced Hardware е Description (Optional) enm 41
4-16 Power Supply ̀ `: IE

CHAPTER 5

Flashing a Message cmm 51

Program Analysis : ete айы S
Memory Checking | «s 19

EPROM тена, i eh КИИСКЕН

оли @ N =

CHAPTER 6

6.2 Questions of Exercises o arco sna tn mec e van за. жай in 123

6.3 Answers to Exercises ---------------------------.-.-133

CHAPTER 7

7-1 Major Divisions of the Monitor osse 168

Answers to Exercises -------.---.-.-.-.-..-................. 185

CHAPTER 8

Sheet 2--The Control Function of the 8255--------- 203

Sheet 3--Counter Timer Circuit risa and
Parallel О d sd dap Deis жалаға (АЙ

APPENDIX

Appendix А References . эө mE

Appendix B Alphabetical Listing of Monitor and

Interrupt lide e = 208
Appendix C . “К КОКУЛ ГҮ ОД,

This workbook is designed for the first time user of
microprocessors and microcomputers but intends to explore
the world of microcomputers. Тһе workbook guides you step
by step’ in your learning about microcomputers. Ме know that

' you will learn a great deal and also enjoy becoming familiar

with microprocessors.

The fastest and most pleasant way to learn is Со learn
by doing. You are encouraged to use a MPF-I microcomputer
to do the interesting experiments so that you can learn more
quickly.

This workbook will first teach you to press a few keys
on the MPF-I to see how it responds. And then, the workbook

will teach you to press more keys and let the MPF-I show you
the interesting results. AS you progress in this workbook
you learn new modes of operation. What is more important,
you will eventually learn a great deal about microcomputers
and microprocessors. To put it simply, you will know how to
use computers to solve problems.

Never let a computer scare you! When automobile was
first introduced to the world, few people were familiar with
it. Even today, you don't have to know everything about an
automobile to drive it. For example, you don't have to know
too much about the complicated automobile transmission
system to drive a car. But of course, you have to know some
basic principles so that you can shift the gears properly.
Operating a computer can be reduced to basic principles.
Once these principles are learned, you can determine whether
you want to continue and become a customer engineer (auto
mechanic), an operator (a professional driver), or a
designer (an automative engineer.)

To learn how to drive a car, you must become familiar
with the features or functions of some devices or equipment
such as the engine, steering wheel, etc. (In the realm of

computer, these devices or equipment are generally referred
to as "hardware".) You must at least know the names of some

computer hardware devices and equipment and their basic

fainctions. Once you have learnel to drive a car, your every
move comes naturally and easily. The same is true about
(operating) а computer.

The manuals that ассопрапу your Microprofessor аге
designed for reference and to suggest experiments by showing
examples. То get started, it is suggested that’ you follow
the procedures given below.

Exercises and Experiments.

As you proceed through this workbook, you will see
the notation Exercise 6-1, Exercise 6-2,..., in the
left margin. This is a signal to proceed to the sec-
tion named EXERCISE and find the same number 6-1, 6-

2,.... You should answer any questions in the exercise
and then proceed to the ANSWER section to check your
work. You will also be asked to perform experiments
(answer questions) in the Experiment Manual (Hard-

ware/Software). The answers to these questions аге
usually found in the section named EXPERIMENTS. Occa-
Sionally, an answer to an experiment will be part of an
answer to an exercise.

1.1 Unpacking and Installation

Open the "book" containing the Microprofessor (MPF-I).
Locate the power connector in the upper right-hand corner.

Find the AC жён, The adaptor (Fig. 1-2) is a black
box labeled "AC ADAPTOR MULTITECH", You should make certain
that the voltage input shown on the adaptor matches the
voltage supplied by your outlet. In the United States it is
assumed (unless a special order is made) that the supply is
117 VAC - which is usually referred to as one-ten (110 V).
You should also check the frequency; the label оп the
adaptor will show the frequency in hertz (Hz).

Plug the 9V circular shaft into the power receptacle

on the МРЕ-І. Тһе side opposite the AC adaptor label is to

be plugged into your AC power outlet.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkžkěkkkkkkěkěkkkkkkkkkkkkkk kk

* CAUTION : DO NOT TOUCH THE PRONGS WHILE PLUGGING *

% THE AC ADAPTOR INTO YOUR OUTLET!
* k k k k k k k k k < k 'k k 'k Kk k k k k k k k k K k K k k K ЖК

=,

1*2 Programming Languages

What is a program? How can a program be гип
(executed)? То answer these questions, you should know how

a computer communicates with the people who use it. А
computer sometimes can be regarded as a loyal servant who
always follows the instructions given by the master. Once
the master has some good tasks for a computer to do or
requires a computer system to solve some problems, the
master gives step-by-step instructions to the computer.
Each and every step that is required to solve a problem or
to perform a task are given clearly to the computer. These
instructions constitute а program. Any person who writes a
computer program is called a programmer. In order to

program, you have to learn computer programming languages
such as ASSEMBLY, BASIC, PASCAL, APL, FORTRAN, апа FORTH.

We will discuss ASSEMBLY language in later chapters.

Now you know that a programmer can give instructions to
a computer. How does a computer talk to a person? In the
case of the MPF-I, a six digit LED (light emitting diode)
display and a built-in speaker are used to tell a programmer
what the МРЕ-І is doing. The MPF-I display can show
modified Roman letters and Arabic numerals from Ø to 9 plus
Some special signs.

1-3 Testing & Familiarization

In the exercise below, you will be shown how to enter
and execute a short program. Performing this exercise will
test some of the MPF-I functions and familiarize you with

the MPF-1's 280 microprocessor. The program used in this
chapter adds two numbers, and stores the result in memory.

1-4 Program in English

Load the first number (5) into the A register, and the

second number (4) into the B register. Add the content of
the B register (4) to the content of the A register (5), and

put the result (9) in the A register. Then, store the value

of the A register in memory location 183@H (Н stands for
hexadecimal) and finally halt the Microprofessor.

If you are already familiar with registers and ASSEMBLY
language programming, you may want to skip the next section,
although it is highly recommended for anyone.

1*5 Program Explained

In the program, you will instruct the MPF-I to access
the А register and load it with a value : (5). Now you may
ask : "What is a register?" A register is an area in the CPU
that stores different kinds of information. It can be
regarded aS a memory and a work area. Generally, the
registers of 280 CPU are divided into two categories--
general purpose registers and special purpose registers.
The general purpose registers are named A, B, C, D, E, F, H,
and L. The special purpose registers include PC, SP, IX,
IY, I and R. In the case of our program, 5 is placed in the
A (accumulator) register. Because the A register must соп-

tain one of the values in any 8-bit arithmetic operations.
It is, therefore, often called the Accumulator. When 5 has

been loaded into A, 4 will then be loaded into B register.
The values in the A and B registers will be added together
and placed into the A register. The value in the A register
will be stored at memory location 1830H, then the MPF-I will
be halted.

1-6 Assembly Listing

All of the program is entered into the MPF-I іп hexa-
decimal (hereafter, we will use the common abbreviation hex

for hexadecimal.) Therefore, you first write your program
in Assembly language and then translate it into hexadecimal.
Most of the demonstration programs written in MPF-I manuals
will also be listed in machine language code which is in
hexadecimal. A complete Assembly program listing is shown
below.

1800 3E05 LD А, 5
1802 0604 LD B, 4
1804 80 ADD A, B

1805 323018 LD 1830, À
1808 76 HALT

You will now enter the object (machine) language code
shown in the Assembly, Program listing. If you haven't
already done so, connect your МРЕ-І to the power source.
Now press the system reset key ЕЗ (еһе key is used for
initializing the МРЕ-І). Since the. memory locations at
which you can store programs begin at hexadecimal location
1800H, entry of object code will start at 1800H. Press the
address key |ADDR| . A random address will be displayed on the
four leftmost digits; these digits will be referred to as
the address field.

Enter the starting address for the machine language
code by pressing я š ? в The same result сап be
obtained by pressing the program counter [PC] key (this only
works when your program starts at 1800H). Now inform the
Micro-Professor that data is to be entered by pressing [DATA].
Refer to line 2 of the assembly program listing. Line 2
contains two bytes of object code 3E and 05.

Key in the first byte by pressing [3]and then[E]. The
display should now show:

ČI ПЕНЕВ

Advance the address field display by pressing . The
display will show:

ы |]

Enter the second byte of hexadecimal data b i
and then 5 . Тһе display should be: COPIER

Line 3 of the listing also contains two bytes of
hexadecimal data; enter these bytes by keying:

[5] [8] [8] [+], [6] [4],

In a similar manner, enter the rest of the program, namely:

L (8) (9, у BJ 2. 5 [3h 9.8, B) (8). Ë, D), a

1-7 Checking for Data Entry Errors

The program has been entered. It is wise to check for
entry errors. Press [3], [8], [€] , [8] . Are the right-
most two digits in the data field equal to 3E? If not,
press [DATA] and enter {3], [E] . То examine the next byte press

. Is there a 05 in the data field? If the display is
correct continue inspection of all the remaining data using
the [+] key. If the present byte or any successive bytes are
incorrect, enter the correct data.

1.8 Program Execution

There are two wayS to begin execution at address 1800H.
The simplest is to press [R9, [PC] and then |60. (Тһе [PC] and [GO
keys are used in program execution. stands for program
counter. This Кеу is used to tell the MPF-I where a program
begins. The key is а signal (that says: "You пау go
execute the program".) Тһе second method allows execution

to begin at any address. Press i ‚ the beginning
execution address e.g. 1 , 8 , 0 , 8 , then press [so]. When
you press (in the above program), the screen will go
blank and stay blank. Тһе program has reached the HALT
instruction and is waiting for the next operator action.

1*9 Checking the Results

To regain control of the keyboard functions, press
MONI. The answer to 5+4 was stored at location 1830H. Key
in [ADDR] , А s [ç . The display should show:

Now let's check what was stored in the registers.
Press the [REG] key. Тһе word REG should show on the display.

Press [АЕ]; this will display the contents of the AF register
pair. The first two digits contain the contents of А
register, and the middle 2 digits display the contents of F
register. Do not worry about the F register now. We are
only concerned with the value in A register. Didn't we
store a five in A register? And then, didn't we add the
contents of B register (4) to the contents of A reqister?
If A register contains а nine, then it is correct. Press
БЕСІ then the кеу. In this case we are looking at the
contents of the BC register pair. Are the numbers in the
leftmost 2 digits 04? If they are, then Congratulations!
You have just successfully entered your first object code
program onto the МРЕ-І. If something went wrong, you may
find the answer to your problem in the next section.

When you made the following errors:

1) А byte was incorrectly entered. Write the correct
byte over the incorrect byte.

2) One or more bytes were left out. Read section
3.3.3 (in the User's Manual), then remove the bytes one by
one.

3) One or more bytes need to be added. Read section
3.3.2 (in the User's Manual), then add each byte.

Keyboard F

Are you Keybored? О.к. Now you know how to enter a
program and, so far, your experience with running a program
has heen successful. But if you're like us, you may be

KEYBORED!

Some symptoms of this disease are confusion with each key

functions, and adversion to abbreviations such as [ADDR], [REG],

SBR| and [INS], and finally, allergic reactions to white, grey
and orange rectangles. The good news is that this disease

is painlessly curable, our RX: read this chapter and find

out how to avoid entering the same program over and over.

2.1 Reset or Monitor: What's the Difference?

In chapter 1, you entered a program, and you were told
there were two ways to stop the execution of.a program.
One was to press the key, in which case the display
shows а memory address, ог you could press the[RS]key, in
which case the display will show[uPF-I] If you were sharp,
you might have noticed that we didn't press the [RS] key to
Stop the program when we were planning to look at the
contents of the registers. This is because of the [RS] key]
is used: (1) to perform a hardware reset of the CPU, (2) to
initialize the monitor program, and (3) to transfer control
to the monitor.

If we were to initialize the monitor program before we
went to check the values in а register, those values might
not remain the same. Unlike the key, the key
transfers control immediately to the monitor. The address at
which the program was currently at when the [MONI] key was
pressed is displayed along with the data at that location.
Enter the following program, and we'll do a short experiment
with the and keys.

I l;police car siren:
1800 2 ORG 1800H
1800 0Е00 3 LOOP LD с,0
1802 21С000 4 LD HL, ØCØH
1805 CDE405 5 CALL ТОМЕ
1808 ØECØ 6 LD C,0COH
18@A 210001 % LD HL,100H
180D CDE405 8 CALL TONE

1810 18ЕЕ 9 JR LOOP
10 Р

11 ТОМЕ EQU 05Е4

12 END

If you had any problems entering the above program, you
need to review chapter 1.

Now for the experiment, after you have loaded the
program, press[PC| then [GO]. If everything was entered
correctly, you should hear а sound similar to a European
police car siren. Now, to stop the execution, press

ч What happens? appears on the display.
Begin the program again and this time, stop it with [MONI].
What happens this time? Instead of going back to ground zero
and initalizing the system, [MONI] simply halted the program

13

where it was and allowed you to examine the registers. When
the program is halted the left 4 display digits show the
program counter (where the program was halted) and the 2
right display digits show the opcode at the halted address.
Press [GO] апа Several times and notice that the
contents of the PC counter address will vary.

14

2.2 Is the МРҒ-І a new recording artist?

Well, not exactly. But the МРЕ-І does make tapes.

Examine the top, righthand corner of your MPF-I. Next to

the power socket, you will find two circular metal jacks.

When a cassette recorder cable is connected to these sockets

and to a recorder, a simple storage of data can Бе

performed. Assuming you have the reguired cable апа
recorder, let's make a tape of the police siren program you
have use just entered. You may wish to check to see if the
Siren program is still in the MPF-I memory. If not, reenter
the program. Connect the cables from the cassette recorder
to your MPF-I. Make sure to connect the cable from the EAR
jack to the MPF-I's EAR socket. Do the same with the MIC
cable апа socket. Now, press on the [ТАРЕ WH key. The
screen will show a random number in the address field. The
display should be similar to this :

X.X.X.X. =F

The -F іп the data field is the mnemonic for (stands for)
filename. The filename is used to distinguish different
data sets stored on a single cassette. It is also used to
read back data. You can use any combination of the 16
lettered and numbered keys in the filename. For your first
try, let's use something easy to remember, e.g. 0001. Enter
:9,0,0,1. Now enter [+] ёо move on to the next display. You
will again see a random number in the address field and the
display should look like this:

X.X.X.X. -5

The -S in the data field stands for the starting address of
the data you wish to put on the tape. Our program begins at
1800. Enter 1,8,0,0. Now press to get to the next field
again. You should see a random number, then the mnemonic on
the display should read -E. This signifies that the last
memory address to be written to the tape should be entered.
The last address in our program was 1811 so enter П), (8), 1], [1].
Now we are ready to make a tape. Rewind the casette in your

recorder to the beginning of the tape. Press PLAY and
RECORD on the recorder, then press on the MPF-I. If
everything is going correctly, you should be able to hear
the noise of data being output. What sounds noisy to you is
actually your program! If the cassette recorder 15 not
ready and you press ‚ do not worry, the MPF-I will

Still send out data and then return control to the user.
You can then begin the process over again.

15

Now let's read the data we wrote to tape back into the
МРЕ-І. Press [ТАРЕ RD. We now have that familiar mnemonic
(-S) on the screen again. Input 0001, or whatever filename

you used in the above exercise. Rewind the cassette and
press БО on the MPF-I. Press [PLAY] on the recorder. The
screen will go blank, periods will be displayed for а few
moments, now the filename of the program at that location
will be displayed. In this case 0001, the program will now
be read in. When the "noise" stops, stop the recorder and
reset the MPF-I. Now press and . Is the program the
same? If so, congratulations! If not repeat the above
process with a different volume setting.

16

2,3 Моге Keys

The МРЕ-І allows users а great deal of flexibility and
power through keyboard entries. How does a user become
familiar with the keyboard functions? An appendix with an
alphabetic listing of the keys is at the back of this
manual. But, do you really need to read about each key? I
recommend you proceed through the manual and learn how to
use the keys in the context of programming. Use the appendix
for reference.

Keyboard Familiarization Questions

1. Which keys do not cause a tone to sound when pressed?

2. Why is the RESET key the only key that is brightly
colored?

3. Look at the MPF-I User's Manual, Table of Contents-3,
Operation introduction. Two of the gray keys аге not
listed -- which ones?

4. Can you press апу key that would cause damage to the
MPF-I?

5. There is a magic key that will tell the Micro-Professor I
to do exactly what you want done. What is this key?

Keyboard Familiarization Answers

1. RESET, MONI, INTR, USER KEY.

2. This key is the MPF-I PANIC button. The color should
also serve as a warning that the current contents of the
registers will be lost, when RESET is pressed.

3. JINTR| and |USER| KEY. Additional programming must be done
to make these keys perform a function.

4. No, not unless you hit the key with a hammer. Pressing
the wrong key can change your program.

5. GO. If a program has been entered and it is correct.

17

3.1 ASSEMBLY--the Sane Way to Go

In earlier chapters there һауе been hints that you
should first write your program in Assembly Language. The
major reasons for Assembly programming are:

.Easier to read

.Easier to write programs

.Easier to correct errors

21

3-2 Easier to Read

What does the 3 instruction program below do?

0911 1010 0000 0000 0001 1010
1100 0110 0000 1000
0011 0010 0000 0010 0001 1010

After looking at the binary code you probably don't
care. OK! Here is the same program in hexadecimal.

ЗА 00 1А
С6 08
32 02 1А

How сап the hexadecimal program be decoded? Open the
MPF-I User's Manual to Appendix C. Find the section Z8@-CPU
INSTRUCTIONS SORTED BY OP-CODE. Search for the opcode

3A (Second column almost halfway down). The row reads

ЗА 8405 LD A, (NN)

OH! LD stands for load.
A load means making a copy of the data, usually one or two
bytes, then entering the data into a stated destination.
In this instruction, a byte is loaded from memory into A
register. The form LD A,(NN) is still a little hard to

read. The Assembly language instruction is

LD A, (1A00H)

which means
(1) find memory location 1A00 (hexadecimal),
(2) make а copy of the byte at location 1Л00,
(3) then replace contents of the A register with the copy

from memory.

The entire projram is
LD A,(1A00H) ; А <-- (1A00H)
ADD A,8 ; A <— А + 8
LD (lA02H),A ; (1A02H) <— A

This program
1) loads a value from memory into A,

2) adds 8 to the contents of A,

3) puts the result (A register) in memory location lA02H.

Read the binary code again and compare with the Assembly

language program.

22

3-3 Easier to Program

In your program a test is to be made. If the value in
the A register is zero, then a routine which clears the

account book is to be executed. If the value of A is
negative, then ап overdraw routine is executed. Using
Assembly language you can write:

JP Z,CLRACC ;If А=@ jump to clear account
JP M,OVERDR ;IÉ A is minus (negative) jump

to overdrawn.

In object code programming (hexadecimal or binary) you
may not know where the routines CLRACC and OVERDR will be
in memory. This means you will have to leave a blank area
іп the code. Too many blank areas lead to the inability
of locating the exact address where the jump was to be
made to. In assembly language programming you just write
the name of the routine e.g. CLRACE.

3.4 Easier to Correct

Sooner or later it will become necessary to alter
codes--insert, delete, or add instructions. In Assembly
language programming, you can usually find the code to be
modified swiftly. To add а new line,simply write the in-
struction in mnemonic form.

23

3.5 How to Proceed Using the МРҒ-І

1. Decide what the program must do. Base your decisions
upon the required input and output.

2. Decide if you can write the program. You might be

asked to compute an advanced mathematical function of
which you have no knowledge.

3. Decide whether the MPF-I сап program the task.
Unless a special interface is designed; electro-
cardiograms can't be read directly.

4. Organize the program flow. Sometimes а flowchart
helps.

5. Write the program in Assembly Language.
6. Hand translate the program into object (hexadecimal)

code.
7. Enter the hexadecimal code into the MPF-I's memory.
8. Test the program.
9. Make corrections in Assembly language and translate

into object code.
10. Save the working program on tape.

QUESTIONS

1. Turn to Appendix C in the MPF-I USER's MANUAL. Find the
section 280-CPU INSTRUCTIONS SORTED BY MNEMONIC. The

table should begin with:

SOURCE
STATEMENT

ADC A, (HL)

Use the table in the manual to fill in the missing

entries in the table below.

SOURCE
STATEMENT
ADD A, (HL)

24

2. In this section you will be asked to translate frem
object code (written іп hexadecimal) to source code
(written in assembly language). This is usually done
when you can't read the source statement or are given

some code in hexadecimal (this is a rotten situation).

Turn to Appendix C in the MPF-I User's Manual. Find
the section Z88-CPU INSTRUCTIONS SORTED BY OP-CODE.

The table should begin

SOURCE
STATEMENT

Use the table іп Appendix C to fill in the entries in the
table below:

OBJ |souRCE
| CODE STATEMENT
г |

[СВ 10. а |
DD CBOSCE|

Until you looked for CB, all you had to do is to find the
object code is to go down a list in hexadecimal order - 0,
1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. All instructions starting
with CB,DD,ED, and FD аге in separate lists. Тһе reason for
the separate lists is that the 280 executes these
instructions differently. Ina later chapter, some of these
instructions will be explained.

25

ANSWERS

OURCE
STATEMENT

CB 10
DD СВО5СЕ|бЕТ 1,(IX+D

ED BO LDIR

26

This chapter will introduce to you some of the basic
components (by basic, we mean they are indespensable.) and

their functions.

Computers have been called "electronic brains" because
computers сап perform such operations as logic comparisons,
arithmetic calculations, and more recently reasoning. But

computers are much more than an electronic brain. Computer
have become more like an individual human being. This will
be discussed later.

4*1 Central Processing Unit (CPU)

The "brain" of а computer or а microcomputer is its
central processing unit (CPU). You may wish to know
what a CPU looks like. Тһе MPF-I has а Z280 microprocessor
which is used as a CPU.

You can locate the Z80 CPU of MPF-I in a diagram on
page 4 in the MPF-I User's Manual. At the upper left corner
of the diagram, there is an rectangular area marked with 78@
CPU. Неге is where the CPU is located.

You may have noticed that there is а notch on the
upper edge of the Z80 CPU. Тһе notch is used to indicate
whether the 280 CPU is inserted correctly into the socket.
If the notch points upwards, the 280 is correctly inserted.
Otherwise, the 280 CPU is not adaquately inserted and the
MPF-I would run into trouble. Typically, reverse in-
sertion causes the Z8@ to overheat until it burns up.

Why does the 280 CPU have to be mounted correctly?
To answer the question, let's take a look at the CPU. The
CPU is an n integrated circuit (IC) chip which is a tiny
piece of silicon on which many microscopic circuits are
built. The chip is packaged in two pieces of a Dual-In-Line
package (DIPs) that keeps moisture, dust, апа impurities
away from the chip. But since the chip is sealed in the DIP
package, the circuits inside the package need to be
connected to outside circuits through pins as shown in the

diagram on page С-1 іп the Appendix C of the MPF-I User's

Manual.

29

4,2 PIN-OUT

To make sure that a circuit inside the package is

connected to a circuit outside of the package collectly; a

specific pin is assigned to make a correct connection. As a

result, each pin is qiven a specific pin number.

The diagram on page С-1 shows how pin numbers are
assigned to pins. ІҒ an IC chip is inserted іп reverse
(that means the notch of the chip points downwards.), it
results in incorrect connections of circuits. The pins are
not numbered sequentially (1,2,3,4,...) but rather by func-

tion. For example the transfer of data in and out of the 280

CPU is accomplished thru 8 data pins (14, 15, 12, 8, 7, 9,
10, 13). These 8 pins are grouped together and called the
data bus.

There are several reasons for selecting 280 as the CPU
for the MPF-I. First, 780 is one of the most popular
microprocessors, It is used as the CPU of many
microcomputers. Many software programs have been written to
run оп 280 based computers. You сап share or exchange
software programs with others, Secondly, the 288
instruction set was designed as an extention of the
instruction set for the Intel 8080 microprocessor.
Therefore, almost any program written for an 8080
microprocessor can be executed on а 78@ microprocessor
without any changes. Тһе 8080 microprocessor is а very
important microprocessor chip, for which many software
programs already exist. Thirdly, the 280 microprocessor
(280 CPU) features two sets of general-purpose registers and
additional special purpose registers which make it easier
for computer users or programmers to write programs for 280
based microcomputers.

30

4-3 Memory

Before we proceed to show how a CPU interacts with
other devices, let's take a look at one of the major parts
that constitutes a computer--memory. A human being must have
a memory so that he or she can learn and think. А computer
must have a memory in order to process information and solve
problems.

Memory is generally defined as апу device that can
store data іп such a manner that the information can be
accessed (or reached) and retrieved (or fetched). In today's

. computers, the memories usually come іп the form of IC
chips. The appearance of these chips look similar to that
of a CPU such as the 280 microprocessor. They have DIP
packages and pins. Each chip is assigned a specific number.
This number indicates the functions the chip can perform.

31

4-4 RAM

Now open the cover of your MPF-I, there is a 24-pin IC
chip on the upper right part of your MPF-I. On page I-4 of
your manual the chip is labeled ВАМ. The chip which is
marked with either 2016, 58725, or 6116P-4, is a 16К static

random access memory (RAM). Оп the part of the printed
circuit board just above the IC memory chip, the words "U8"
is marked to identify the location where the chip should Бе
installed.

When you try to decipher the words "RAM" and "static"
you may become frustrated. These words аге just used to
distinguish different types of memory chips. The most
commonly used types of memory are RAMS, ROMs (read only
memory), and EPROMS (erasable programmable read only
memory).

The: RAM, more correctly speaking, should be referred to
as read/write memory. А more correct definition of RAM is

random read/write memory. The RAM is a semiconductor memory
into which information (data) can be stored (written) and

retrieved (read out) again. RAMs differ from ROMs-- once
the power supply of a computer is turned off, the contents

of а RAM disappear. As a result, RAMs are suitable for
storing data which are to be used temporarily by a computer
such as programs and data.

32

4.5 Dynamic НАМ, Static НАМ

Тһе ВАМ сап be further divided into two types--static

RAM and dynamic RAM. The static RAM is what is депега11у

referred as those RAMs whose contents disappear, will only

change, when written into or as soon as the power supply is

turned off. The dynamic RAMS, even when power 15

continuously supplied can lose data if the contents of such
RAMs do not go through a memory refresh process. Unlike
some (many) CPUs the Z80 provides a refresh signal.

4-6 ROM

Data is read from a ROM. No data can be written into
ROM chips. Even when the power supply is cut off, the
contents of ROMs do not change. ROM chips are suitable for
Storing data that is to be used repeatedly.

33

4.7 Monitor Program and ROM of the МРҒ-І

The location indicated by U6 is used to put a ROM for
storing monitor programs. Almost every microcomputer uses a
ROM or an EPROM memory chip for storing monitor programs,
which are used to control the internal operations of a
microcomputer. Ап EPROM is a close relative of the ROM. Ву
applyinq ultraviolet rays an EPROM can be erased.
Typical functions of a monitor program include the
initialization of the CPU, keyboard scanning, display

control, and responding to the function to be performed each
time a key on the keyboard is pressed. In short, once a
microcomputer is turned on, the CPU of the microcomputer
begins to execute a monitor program. At location U6 in the
MPF-I, either 16K PROMS such as 2716 and 2516 or 32K PROMs
such as 2732 and 2532 can be used for storing monitor
programs.

We have talked about the CPU, memory, and data input
device (such as the MPF-I keyboard), and data output

device (the display and speaker). Most of today's
microcomputers have these four major components.

34

4-8 Address

Just by watching the keyboard, you may guess that a

programmer can key іп а character like "А" or "7". But

where can a character like "A" be stored in the МРЕ-І. How

is it stored? A computer is designed so that it only

recognizes "0"5 and "1"5 no matter who the manufactuer is.
As a result, when youpressa key to store a word, the

computer first encodes the word into the series such as
01101001 and then stores the string of @'s and 1's into а
specific location. Since the computer memory stores vast
amounts of data, data should be stored or retrieved from

specific locations to avoid confusion in data manipulation.

Therefore, an "address" is given to identify the location of
a specific item of data the same way as a specific building
is assigned an address so that mail addressed to the

building can be delivered properly.

ADDRESS BUS

Тһе 280 microprocessor uses l6-digit binary numbers to
identify the locations of data stored in the memory devices
that are connected to it. When the CPU of a computer
intends to access the data stored in its memory devices, it
communicates with its memory through a l6-line address bus.
Each line of the address bus corresponds to a binary digit
of the 16-digit address. And each line of the address bus
can convey two signals to the memory--"6" and "1", Using 0
and 1, you can construct 65,536 16-digit numbers. That
means the Z80 CPU can access up to 65,536 memory locations.
The number 65,536 is often written 64K.

35

4,9 Byte, Bit

We have mentioned that data is stored in the form of
strings of 0'5 and 1's in a computer. In computer systems,
memory size is measured in bytes. In 280 based
microcomputers such as MPF-I, а byte is equal to eight
binary digits, e.g. 1. А byte looks like 00000000, 11111111,
11000101, ог 01111001. A byte is made up of eight "bits".
In а binary numerical system, а bit is either а "9" ог а
"IV.

You may wonder how ап item of information or data is

accessed (for example from the keyboard). Turn to page I-B-3
(sheet 2 of 4). This schematic shows how the 1С (8255)

controls the input and output of data of the MPF-I. If you
have not worked with hardware, do not expect to understand
the details of how the 8255 controls devices such as the
displays. Later in the workbook a detailed explanation will
be given of the schematics. This chip controls MPF-I's data
input and output devices such as LED displays, the keyboard,
the cassette interface, the interface to MPF-I's CPU, апа

the address decoder. In the lower left part of the
schematic (A, 7 and 8), you will find a chip (7415139) which
is connected to a pin of the 8225 chip marked CS (which
Stands for chip select). The 74LS139 is an address decoder
used for deciding what range of memory addresses is being
accessed by the CPU. There is a "--" on top of the mark CS.
That means the address decoder works when the input of CS is
low. А low means the voltage is pretty close to zero - pro-
bably 0.4 volts. Ме say the address decoder works is active
low, because when the input of CS is low it becomes active.

36

4-10 Clock

Chips (or large-scale integrated circuits, 1515) in the
780 family require a clock. The clock supplies a square
wave of a certain frequency used for controlling transfer of
data in the CPU. Every time the clock ticks, data is
tansferred. The illustration below shows how a square wave
looks like.

П 1 I l

I | q € оро U
' TL | лез) wes, TA; TIE B |

Fig 4-1 The square wave

Chips using a clock have specific requirements for the
High and Low voltages. A good source for a clock is a
crystal oscillator. Оп a schematic, it looks like fig. 4-2.

15;
Fig 4-2 crystal oscillator

On sheet 1 of 4 of the MPF-I schematic, you can locate
the crystal oscillator at (D-7) and (D-8).

The output of the crystal oscillator is connected to
pin 3 of the ІС 741574 (coordinates D-6), and then to pin 6

of the Z8@ CPU (D-5). Тһе standard designation for a clock
is Ф. The label Ф is the point where clock signals go
into the CPU.

37

4» 11 Reset

А requirement for a circuit to work properly is that it
always starts the same way each time it is put to work. Тһе

280 CPU always starts (comes up) by addressing location 0000
when power is supplied and a pin called RESET is held low
for a few cycles. Any time your MPF-I appears to be out of
control, you may activate a circuit that resets the CPU.
Pressing the RS button controls the circuit that supplies а
reset signal to the 780 CPU.

4 * 12 Ports

Now we will take a closer look at the schematic for
MPF-I input and output (sheet 2 of 4). Оп the right side of
the 8255, there are three "ports". You may ask how ports
can be built оп a tiny 40-ріп chip.

The word port conventionally means a harbor, a sea port
where ships can sail in or out, loading or discharging large
amounts of goods. In our study of microprocessors, a port
can be regarded as a place where data from outside can be
"loaded" into the CPU and where a CPU can "discharge" the
data it has processed.

4 * 13 Peripherals

The chip 8255 is a 4@-pin programmable peripheral
interface IC. Peripherals аге generally referred to as
those devices which interact with the CPU for certain
purposes. If you use a cassette tape recorder to record
data ог programs, then we say the cassette tape recorder is
a peripheral of the MPF-I. Peripherals can be а printer,
auxiliary memory storage equipment, or a display terminal,

etc.

38

4. 14 Parallel I/O Lines

Of the 8255's 40 pins, there are 24 pins used as
parallel input/output lines (we will use I/O instead of

input/out hereafter.) The word parallel may puzzle you.

When data is transferred bit by bit, we generally call
this method a serial data transfer. Data is transferred
over telephone lines serially. If you want to input ог
output eight bits of data or several batches of data all at
once, you have to use parallel I/0 lines. In computer
systems, data is usually transferred byte by byte ‘between
the CPU and ROM or RAM chips. AS a consequence, we have to
use parallel lines to connect the CPU and its memory
devices. If а byte--01001001--is fetched by the CPU from
its memory, each bit of this byte will be carried by а
Single parallel line to the CPU. Therefore, a data bus

consisting of eight parallel bi-directional lines is used to
Supply data between the CPU, memory, and I/O ports.

The 24 parallel I/O lines of the 8255 are divided into:
three ports--Port A, Port B, and Port C--with each port
having eight parallel I/O lines. Each of the three ports is
called an 8-bit port. Port A is an input port, because this
port is used for collecting data (which will then be
transferred) to the CPU. Port B and C are output ports,
because the two ports are used for activating displays and
keys.

You can locate Port A on the schematic sheet 2 of 4.
In the lower right part of the IC 8255, there are eight pins
marked with РАЙ, РА1, PA2,...PA7. They are connected to

eight parallel lines. Pin 37 (the pin marked РАЛ) is used
for inputing data stored on cassette tape into the MPF-I.
Pin 38 (the pin marked with PA6) is connected to the User
key, which will become active when the signal on it is low.
PAQ through РА5 are connected to six rows of the keyboard
matrix. The input signal becomes low only when keys in the
active column are pressed. Since the 8255 is programmable,
a programmer can program a port to be input or output.

In the МРЕ-І, Port.B is an output port used for
controlling the LED displays. AS you can see on the
Schematic, PB@ through PB7 is wired to the displays with
eight parallel lines. Each pin or bit of Port B is used to

control one of the seven segments of the LED display and the

decimal point. Fig. 4-3 shows the name of each segment and
the corresponding bit in Port B.

à Port B А

ІІБ С «БЕС
— ар с b a і ge

J E
=e

d р Fig 4-3

39

Port C has many functions. Bit 7 of Port C (PC7) is

used for writing data into cassette tape. It is also
connected to the speaker and an tiny LED lamp. Once you
press a Кеу on the keyboard of the МРЕ-І, the speaker of the
МРЕ-І will generate а sound and the LED lamp will blink.
Except for the keys marked with [85], [MONI] [iNTR, апа [USER],
all the other keys cause the LED lamp to blink and the
Speaker to generate a sound.

The PC6 is used for single step execution of а program
or when break points exist in a program. Bit 0 through bit
5 are connected to the LED displays and the keyboard matrix.
Bit 0 selects the rightmost LED display and bit 5 selects
the leftmost LED display. А11 these bits are active high.

Thus PC@ through PC5 are used for selecting LED
display. For example, when PC@ is high, the rightmost
display of the LED displays is active.

You may have noticed that the parallel lines of Port B
and C first go through three blocks marked with 75492. The
three blocks are actually three ICs used as drivers that
amplify the incoming signals and convert them into strong
signals.

When you use a cassette tape recorder to read data to
the MPF-I CPU, the data goes into the CPU through PA7. When
the CPU of MPF-I writes data into a cassette tape, the data
goes to the cassette tape through PC7.

40

m

4 • 15 Advanced Hardware Description (Optional)

415 • 1 PIO: Parallel 1/0 Circuit
The 280 parallel I/O circuit (PIO) is one of a set

of chips manufactured to facilitate 280 interfacing. The
PIO circuit is designed to provide a two-port, programmable,
TTL compatible parallel data transfer between the 280 CPU
and peripheral devices. Turn to schematic sheet 3 of 4.
In the D and C of column 4, you can find Port A and Port

B. The two ports are independent 8-bit parallel bi-
directional peripheral interface ports using "handshake"
data transfer method.

The Z8@ PIO is an IC chip with 40 pins. Of the 40

pins, DØ through D7 is used as Z80 CPU data bus. This is a

bidirectional, tristate bus which is used to transfer all

data and commands between the CPU and PIO.

4.15.2 СТС: Counter-Timer Circuit

The Z80 counter-timer circuit, like the Z80 PIO circuit

is one of a group of IC chips manufactured to facilitate 280
CPU interfacing. This chip performs timing апа event
counting functions with four independent B-bit channels
which interface directly to the Z80 data bus.

The CTC chip is used when a program requires thar
certain operations be performed at fixed time intervals ос
at pre-set frequencies. In general, the relationship
between the СТС and CPU can be regarded as that between а
person and his or her watch. The CTC is а 2--сіг chip with
eight pins (D@ through D7) used as CPU data bus, seven pins
used as CTC control, three pins as interrupt сс” 701, and
another seven pins as channel signals. The remaining three
pins аге pin 24 (to which а 5-volt power is supplied), pin 5
(ground), and pin 15 (which receives a one-phase 5-volt
clock pulse).

41

4-16 Power Supply

A power adaptor is supplied together with the MPF-I so
that you сап convert the higher voltage typically supplied
by a wall outlet to 9V at 600mA.

The MPF-I requires a single 5V power supply at 500mA.
A regulator 15 installed right beneath the socket for the
power adaptor to convert 9-volts to 5-volts. A heat sink
may or may not be attached to the voltage regulator to
dissipate the heat of the voltage regulator. Don't touch
the voltage regulator. It makes your finger uncomfortable.

42

Questions

LT EI LILI OI ШЕ ЧЫ

LJ LT Li LL LJ LS Ej LJ T 1

4-2. In Appendix B there are four pages of schematics.
Look in the lower right hand corner.

MULTITEGH
MPF-I

Below the title MPF-I there is an entry indicating
which sheet you are reading. In the figure above
this is sheet 2 of 4. Find sheet 1 of 4. Notice that to
locate any component there are coordinates on the

boarders Fig 4-6.

Coordinate C-5

Locate the component at с-5. What is this

component? This part also has a U number what is

it?

4-3. The Z80-CPU transfers data in and out through its'
data pins There are eight data pins that are all accessed at
one time. The eight pins are grouped under the name data

bus. Turn to the diagram CPU PIN-OUTS Appendix C page C-1.
Locate the DATA BUS. DØ is the least significant binary
digit and D7 is most significant binary digit. Fill in

chart below

| о7| гв|р5|р4|рз|р2|р1|ра|
pin number | |] |I]]] |
When you filled in the chart above, you probably observed
that the pin numbers for the data bus are not sequential.
The pin numbers jump all around. There is no requirement
that pin numbers for a bus be sequential.

4-4. Find the RAM in one of the sheets of the schematics
in Appendix B (it is labeled U8). What sheet is the RAM
on . What are the coordinates of the RAM? А
Around the edges of the chip are the pin numbers апа their
functions. In the center you will see HM6116. А 6116 is a
type of RAM. Also on the chip is a memory address. The
unit as delivered has the 6116 БАМ located at addresses
1800H to 1FFFH.

4-5. Again refer to the MPF-I schematics. Find U6 the
monitor ROM. What sheet is it on? . What аге the
coordinates? , Notice the type of allowable chips written
on U6-- a 2516 or 2532. The 2516 option allows 2048 bytes or
characters (2K-16K of bits) of information to be retained
by the 2516. How many bytes would you think the 2532 chip
allows to be retained?

4-6. The 280 CPU is able to address memory chips by
connecting the address bus to the 780 CPU and to the memory
chip. The individual lines of the address are labeled Ай to
А15. Find the address bus from the Z80 CPU (U1) to the
monitor ROM at U6. Enter the pin connections of Z80
U6 in the chart below. FON

ADDRESS BUS
PIN NAME A15 |А14 |A13 |A12 |A11]A10 A7 |А6 JAS |А4 [АЗ [А2 [А1

280 CPU (Ul)
PIN NAME I

RAM (U6)
PIN NAME

45

Although it тау be clear to you from reading the schematic
the address (and data) lines travel under U6. This means
that A@ of the Z80 CPU is connected to AØ of U7 and AØ of
U8. Enter the Corresponding pin connections in the chart
below.

ADDRESS BUS
PIN NAME

4-7. The data bus connects to several ICS just as the
address bus does. Find the data bus on sheet 1 of 4. Enter
the corresponding connections (pin numbers) in the chart
below

(U8) PIN NAME

The entire data bus is also used to access information
from devices such as the keyboard. Тһе 8255(U14) controls
the keyboard So the data bus must be connected to this сһ1р.
This is so that the 8255 can send keyboard information to
the CPU. Look at sheet 2 of 4 coordicates С-8 and D-8. You
will see lines (wires) with the labels DØ to D7. Where did
these lines come from? To the left of DØ through D7 is a
parenthesis labeled SH1,3. SH stands for sheet. The data
lines leave sheet 2 of 4 and connect to sheets 1 and 3. Сап
you find the connection on sheet 1? What are the
coordinates? What are coordinates for the data bus on sheet
3 of 4?

46

Answers

4-1

2 80

CPU

4-2 АЕ C-5 the Z80-CPU. Тһе U number is 1,

4-3 [BINARY DIGIT|D7|pe| bs | pa! p3| p2 D1|po|

PIN NUMBER |13|10

4-4 The RAM is on sheet 1 of 4.

The coordinates of the RAM are C-2.

4-5 The ROM is on sheet 1 of 4.
The coordinates of the ROM are C-4,

The ROM can store (retain) 4096 bytes.
(4K232K bits).

RAM (U6) NOT USED 18 |19 |22 3 | 1 3 17
РІМ МАМЕ

ADDRESS BUS
NAME

4-6

CPU (Ul).

coordinates of the data bus on sheet 1 of 4 are D-1.

The coordinates of the data bus on sheet 3 of 4 are C-7 and

47

5.1 Learn by Doing

You will now be quided through a series of examples from the
МРЕ-І User's Manual. You should first key in the example
and execute the program. But if you want to learn
programming, you must do more. Each example will Бе
analyzed--some examples in great detail. Whenever а new
instruction occurs, you will be shown:

1) how to test if it is in the Z80 instruction set.

2) the correspondence between assembly code and object code.
3) what registers, flags and memory locations are affected

by the instruction.
4) and finally the reason for using the instruction.

5. 2 Flashing a Message

Turn to EXAMPLE 2 in section 5.10. Key in and execute
this example. Does the program flash HELP US for 500 ms
(1/2 second) and then go blank for 500 ms? Actually you

should see HELP US for a longer time than 500 ms and' blank
Screen for less than 500 ms. The program lights the screen
for 500 ms but the display takes a period of time to
extinguish (fade out) when they are no longer selected.

51

Hay

27 =H

1)

E

y

5 ° 3 Program Analysis

Exercise 5-1

Statement 1: flash 'HELP US'

You must understand you are writing your program in a
highly readable form. Some words in your program will not
be translated into an object program. Ап example is the
comment statment, like statement 1. When using an assembler
to translate your source program into object code, the
comment statement must start with а semicolon. The
semicolon signals the assembler to ignore the comment
Statement. Why use a comment statement? Comments are used

to make the program understandable to readers and to
programmers. Such statements are called documentation. A
comment statement helps document a program.

cGE A3

я өз

Statement 2: ORG 1800H

The ORG statement informs the assembler where to place

the translated code. ORG stands for origin — a beginning.

When the assembler sees an ORG statement, it sets a counter

which determines the location of each > translated

instruction. This location counter is advanced as each

instruction is converted into object code.

Statement 3: LD HL,BLANK

This statement loads the address of BLANK into the ге-
gister pair HL. To determine the address of BLANK, refer to

line 19. BLANK is a label and thus is in the column (field)

where labels аге located. The address of LABEL, 1826, is
given by the lefthand column. . The location counter is ге-
sponsible for calculating the values in this column. It has

now been determined that statement 3 loads the value 1826
into the HL register pair. Тһе Н can be assumed to stand
for high, thus the high byte, 18, is loaded into the H
register. L means low, so the low byte, 26, is loaded into
the L register. |

When you аге writing a program, you need to know what
the instruction set is. Can the register pair HL be loaded
witha value given in the instruction (BLANK)? This value
is called an immediate, because you can look at the object
code and immediately see the numbers being loaded into the
registers.

To determine the Iegality of LD HL,BLANK, you need to
know two facts: 1) is there an H and an L register which can
they be paired and 2) is the instruction allowable. To
determine the first fact, turn to Appendix C and find the
page titled Z-80 CPU REGISTER CONFIGURATION. Yes, near the

top of the page under MAIN REGISTER SET you see H and L.
The 780 REGISTER CONFIGURATION is also shown in fig 5-1

(and fig 5-2). Now look in Appendix C for the page with
the title 16-BIT LOAD GROUP 'LD' 'PUSH' and ' POP'.

Find SOURCE at the top of the chart then REGISTER
below SOURCE. Under REGISTER the fourth entry over from the

left contains HL, thus H and L may be paired. But are H and
L being used as а source in the instruction LD HL,BLANK?
No, the BLANK is being loaded into HL, therefore, HL is a

destination. Looking on the left side of the chart, find
DESTINATION then REGISTER. The fourth entry from the top

(under REGISTER) is HL. So HL can be used as a destination.

Can an immediate value be loaded into HL? Travel from left
to right in the row labeled HL until you come to the column
labled IMM.EXT (immediate extended). АЕ the intersection

of the row and column, there is value (21). A box with a
value in it means that the instruction is allowed. Each "n"
in the box stands for one byte. The upper "n" is the value
to be loaded into L, and the lower byte is the value to Бе
loaded into H.

53

-

MAIN REG SET
⁄z=— T N

8-BITS 8-BITS
(ONE-BYTE) (ОМЕ-ВҮТЕ)

Fig 5-1

54

(4)
16-Bit Load Group /

SOURCE

REGISTER
IMM.
EXT. ADDR.

DESTINATION

(1)
(2)

(3)

EXTERNAL
ADDRESS

ED
з

REGISTER

NOTE: Тһе Push 4 Pop Instructions adjust the SP alter every execution.

PUSH
INSTRUCTIONS

Fig 5-2

(1)

16-Bit

Symbolic Flags Opcode No.of No.o! M Nool T
Mnemonic Operation s z H PV N C 78 543 210 Hes Bytes Cycles States Commenis a i rs ЖЕ. у... жы жн eee Ee Sah TEON а he
LD oa nn Od - nn s ° X è X = s . DO осо 001 3 3 ° ^ aa Paw

-n- ou ec
-n- 0' OE

10 !x nn IX — nn e e X 9 X = è o ti O11 101 ор 4 a 14 10 HL

\ 00 100 00! 21 M SP

(2) ;
Fig 5-3

(4)

55

The correct form for the source code can be found on

the next page titled 16-BIT LOAD GROUP (see fig 5-3 also).
On the leftmost column is the mnemonic column. Mnemonic
means assisting or intended to assist the memory. |
below the title MNENOMIC is the form for load immediate, LD

ad, nn. The LD, of course, means load. "nn" is the
immediate value - BLANK (1826) in statement 3. To

understand "dd" locate the column labeled COMMENTS on the
far right. "dd" tells the programmer what register pairs
can be used in the 16 bit load immediate instruction. Thus;

LD BC,nn

LD DE,nn

LD HL,nn

LD SP,nn

are allowed. To complete the LD HL,nn instruction, simply
fill the value for nn , e.g., LD HL,BLANK. LD HL,1826H

would produce the same result.

If you are hand translating the assembly language in-
structions you must use the chart on the previous page.
Remember that 21nn that was found at the intersection of HL
and IMM.EXT 21 is called the opcode (operation code). The

translation gives

212618

Why wasn't the result of the translation

211826

56

Because the low byte 26 must follow the opcode, then the
high byte 18. Don't fight it! You must write values this
way іп Z8@ coding. LD HL,BLANK translates into а 3 byte
instruction. The location counter will be advanced by 3 in
preparation for the next instruction 1800 + 3 --> 1803. In
summary:

Location Counter Object Code Statement No. Source Code

1800 212618 ~- 3 LD HL, BLANK

Ex 5-3

Statement 4: PUSH HL

The PUSH instruction is used to move the contents of a
register pair or a 16-bit register to a specific place in
memory. То determine the assembly language code mnemonic,
turn to Appendix C and proceed to the chart 16-ВІТ LOAD
GROUP. Travel down the leftmost column labled Mnemonic
until the mnemonic PUSH is located. Since "qq" means that
BC, DE, HL and AF are allowed, this is the correct form. To
translate the instruction into machine language, refer to
the chart 16-BIT LOAD GROUP "ІП" 'PUSH' and "РОР". The
source is the content of the HL register pair. Find
SOURCE, Register and then HL. For destination find the title
PUSH INSTRUCTIONS at lower left hand part of the page. Where
the column HL and row PUSH INSTRUCTIONS meet is the value
E5. This is the value you will enter. This one byte in-
struction advances the location counter by one 180341 -->
1804.

Details of the push instruction.

A PUSH instruction transfers the contents of registers
to a region in memory called the stack. The stack is
defined by a pointer called a Stack Pointer (sp). In
EXAMPLE 2 the stack pointer was set by the monitor before
you began execution of the program.

57

STEPS IN THE EXECUTION

OF PUSH HL

STEP 1: DECREMENT THE STACK POINTER

<—SP Before

<—SP <--SP-1 After

RAM memory

STEP 2: PUSH H ONTO THE STACK

Erud H L
| 18 |<-1В1/2 6j
[C |
[oec
— ==

STEP 3: DECREMENT THE STACK POINTER

| 18, (|6- SP Before
| EE «—s5P-1 After

STEP 4: PUSH L ONTO THE STACK

H L

[лз се
ыма

Ех 5-4

58

Statement 5: LD IX, НЕГР

This statement 15 very similar to statement 3. It is a
load immediate instruction. Тһе 16 bit register ІХ is being
loaded instead of the register pair HL. Тһе immediate value
is 1820H (see statement 13). There is something new besides

using index register IX as the destination. This
instruction has two opcodes. Find the object code for the
instruction Бу turning to the 16-BIT LOAD GROUP 'LD' 'PUSH'
and 'POP' in Appendix C. The intersection of the source
IMM.EXT and destination IX shows DD21nn. The two opcodes
are DD and 21. The reason for the double or extended
opcode is because the 280 CPU, designed by Zilog, is an
improved 8080 (an earlier CPU designed by INTEL). Zilog

wanted the 280 CPU to be able to execute all of the 8080
instructions plus the ability to execute new instructions.
Some opcodes were not used by the 8080 CPU. If only one
opcode was used in the empty slots (unused 8080 opcodes),

only a few new instructions could be added. А double opcode
allows the DD to be followed by one of 256 different codes
(09H to ЕЕН). Now in place of one unused opcode, many пем
instructions can be added. If you look at the row labeled
IX, you will see that all the instructions have as the first
opcode a DD. HELP is a label in statement 13. The value
of the location counter at this point is 1820. When you
translate LD IX,HELP to object code, the nn (2 bytes) will
contain 1820. The object code for LD IX,HELP is DD 21 20
18. Don't forget the lower order byte 20 is written
first followed by the high part of the address 18.
LD IX,HELP is a four byte instruction. The location
counter will advance by 4 1804 + 4 = 1808

Ex 5—5

Statement 6: LOOP EX (SP),IX

The instruction asks the computer to EXchange the two
byte pair currently pointed to by the stack pointer with the
contents of the IX register.

BEFORE:

tt

I X ss

| уу
a<— sp

(RAM memory)

59

АЕТЕВ:

X tt
i ss
yy XX | bb

аа<— sp

(RAM memory)

The first time this instruction is executed, the stack will

contain 1820Н and IX will contain 1826H. Because of the
exchange, the next time this instruction is used the stack
will contain 1826H and IX will contain 1820H. The action of
EX (SP),IX is to make index register IX alternate between
pointing to the message HELP US at 1820H and the blank
display at 1826H. Enclosing an instruction in parentheses
indicates a memory reference. The stack pointer ís enclosed
by parentheses (SP) thus the stack points to memory.

Ex 5-6

Statement 7: LD B,5@

The constant (immediate value) is loaded into the "B

register. The exercise Ex 5-7 will explain this
instruction.

EX 5-7

Statement 8: CALL SCANI

A series of instructions which perform a definite task
is called a routine. А program consists of one or more rou-
tines. The monitor contains several routines which the user
may wish to access. SCAN1 is a monitor routine which will
(as one of its actions) display the area pointed to by IX.
The display consists of 6 sections so IX will point to a six
byte region. A routine accessed by another routine or
program can be called a subroutine. The CALL instruction is
the preferred method to access a subroutine.

The CALL instruction breaks the sequential processing
of instructions by transferring control to a new address.
In statement 8 the new address 15 the entry point into the
routine SCANI. The execution of SCAN1 is terminated by a
return (RET) instruction. The return instruction is used to

order program control to continue just after the -CALL
instruction. `

60

instruction
!

instruction

CALL SCAN1 to SCAN1 location 624

Ov... Feturn by referencing
В C ML. REPE =,

next sequential RET
instruction the stack

How a CALL-RET Works CALL 5САМ1

In reality when CALL SCAN1 is executed, the contents of the
program counter (PC) which already points to the next se-

quential instruction are saved on the stack. The contents
of the РС (180Е), in Example 2, аге pushed (saved) on the
stack. Now the program counter is loaded with the
subroutine address given the CALL 5САМ1 instruction. (in
this example the address is 0624Н, SCAN1). Program control
is now transferred to SCAN1. When the return (RET)
instruction in SCAN1 is executed, the program counter will
be loaded from the stack. The value on the stack is the
address of the next instruction after 5САМ1, so control

returns to location 18@FH.

After the above explanation you may have forgotten
what's happening. Тһе call to 5САМ1 will use the six bytes
at BLANK to control the screen (displays). Zeros are sent to
the display in the MPF-I, which turns off all the segments
in a display. So BLANK blanks the screen, but only for a
short time.

EX 5-8

Statement 9: DJNZ HELFSEG

Statement 9 provides the solution to the very short
time that SCAN1 will blank out the screen. What is needed
is a method of repeating statement 8 which will again
display the current pattern that the IX register is pointing

to.

The DJNZ instruction will:

61

1) Decrement the B register. В was loaded with а 50
(decimal) so it will now contain 49 (decimal).

2) Compare B with zero.

3) If B is not equal to zero, program control is trans-
ferred to the location given in the operand field.
The operand field contains HELFSEG so,the program
continues at the statement containing HELFSEG as a
label.

From the above you сап see that statement 8 will be
executed 50 times until B becomes zero. When B does equal

zero, execution continues sequentially at statement 10.
Executing statements 8 and 9 fifty times will hold a pattern
of the screen for about 500 ms.

Ex 5-9

Statement 10: JR LOOP

The J in this statement means Jump. A jump is a
transfer of control. The R means jump relative from where
the program counter is at this time. The program counter
has advanced to location 1813. The operand Loop in-
dicates a relative jump to the statement with the label
LOOP--statement 6.

Ex 5-10

Statement 11:

This іс a sneaky way to get a line with nothing but a
semicolon. This comment line without a comment makes the
program easier to read.

Statement 12: ORG 1820H

Reset the location counter to 1820H. Тһе following
data will be located at hex location 1820 and up.

62

Statement 13 to 24

DEFB means define a byte. That is: reserve a location
and enter a particular pattern at this location. Тһе DEFB's
are used to generate display patterns (characters).

Ex 5-11

Statement 26: 5САМ1 EQU 0624H

This statment is used to inform the assembler whenever

you see the operand SCAN1 put the hexadecimal number 0624
їп its place. EQU means equate.

Statement 27: END

An end statement informs the assembler that there is

nothing left to translate into object code.

It is possible to know what every statement іп а
program does апа not understand what the program is doing.
Lets trace the major actions of EXAMPLE 2.

The first time statements 1 to 6 are executed ІХ will
point to BLANK and a pointer to HELP is on the stack.
Statements 7 to 9 will keep the screen blank out for about
500 ms. Then statement 10 transfers the program control to
Statement 6. Statement 6 will make IX point to HELP and put
a pointer to BLANK on the stack. Statements 7 to 9 will
display HELP US for about 500 ms. Again statement 10
transfers control to statement 6. An exchange of the
contents of IX and the stack occurs so that now blanks will
be displayed for about 500 ms. You must press either RS or

MONI to stop the alternating display.

63

Ех 5-12

TERMINATING А MESSAGE

Turn to EXAMPLE 1 in section 5.10. Key in and execute
the example. In each EXAMPLE only new features will be

discussed. There are three new features in this example.
One, only one screen pattern is displayed. In Example 2,
HELPUS alternated with a blank screen. Two, a different

routine, SCAN is used to display the message. Lastly, the
program can be Stopped by pressing a key, namely the [STEH
key.

Program analysis

Statement 3: LD IX,HELP

Only one message is displayed and no blanking will
occur, thus IX is loaded with a pointer (an address) to the
message. When either SCAN ог SCANI1 are called the 6 byte
group pointed to by IX will be displayed.

Statement 4: CALL SCAN

You should read the explanation of SCAN in section 5.3.
You will discover:

1) IX points to the display buffer.

2) The message (contents of the display buffer) will be
displayed until a key is pressed.

3) The A register will contain the internal code of the key

pressed. See Statement 5 below for a discussion of key
codes.

4) The address of SCAN in the monitor is 05FEH.

Statement 5: CP 13H

How can the continuous display be terminated? Decide on
one key {о terminate the program. In this program the |STEP

key Пав already been choosen. The monitor program in con-

64

junction with hardware is designed to return а unique inter-
nal code for any key (except [RS, [MONI], [NTR], and [USER]
pressed. Actually а code dependent upon the position of
key 15 returned first. The position code is converted into
an internal code when using SCAN. To determine the internal
code for [STEP]- or any other key - refer to Appendix A
section 2; Internal code (CALL SCAN): You will find STEP in

the second row from the bottom and the fourth column from

the right. The code is 13H.

EX 5-13

What is needed is a method of testing the A register
for a particular code (key value). The compare
instruction - (CP 13H) compares the value 13H with the
contents of the A register. The details are:

1) Put a copy of the A register into a temporary register.

2) Subtract 13H, or any value given as an operand, from the
copy.

3) If the copy of А equals the test (choosen) value set the
zero flag. If the copy of A is less than the chosen
value, set the sign flag. Thus testing a maximum of two
flags can determine how the A register compares to a par-

ticular value-when the compare instruction is used before
testing.

In summary:

А = test value; zero flag is set.

А < test value; sign flag is set.

А > test vaue; neither the zero or sign flag is set.

Actually, using the results of the compare instruction
is easier than thinking all about flags as you will see іп
the description of statement 6.

EX 5-14

The compare instruction does affect flags. Turn to
the second page of the 8-BIT ARITHMETIC AND LOGICAL GROUP.
Find the Set of columns labeled Flags. Now find the row
labeled CP s. We will analyze the meaning of the first two
columns under flags. Тһе 5 cloumn means sign (of the

comparison). There is an up down arrow at the CP s position
in this column.

65

Up arrow means if the result was negative, then the
flaq will be set. In plain terms when the A register is
smaller than the test value, the sign flag is set. The down
arrow indicates the result was either zero or positive and
the flag will be cleared. Again in plain English, the value
of the A register was not less than the test value.
Remember set means l and reset eans zero. The Z column
means zero. If А equals the test value, the flag will be
Set (up arrow). If A is not equal to zero, the flag is reset
(down arrow).

Statement 6: JR NZ,DISP

The program should be designed to repeat the current
display unless any key but |[STEP|is pressed. The compare
Statement CP 13H resets the zero flag if апу key but [STEP| is
pressed. Then all that is needed is an instruction that
will jump back to CALL SCAN, labeled DISP, when the zero flag
is not set. JR NZ,DISP says transfer program control to DISP
if the result of the test (or any operation that affects the
zero flag) was non-zero (NZ). If the key was pressed,
then statement 6 does not break the sequential flow of
instructions and the next instruction executed is HALT.
When a program cycles again and again through the same
sequence of instructions it is said to be looping. When а
test does not break the sequential execution of
instructions, the slang expression ‘fallen thru! (to the

next instruction) is used. In this example, you could have
avoided understanding flags. Understanding the interaction
of

CP 13H and JR NZ,DISP

would be sufficent. Do a compare. If the A register equals
the operand of the CP instruction, then a JR NZ, label will
not jump to label. If the A register dosen't equal the
operand, then JR М7, label will transfer control to the

instruction with the label.

ЕХ ^ 15

Statement 7 HALT

The computer has stopped looking for commands to
execute, Тһе screen will go blank. To regain control you
must press either ar [RS].

66

Ек 5-16

Using (Calling) Two Monitor Routines

Turn to EXAMPLE 3 in section 5.10. Key in and execute
the example. Read the instructions given below the listing.

Statement 4 LOOP CALL SCAN

EX 5-17

Statement 5 LD HL,OUTBF

EX 5—18

Statement 6 CALL HEX7SG

HEX7SG is a routine residing in the monitor. Turn to
section 5.5 апа read about HEX7SG. The sequence of the
actions for a particular key press will now be described.
Assume that you pressed the [RELA| key. Statement 4 CALL SCAN

IRELA will put the internal code for N into the A register.

— — A register

HEX7SG first converts the D into а 7-segment display format

D B3= i|

(D converts to B3) and then stores the byte B3 at location
OUTBF. Effectively, statement 10 now reads

OUTBF DEFB B3H

Next HEX7SG converts the 1 into a seven segment display
format and stores the result at OUTBF+1

1 за =!
ЕХ 5-19

statement 10 and 11 now read

OUTBF DEFB B3H

DEFB 38H

Statement 7 JR LOOP

The jump relative command will jump to location LOOP.
Statement 4 (again) CALL SCAN

67

Summary

Remember that SCAN will output the contents of the
display buffer and cycle until a key is pressed. When a key
is pressed the internal code of the into key is loaded into
the А register. What is in the display buffer. The first
two bytes contain the display codes for the bytes in the A
register. HEX7SG converted contents of the A register into
display code.

1. Actions of SCAN

Ç SCAN
`

1.

+1 +2 +3 att „+9

NA AT unen
OU T B F

2. Actions of HEX7SG

2. KEY CODE A register

HEX7SG

А register

CONVERT
TO DISPLAY
FORMAT

OUTBF

OUTBF+1

Open the MPF-I Experiment Manual (Software/Hardware) to

Introduction to Designing Microcomputer Programs. Read B.

Flowchart. One additional symbol you should know 1s

Name of

Routine

\

68

A flowchart of EXAMPLE 3 is

LD IX with the address of OUTBF

Execute the routine SCAN

Load IY with the address of OUTBF

HEX7SG ^. Execute the routine HEX7SG

LOOP

EX 5-20

A DISPLAY CONVERTER

Turn to EXAMPLE 4 in section 5.10. Key in and execute
this example.

EX 5-21

POLICE SIREN

Turn to EXAMPLE 5 in section 5.10. Key in and execute
this example.

EXAMPLE 5: Simuláte a police car siren

Тһе siren produced by this program consists of two
tones, each one lasting 0.73 sec. The two frequencies are
256Hz and 352Hz.

69

Statement 3 LOOP LOOP C,@

The frequency is controlled by the value in С. The
larger the value of C, the lower the frequency. The note
produced is a square wave. The wider the square wave, the
lower the note.

L spe. ИЕ гак Low Freq Low "g"
High Freg U UU UU UUUU UU

The square wave is held high for the number of counts in C,

and then low for the same count. But the test for the time
to hold C high or low is done after subtracting one from the
value of C. What is one less than C? For all values except
zero, it is simple, e.g., 192-1 = 191 FEH -l = FDH. What is
one less than zero? When the computer is using plus and
minus numbers, FFH equals -1l. Thus one less than zero is
ЕЕН. But the test for the square wave generator doesn't use
signs, therefore, FFH is equal to 255 decimal. In statement

3, the C register is loaded with zero. This will generate
the biggest number when tested by the tone routine and the
lowest possible frequency using the monitor tone routine.
The calculation given below the code in EXAMPLE 5 shows this
frequency to be 265Hz (Hertz-cycles/sec). This is close to
the middle of a piano keyboard (middle C). Occasionally,

computer programs use a trick, like one less than zero
having the effect of being a large number.

Statement 4: LD HL,@COH

How long will the tone at 256Hz sound? Another calcu-
lation reveales the period of one cycle at 256Hz to be 3777

micro seconds.

ке и
опе i

cycle i
3777 1

mico- |
seconds '

70

The value in HL, when used by ТОМЕ, determines the
number of cycles and thus the length of the sound at а
particular frequency. At 256Hz a value of 2 in HL produces
a length of 7554 micro seconds--less than a hundred of а
second. In this example, HL contains the value ØCØH which
equals 192 decimal. The length of the sound is 3777 micro
sec. x 192 = 0.73 sec.

Statement 5: CALL TONE

In specifying parameters (values) for the TONE, you
already know that the frequency is set by the value in C and
the length of а sound is contained іп HL. Reinforce your
knowledge of TONE by reading section 5.7. Do not avoid
studying how to calculate the frequency and the tone length.

EX 5-22

71

Memory Checking

Turn to Memory Check section 6.1. Кеу in and execute
the program. Note the display and the condition of the HALT
LED. The HALT LED is a red light to the right of the
displays. Why did you run this program? Read further.

What аге the areas of employment in the microprocessor
field? А partial list could be:

1) Chip (integrated circuit) designers -- the Z80 CPU 15 an
example of a chip requiring a high level of technology.

2) Hardware designer - the people who determine how the
components will interface.

3) Software programmers -the MPF-I the monitor is a software
program held in a PROM.

4) Applications programmers - Тһе Music Box program
(Experiment - 18) is an application program.

Some additions to the list would be a sales staff. But
Something very important (and a growing field) is missing.
The people who design tests. The various ICs апа the
computer as а whole should be tested. Testing starts with
the components. Your 280 CPU is tested at the factory. Тһе
tests guarantee that the 280 CPU will function over а
Specified voltage and temperature range. Two built-in tests
are provided for your convenience - a PROM test and а RAM
test.

EPROM Testing ;

Тһе information іп а PROM doesn't disappear when the
voltage is removed. Some PROMs, EPROMS can be erased by

applying ultraviolet rays. PROM tests take advantage of

the fact that information in a PROM doesn't change easily.
Imagine a very small PROM containing only 4 location (bytes)
Assume that the bytes аге 02,01,03 and 00. Adding up the

bytes would give а sum of 06. If а byte contains an
incorrect value, the sum would be different. For example,
1Ё the last byte меге 01 instead of 00, then the sum would
be 07. Since the sum is being used to check the PROM, it is
called а checksum. Еуеп with only four bytes, the sum might
be larger than the largest value that a byte can contain.
Any carries out of the byte аге ignored. In spite of

72
ғ

Еһгоміпд away the carries,the sum in the byte will always be
the same in a healthy PROM and circuit. If you had a
PROM with 2042 decimal locations of which 2047 are needed,

you have a spare byte. Could the spare byte be used to
produce a useful checksum? Yes, by adding the correct value
to the checksum of 2047, the result can be made to equal

zero. AS an example, adding 2 to a hexadecimal result ЕЕН
produces а carry (which is ignored) anda byte containing
a zero. If the PROM routine changed, the test programmer
changes the extra byte to guarantee a result of zero. Now
the PROM test only has to be written once. It is always
enough to add up all the bytes in the PROM and test for a
zero result. Your Micro-professor PROM test routine uses
this add-up-to-zero method.

Turn to the EPROM test section 6.1

Initialization

The statements

LD HL,9O

LD EC ,800H

are called initialization code. The HL pointer is set to
the beginning address of the EPROM--zero in МРЕ-І. Тһе BC
reqister pair is set to the number of bytes to Бс tested.

Тһе МРЕ-І monitor PROM holds 2K bytes, which equals 800
nexdauecinal locations. Тпе, CALL Füme is made to a

subroutine which adds up all the bytes in the monitor EPROM.
when the subroutine SUM completes execution a RET instruc-
tion is executed and control is returned to the relative
jump statement

JR Z,SUMOK

If the result of summing all the numbers in the A register
15 zero, the relative jump on zero will transfer control to
location SUMOK. The command at SUMOK will transfer control
to beginning of the monitor location zero. If the sum of
the bytes in the PROM was not zero, then the jump relative
command will not transfer control and program execution
continues at the next command which will halt the processor
(МРЕ-І).

73

ROM TEST Flowchart

STEP

INITIALIZE

HL*——-0
BC «—— —800H

2

3

4 НАҺТ

5 RETURN TO THE MONITOR

INSTRUCTIONS

LD H,@;BEGINNING OF PROGRAM

LD BC,800H;PPOGRAM SIZE

CALL SUM

HALT

RET

74
Nm

SUBROUTINE SUM FLOWCHART

STEP INSTRUCTIONS

1 CLEAR А

AND THE

CARRY FLAG XOR A

2 ADD BYTE TO
THE ACCUMULATOR ADD A, (HL)

3
CPI

JP PE,SUMCAL

4
RELATNE TO

THE VALUE OF OR А

REGISTER

5 RET

75

ЕХ 5-23

The subroutine SUM

The flowchart of SUM shows the actions performed by SUM.
Read the flowchart then proceed to the detailed explanation
of each command given below.

XOR А

ХОН means exclusive OR. An exclusive OR operates on two
bytes. The contents of the А register is always one of the
bytes, the other byte is given in the operand field. The
command ХОН B will exclusively OR registers A and B. When
bytes are exclusively ORed together, 8 bit pairs are ored to
form a one-byte answer.

Assume A contains 10101100 and B contains 11091010 then

XOR B

gives

8 bit pairs 11001010 register B
101280112829 register А

0112807280112 result

What do you observed whenever the bits in A and B were the
same? The answer is zero. Whenever the bits were different,

the answer is 1. The "truth" table below shows this

relationship

46

XOR А means exclusively OR А against A. А11 the bits will
be the same, thus the contents of A will be zero after XOR

A. ХОН А 15 a sneaky way of clearing А to zero.

EX 5-24

ADD A, (HL)

This instruction adds the contents of the location pointed
to by HL to the accumulator register A. The first time the
instruction is executed, HL points to the first byte of the
monitor EPROM. The first byte of the EPROM is added to A,
A <-- @ + first byte.

CPI

The compare and increment instruction will:

1. Compare the contents of the A register with the location
pointed to Бу HL. This feature is not used by the
subroutine SUM.

2. Increment the HL register pair.

3. Decrement the BC register pair.

4. Test BC for non-zero, after it has been decremented. If
BC is non-zero, then set an indicator. The indicator
is called a flag. The flag used is the P/V flag. The
P/V flag is used in several ways. The next instruction

will show you one use for P/V.

JP PE,SUMCAL

The JP PE,SUMCAL instruction orders the computer to transfer
control to SUMCAL, if the parity flag is set. Set means that

a "1" is in the flag.

[l | PA | Comments
also called on

[Reset | o | also called cleared

77

The instruction CPI influences the actions of JP PE,SUMCAL.

If ВС is not zero, then program control transfers back to
SUMCAL. BC was set to the number of bytes to be tested.
The result of CPI and JR PE,SUMCAL working together is that
control will be transferred to SUMCAL until all of the
bytes have been summed up. CPI and ADD A,(HL) also work
together each time CPI is executed. HL increases by one.
If control is transferred to ADD A,(HL), the next byte

is added to register A.

OR A

The results of executing an OR instruction сап be
determined by using the "truth" table below

А В OR B Operands
1 1 1 Both опе
1 Ø 1 One Zero

0 1 1 Опе 2его

0 0 Ø Both Zero

The conclusion you should draw from the table is that unless
both operands are zero, the answer is one. Another
conclusion is that if both operands are the same, the result
will be the same as the operands.

1 OR 1 gives 1 0 OR 0 gives 0.

ORing А against A will not change the value of A. For
example

OR A 11001010 Register A

11001010 Register А

А 11001010 Result іп Register А

Then why OR А? Because another action occurs. Certain
flags are set whenever an OR operation occurs. The flag
settings depend upon the result of the OR operation. If the
result of the OR operation is zero, then the zero flag is

78

set. This zero flag is what we are interested in. If the
checksum was zero, then A contains zero. ORing zero against
zero gives zero with the zero flaq set. After the
instruction RET is executed, the next instruction is JR
Z,SUMOK instruction. This, of course, tests the zero flag.

If it is set, control is transferred to SUMOK, Look again
at усиг flowchart.

RAM TEST

INSTRUCTION

LD HL,1800H;POINT TO

FIRST LOCATION
LD BC,800H;SIZE OF RAM

CALL RAMCHK

HALT

CPI

JP РЕ, RAMT

RETURN TO RST
THE MONITOR

79

5ТЕР

ЕХ 5-25

SUBROUTINE RAMCHK FLOWCHART

RAMCHK

MEMORY CONTENTS
TO THE A REGISTER

ONE'S COMPLEMENT

OF THE А REGISTER

RETURN CONTENTS
TO MEMORY

MEMORY CONTENTS
TO THE A REGISTER

ONE'S COMPLEMENT
OF THE А REGISTER

RETURN CONTENTS
TO | MEMORY

RETURN

80

INSTRUCTIONS

LD A, (HL)

CPL

LD (HL) ,A

LD A, (HL)

CPL

LD (HL) ,À

RET

RAM Testing

А RAM is designed to have its memory cont:
altered. This property is used when testing RAM:

address the following procedure is followed. Lc
from memory into the A register. Change each zer
"1" and each one bit to a "Ø". This is calicu a one's
complement. Put the complemented byte back into the
original memory location. Load the complemented byte back
into the A register. Again perform a one's complement and
put the result back into the orginal memory location. Now
compare the byte in the memory location with the byte in the
A register. А failure indicates a bad memory, or possibly a
bad address, bad data lines, or the CPU is not decoding

instructions correctly .

Why does this program work? That is how can it test a RAM? A
bad RAM chip has to exhibit a failure by returning ап
incorrect bit ог bits when read. Assume in the frame shown
below that bit 1 is stuck low (will not go high) апа that
bit 6 is stuck high (will not go low).

76 5 4 3 2 L B
Lm [D Total pep 1 Ram memory location

When the location is read into the А register апа
complemented, bit 1 will go high and bit 6 will go low.

7 6 5 4 3 2 1 0

LITTITTTIH[] А register

Writing back the contents of A into the same memory location
will not change bits 1 апа 6 in memory. Comparing the
contents of А with memory will give a non-zero result
bits 1 and 6 at the of two locations are not equal.

If tbe one's complement instruction appears to detect errors

then why are there two complement instruction? If you have a
healthy НАМ, after testing all the memory locations, it
should be the same. With а single complement, they
won't be complementively twice restores each healthy memory
location to its origianl values.

EX 5-26

EX 5-27

81

Questions

5-1

Change the comment statement to read we don't need any help.
How would you separate the comment statement from the rest
of the program?

5-2

How would you make a program start at 1900H ?
What would the statement ORG C000H do? ;
What is the effect of starting a program at 100H, ORG 100H ?

5-3

Use the 16-BIT LOAD GROUP charts in Appendix C to answer
the following questions. What is the opcode for LD DE,
BLANK ? How many bytes in the instruction LD BC,1826H? Is

the instruction LD AF,BLANK allowed? Is the instruction LD
DH, BLANK allowed? Is the instruction LD SP,BLANK allowed?

5-4

show with a drawing all the steps in the PUSH BC
instruction. Do the same for the PUSH IX instrucion. Hint

use Appendix С 16-BIT LOAD GROUP $Р-1 <- IXH means that
the high byte of the IX register (a 16-bit register) is put
on the stack first. Can a constant be pushed upon the stack?
Label the fields in the listing shown below

5-5

How can you verify that LD IX,HELD is the correct form
of the assembly language source statement? Using the table
16-bit LOAD GROUP Appendix C, find the column Symbolic
Operation. What does the entry for LD IX, пп indicate?

82

5-6

Using Appendix C find the exchange instruction. What
is the title of this group? What is the opcode for
ЕХ (SP),IX ? Тһе DD again means? The location counter

was 1808 what will it change to after the ЕХ (SP),IX

instruction?

5-7

The В register is an eight bit (опе byte) register. How

many bits аге loaded in the LD B,50? What instruction

group will give the object code for LD B, 50? Find the
correct group in Appendix C.
What is the object code for LD В,50?
What 15 the source label ? What is the DESTINATION label ?
How many byte instruction 15 LD B,50 ?
Nhy does the 50 in LD B,5@ translate to 32 in the object
code ? The title of the immediate column
in the 8-bit LOAD GROUP ' LD! is ІММЕ., апа

the title іп the 16-bit LOAD GROUP 'LD' 'PUSH' AND "РОР" is

ЕХТ.ІММЕ. Why are the titles different ?

5-8

Find the CALL AND RETURN GROUP on the same page with the
RESTART GROUP-Appendix C. You will CALL 5САМ1

ununconditionally. The condition column is labeled UNCOND.
The choice of the correct row should be easy, what is it?
What is the opcode ? How many bytes is the instruction?
What goes in nn? What is the object code for CALL 5САМ1?

5-9

Read section 3.3.4 Relative Address Calculation. Try
using the RELA on the DJNZ statement in this program. What
is value of 5? What is value of D? Find the
JUMP GROUP in Appendix C. What is the opcode of DJNZ?
THE e-2 means the relative distance to be jumped. In
statement 9, the value of this byte is FB. Explain what this
value means.

83

5-10

Find the JUMP GROUP in Appendix C. Now locate the row
labeled JUMP 'JP' relative. Note the ' P' should read 'JR'.
The first column under condition UNCOND 15 the correct
column. What is the opcode? The second byte of the object
code contains F5. How many bytes backward does this value
represent? Show how to compute where the JR instruction
jumps. *

5-11

Study the display formats in Appendix A. Now change the
screen display from HELPUS to all 8's. Display your initials.
Use blanks іп any position not occupied by your initials.

5-12

Projects

Some of the projects suggested in this paragraph may be
beyond your abilities at this time. Instructions not yet
explained may be needed. You may want to start designing
your program now. Ог experiment with altering instructions.
How can you alternate alpha messages on the display? How
would you put а blank message between alternating alpha
messages? How can you have messages which are on the screen

for different periods of time? Design a program which will
move a display across the screen.

84

5-13

Give the internal codes for

Find the 8-ВІТ ARITHMETIC AND LOGIC group in Appendix
C. The compare instruction is considered to be a logic

instruction. Find ‘the row ‘labeled COMPARE 'СР'. The
compare instruction in EXERCISE 1 is of type immediate so
find the -column labeled IMMED. What is the opcode for

comparé? In exercise 1 what value does п represent?

5-14

Can the contents of register В be compared to the contents
of register A?

5-15

Turn to the JUMP GROUP in Appendix C. Earlier the
UNCONDitional RELATIVE jump was examined. Now two new jumps
(conditional jumps) are examined - jump relative if zero,
and jump relative if non zero. What is the opcode if jump
relative if zero? What is the opcode of jump relative if
non-zero? How could you determine the mnemonic for jump
if zero?

5-16

Write a program to HALT if any key with a: key code is
pressed except the [STEP] key. Write a program to HALT if the
B0] key is pressed. Write a program to halt only if the
key is pressed followed by pressing the minus [=] кеу. Test
your answers by running your programs. Start thinking about
this!

You may find the exercise difficult and you may not have
the backgound. Build a combinations safe. А plus indicates
a clockwise turn, апа a minus indicates a negative turn.
The safe will only open if you enter R14 L35 R7. If give
the wrong combination an alarm goes off (for this problem a
1200HZ tone).

85

5-17

What will be displayed the first time statement 4 in EXAMPLE
3 is executed?
What locations does the display buffer use?
How is the routine SCAN able to find the display buffer?

5-18

what is the opcode of the instruction LD HL,OUTBF?
The HL register pair is used as a pointer. What label and
address does HL point to?
Are there any other pointers to OUTBF?
Why is HL pointing to OUTBF?

5-19

The description in section 5.5 under register states destroy
AF, HL. Does this mean that these registers аге useless

after being used by HEX7SG routine.
What registers are destroyed by SCAN?

86

5-20

Why wasn't EXAMPLE 3 written as follows?

ORG 1800H

LD IX,OUTBF

LD HL,OUTBF

LOOP CALL SCAN
CALL HEX7SG
JR LOOP

How do you stop the program? Why аге there two EQU
statements? Add code to stop the program by pressing a key
other than [RS] or [MONI]. What is the problem with exiting on
a particular key code?

5-21

Why is EXAMPLE 4 of any value?

Where is the information to be displayed Stored?
Change the program to display F C d i3 Д
Are there any instructions not previously explained in this
program?

Why is B loaded with a 3?

5-22

How would you make each tone sound for .365 seconds?
llow would you make the lower sound last for .73 seconds and
the higher sound last 1.46 seconds?
How would you add one more tone?

You will now vary paramenters (values) and listen to the
results.

In statement 3 change 0 to at least three different numbers.
In st atement 3 and 7 change 0 and 100Н to at least three

different values. In statement 4 try loading different

87

values into HL. In statement 8 try loading different values
into HL.

How do you make two tones of equal time intervals? Read all
of the information accompanying EXAMPLE 5 and the details of
the TONE routine section 5.7. Pick two tones say 400 and
1000 cycles (Hertz) and the time interval (1 second).
If the frequency is already known, then to find C use the
formula.

200

С = мыл VH MC S - 10)/3 =?

о II

еі

1 ік isa ja 1 1 1
IP

uA
“ы ыз II > о Q N [V9] lI `

. 400

Now compute the Teper of each sound at 400 Hertz

at 1000 Hertz

For equal time intervals of one second at 400 Hertz

at 1000 Hertz

In summary

VALUE OF C - .VALUE POF HL

Lam | —

88

5-23

Find the RESTART GROUP in Appendix С. What is the
opcode for RST 0?

A restart instruction is а special form of а CALL
instruction. RST Ø is equivalent to CALL @0000H. How many
bytes in a restart instruction ? How many bytes is a CALL

қ zuction ? Does a restart instruction save bytes? To
location does RST 0 transfer control ? What happens to

the .. atents of the old (next sequential location) program

counter ?

Can the contents of the old program counter be accessed ?

5.24

The subtract instruction could also be used to clear А.
For example SUB A,A subtract A from A would zero out the А

register. Why wasn't SUB А,А used?

5-25

How would you test several PROMs and report which ROMS

failed.

5-26

The 2-80 has another complement command NEG. This command
will take the negative of the value in the A register. What
is the opcode of the NEG?
How is the negative of plus two produced?

5-27

What does the CPI instruction do?
Writes a RAM test for a 4K RAM memory beginning at 2000H.

89

Answers

5-1

[x

[.

,

r

.
,

,

Я
,

WE DON'T NEED ANY HELP]
WE DON'T NEED ANY HELP]

A semicolon does not have to be followed by text--comments.

5-2

{ORG 1900H]

[Your code would start at hexadecimal location C009. But
the MPF-I as delivered does not have any memory at this
location--so an ORG C000H might be a poor placement of the
object code.]
[This is the space occupied by the monitor. Unless you аге
modifying or writing a new monitor locations, 0000H to O7FFH
are to be avoided].

5-4

(No, no entry under IMM EXT]

[LOC] [OBJ CODE] [STMT] [SOURCE STATEMENT]

5-5

[Look in Appendix С 16-BIT LOAD GROUP second table entry

from the top.]

(ІҮ <-- nn means that the immediate value nn will be loaded
into the IX register.]

5-6

[Exchanges "ЕХ" AND 'EXX'. This group follows the 16 bit
load instructions.]

[DDE3]
[a double opcode]

[188A-not 1810 the program counter uses hexadecimal values.]

90

5-7

(8-ВІТ LOAD GROUP 'LD']
(06 п ог 06 32]

[IMME.]
[REGISTER,B]

[2]
[50 is decimal, 32 is hexadecimal]
[The EXT. means extended and indicates a bigger immediate.
16 bits as opposed to 8 bits.]

[2]

5-8

[CALL, IMMED. EXT]
[CD]
[3]
[The location of the subroutine in EXERCISE 2 is the address
of 5САМ1)
[CD 2406)

5-9

[180F]
[18ЙС]
(10)
(FF means jump back 1 byte. FE means jump back 2.
So FB indicates a jump back of 5 (FF-1, FE-2, FD-3,
FC-4, FB-5). A two byte backward jump will put the
program counter at the beginning of the DJNZ instruction.
3 more bytes puts the program counter at the beginning of
the CALL 5САМІ instruction-label HELFSEG.]

5-10

[18]
[11 decimal, B Hex]
[1813-B = 1808 remember the program counter is at 1813]

5-11

[Enter BF in location 1820 to 1825]
[My intials аге RJB so in locations 1820 to 1825 I would
enter 03,В1,А7,00,00,00)

5-13

KEY Ø 1 5 GO MOVE MONI
Code 00 01 05 12 ІС x

[FE]
[13]

91

5-14

[yes CP B]

5-15

[28]
[20]
[Turn to the second page of the JUMP GROUP. Under mnemonic
find the JR commands. Under symbolic operation find if Z=O
continue, if 7-1 PC <- PC + e. Remember if Z=0 the zero
flag was not set the result was not zero and one jump

occurs. If 2-1 the contents of the PC is changed. Namely,
jump if result is zero. The mnemonic is JR 7,е. Іп
Exercise 1 e means the distance to jump.]

5-17

[Blanks |

[1900]
[SCAN uses IX to point to the display buffer]

5-18

[21]
[OUTBF, 1900]
[Yes, index IX]
[We don't know yet. Statement 6 will reveal all]

5-19

[No, it means that HEX7SG wrote over the previous contents of
AF апа HL . Perhaps опе should say alter rather than des-
troy.]
(АЕ, B, HL, АЕ", BC', DE']

5-20

[Because SCAN changes the contents of HL]

[Press Moni or RS]
[Two constants are needed. One for CALL SCAN and the other

for CALL HEX7SG]

ORG 1800H
LD IX,OUTBF

LOOP CALL SCAN

CP a key code; This is the key code
JR ЕХІТ; That stops the program
LD HL,OUTBF š

CALL HEX7SG

JR LOOP

[One key code will not be displayed]

92

5-21

[Because once the basic actions are understood, you can use

this routine in a longer program to display results]

[Statements 16,17,18 locations 1900,1901,1902. Тһе label is

BYTES]
[Change statement, 16,17 and 18 to

1900 BA 16 BYTEO DEFB OBAH

1901 DC 17 DEFB ODCH
1902 FE 18 DEFB OFEH

(Yes INC DE- increment DE adds one to the register pair DE]
[Statement 19 is also new. DEFS 6 define storage reserves а

number of bytes, 6 in this case, in memory. This area is

used as a display buffer.]
[So that the loop shown below

LOOP LD A, (DE)
CALL HEX7SG
INC DE
DJNZ LOOP

will be executed three times . The first execution of the
loop will convert the two digit (10) in BYTE @ to display
code and put the codes in OUTBF and OUTBF + 1. The next
loop will convert the two digits (32) in BYTE @+1 to display
code and put the codes in OUTBF +2 and OUTBF +3. Тһе final
converts 54 and puts the result in OUTBF +4 and OUTBF +5.

5-22

[Change statements 4 and 7 to
statement 4 LD HL,#6@H

statement 7 LD HL,80H]

[Change statement 7 to statement 7 LD HL, @FFH)

[After statement 8 add the code

LD C,060H
LD HL,OEQH

CALL TONE

[163]

[63]
(44 + 13 x 163] x 2x 0.56 = 2423 micro sec]

[44 + 13 x 63] x 2x O.56 = 967 micro sec]

93

1/2423 x 0.000001 = 1/.002423 = 412 periods
1/.000967 = 1034 periods

VALUE OF С VALUE OF HL
CC j| 163 ee | |
1000

5-23

[C7] [1] [3] [YES] (0000Н)
[Just as in the CALL instruction the program counter is
saved on the stack]

[Yes if no other instructions that affect the stack аге

used, a RET (return) instruction will reload the program
counter.]

5-24

[The XOR instruction always clears the carry flag, even when
the operand isn't A (e.g. XOR B). Тһе SUB A,A also clears
the carry flag but it is easier to remember this fact when
using XOR actually either instruction is equally good.]

5-25

[Test each ROM separately. When any ROM fails, save the
address range of that ROM. When all ROMs have been tested,
report the ranges of ROMs that failed.]

5-26

(There are two opcodes ED and 44. This is an extended in-
struction. This instruction is not present in the 8080/85
computers. Observe the number chart below:

Hex Binary
02 00000010 plus two +2
01 00000001 plus опе +1
00 00000000 zero 0
FF 11111111 negative опе -1
FE 11111110 negative two -2

[Write the value of plus two in binary

00000010

Take the one's complement--toggle each bit

11111101

94

Ааа опе

11111101
+ 1

11111110

We have

NEG gives a result which is one greater than one's com-
plement and thus is called the two's complement.

5-27

(Іс dećrements the contents of the BC register so that the
JP PE,RAMT instruction сап determine when all of memory
has been tested. Remember BC contains the memory size.
The CPI instruction also advances the memory pointer HL to
the next location to be tested.]
[Only the first two instructions need to be changed.
LD HL,1800H becomes LD HL,2000H and LD BC,800H becomes

LD ВС,1@@@Н.]

95

Once a program is tested and debugged, any part, or
all, of the program can be used as a subroutine in a larger
program. You can build up a libary of useful routines by
understanding how to use the programs presented іп this
chapter. Knowing how a program works permits you to tailor
it to a specific application. Understanding a program also
allows you to write a more powerful general
subroutine--e.g., extending the range of a multiplication
routine. All of the experiments referred to below are in
the MPF-I Experiment Manual unless otherwise noted.

Some basic principles—Applications of arithmetic
and logical instructions

Turn to Experiment 2 Basic Applications of Arithmetic
and Logic Operation Instructions in the MPF-I Experi-ment
Manual. Read Section I, Theoretical Background. Some of

the concepts presented in this section are. for your review.

Adding is considered to be a fundamental process. You
can add numbers rapidly because you have memorized the one
hundred basic combinations such as: 3 + 4, 0 + 7, 8 + 9,
and 9 + 8. The computer has been given a few rules also.
Тһе 780 CPU instruction set allows either 8 bit adds (опе
byte) or 16 bit adds (two bytes). In 8 bit adds, the A
register is always one of the numbers added (augend), and it
also contains the result (Sum). :

Permissible 8-bit Adds

In the MPF-I User's Manual, turn to Appendix C. Find
the 8-bit Arithmetic and Logic Chart. Find the row labeled
ADD. The registers that can be added to A are given under
Register Addressing (Fig. 6-1).

SOURCE

REGISTER ADDRESSING

A B e D E H L

Any of these can be added to the A register

Fig 6-1

98

The Assembly language instructions are of the form

ADD А, г

where г is any one of the registers A,B,C,D,E,H,L. You сап
verify this by turning to second page of the 8-—bit
Arithmetic and Logical Group and looking at the first entry
in the column labeled Mnemonic (fig. 6-2).

The permissible values of r (fig. 6-3) are listed in
Comments column. То perform an add of two with registers,
both the A register and the selected register (the г
register) must be first loaded.

Mnemonic

Fig 6-2

Comaents

B

C

D

011 E Per issible values of r
160 H

101 L

111 А

Fiq 6-3

Exercise 6-1, 6-2

The value to be added to the А register may be accessed
from memory by using the HL register pair as a pointer (fig.
6-4). Тһе source is register indirect (REG. INDIR). This
means that а register (or register pair) will pcint to the

byte in memory to be used as the source.

REG

INDIR

Fig %-4

99

Exercise 6-3

Two other pointers to memory are permitted. Either a
index register IX or IY may point to the byte to be added to
the accumulator--A register(fig.6-5). An offset of up to
*127 or down to -128 is allowed with either index registers.
The source is named INDEXED.

INDEXED

ы Бай

Fig 6-5

Exercise 6-4

A constant may be added to the А register. The column
labeled immediate is used to determine the hex code (fig.
6-6). The range of decimal numbers that can be used in a
signed add is +127 and -128. ж

Fig 6-6

Exercise 6-5 -

If the result of an addition has to be contained in a

byte and all the numbers were unsigned--essentially always
positive, then the largest answer would be 255 (decimal) =FF =

(hexadecimal). Even more restrictive is the use of signed

numbers. The leftmost bit is used for the sign of the
number. Then only 7 bits are available for the size of the
answer. The largest result would be 127, the smallest-128.

Exercise 6-6

Fortunately а method of extending the size (precision)
of numbers used in addition has been provided. When- ever
two numbers are added, the result is checked by the 280 for

a carry. If the two numbers didn't produce a carry, a flag ғ
called the carry flag is reset (cleared). If а carry is

produced, then the carry flag is set. The carry flag adds
an extra bit in the answer.

100

ADD А,В

8 bits
НЕН ванае А Augend

8 bits
| [register B Addend

carry flag 8 bits
register A SUM

9 bits

Now an unsigned answer сап be as large as 511 (decimal)
= 1FF(hexadecimal). Proper use of the carry flag can extend
both the size of unsigned and signed additions; the process
is explained in the following example. The program shown
below is the first example in section II. Example of
Experiments under Experiment 2.

Statement Source statement

1 ORG 1800H
2 LD A, E

3 ADD A,D
4 LD L,A

5 LD А,0

6 АРС A,@
7 LD H,A

8 RST 38H

Diagram

С |? register Augend
ү] E register Addend

H L

cq pe Result

101

Statements 2 to 4

A conventional add of D and E with the 8 bit result in L.

Statement 5

The A register is zeroed out.

Statement 6

The add with carry, ADC, instruction adds the two operands,

А and zero, and the carry flag together. Тһе result is in
A. The carry flag was set or reset by the ADD in Statement
3. The reason for the ADC А,Й was to transfer the contents
of the carry flag to the А register.

Exercise 6-7

Statement 7

Transfer the carry (or по-саггу) that was loaded into A into
H.

Statement 8

The RST 38H instruction enters the monitor without executing
the power-up code.

Exercise 6-8

The second example (Example 2) under ІІ. Example of

Experiments (In Experiment 2 in the MPF-I Experiment Manual)
can best be explained by a diagram.

102

1A@1 1A00 Memory location

D E Registers

H L Sum

Exercise 6-9

Exercise 4 is also best understood by using a series of
diagrams and a flowchart.

First pass through the loop

+11

+1@
sum

+9

+8

second +? Add IX and IX+4

operand result (sum) in IX+8

+6

+5

+4

first +3
operand

+2

+1

IX+0

103

Second pass through the loop

Add IX+1 and IX+5
result (sum) in IX+9

Location of the operands

+3 +2 +1 IX+ø

+7 +6 +5 IX+4

Addend

104

Flowchart

Start

B<=4

ЇХ<-1А@0@Н

Clear carry flag

Return to

monitor

Instructions

ORG

LD

ADC

LD

INC

DEC

JP

RST

105

1800Н

B,4
IX,1AQ00H
A

A,(IX)

A, (1X+4)

(ТХ+8),А

1Х

NZ, LOOP

38H

Study the charts, diagrams and the code. You should be
able të understand how the program works.

Exercise 6-10

Exercise 6-11

Read the instructions in Example 5 (Experiment 2, МРЕ-І
Experiment Manual).

Тһе DAA stands for Decimal(ly) Adjust the Accumulator.

Consider the problem below

99
+98

The result should be 197, if а decimal answer is

desired. The computer will display the result of 9+8 as
16-1. То the computer 16 means produce a carry во put down
a one and carry 1.

1
99

+98
1

Now 9+9+1 will be seen as 16+3. Put down a 3 and carry

For reference purpose, the right hex digit in a byte is
called the right nibble and the left hex digit, the left

nibble.

Left Nibble Right Nibble

106

a

The carry bit is a flag altered by the add instruction.
Another flag affected by the add instruction is the half
carry flag. Whenever a carry is produced оу adding the two
right hex digits, a half carry flag is set. Adding 9+8 did
produce a carry, so the half carry flag is set. The DAA
instruction will add 6 if the left nibble is а hexadecimal
number or if the half carry flag is set.

99
98 Half Carry

carry [1] 31
6 DAA instruction

==

Then if the left nibble is a hexadecimal number or if

the carry flag is set then a 6 bit is added to the left
nibble.

Now you have the correct decimal result. Nibble is
sometimes spelled Nybble.

Exercise 6-11b

Experiment 3 (MPF-I Experiment Manual)--more addition апа
subtraction.

Read Theoretical Background Section I.

Exercise 6-12

Read Theoretical Background Section 2,3, and 4.

107

Exercise 6-13

Perform ІІ.1. in the II. Student Exercises.

Exercise 6-14

Perform II.2. in the Student Exercises. Read Exercise 6-15

first.

Exercise 6-15

Perform II.3. in

Exercise 6-16

Perform II.4. in

Exercise 6-17

Read and perform

Exercise 6-18

Read and perform

You can use both

the Student Exercises.

the Student Exercises.

Experiment 3-1 in the Student Exercises.

Experiment 3-2 in the Student Exercises.

ADD A,(nn) and ADC A,(nn).

108

Experiment 4: Branching and Looping

Read Theoretical Background part 1,2, and 3 in
Experiment 4. By now you should understand the carry and
zero flags. Parity will now be explained. Consider the
circuit below

Transmitterj3----------- Receiver

For transfer of information, you need lines 0 to 6.
Line 7 is an unused spare. If a 3 was sent lines 0 апа 1
would be high 11 (binary)=3 (decimal). If line Ø was open,
then a two would be sent 10 (binary) 22 (decimal). How

would the receiver know that line @ is open? In the diagram
above, there is no way of knowing.

A transmitter сап Бе designed to count the number of
set bits in each transmission on lines 9 to 6. Furthermore
the transmitter can use line 7 to always make the total
number of set bits in lines @ to 7, odd or even. If an оаа
number of set bits is desired (even parity), then line 7
would be high when a three is sent. The byte would be 1000
9011. If а four is sent, line 7 is held low--9000 0100. А
five gives 1000 0101. Bit 7 is used as the parity bit. A
receiver can check parity by using either a fixed hardware
design or software.

The transmitter and receiver are made to agree оп

whether even or оаа parity will be used. А parity error
results when a line is open, grounded, or shorted to another
line. The receiver detects the parity error and informs the
operator of unreliable transmission. °

109

Parity can be tested by software by using опе of the
following logic commands AND, ОН, XOR. ANDing the А
register will test for even or odd parity and does not alter
the contents of A. .If an odd number of bits are set (on,

high) in the A register, then the parity flag (P/V flag) is
cleared (reset, zero). If an even number of bits are set,

then the parity flag is set (on, high).

Exercise 6-19

Now read the remainder of I. Theoretical Background.
How does one understand a new program? For example, the
program loop in Section 5. The first thing you hope for is
good documentation. Documentation consists of explanation
in the form of paragraphs and comments given with most
instructions. Many programmers "play computer", As they
read through the program, they pretend that they are the
computer and ask what is happening to the registers, the
memory, апа is data being sent to or received from external
devices (peripherals). Restudy the program loop and play
computer.

Exercise 6-20

Experiment 5: Stack and Subroutines

Read about the stack which is discussed in section I.
Theoretical Background. Ве careful most of the instruction
numbered (1) to (17) don't exist in the Z80 instruction set.
They are used to demonstrate how PUSH and POP work. The
program

LD SP,lFAFH
PUSH HL
PUSH AF
POP ВС
POP РЕ

is shown below with drawings

LD SP,lFAFH SP lFAF
1ҒАЕ
lFAD
FAC

RAM Memory

110

PUSH HL

1) Decrement the stack pointer.

2) Contents of register H to the stack--H is not changed.

3) Decrement stack pointer.

4) Contents of register L to the stack--L is not changed.

PUSH AF lFAF
1ҒАЕ
lFAD
lFAC
lFAB «-SP

1FAF
lFAE
lFA (4)
1ҒАС<<(2)
]FAB <-SP

1) Тһе contents of the top of the stack аге loaded into
register C.

2) Increment the stack pointer. Now the top of the stack
is lFAC.

3) The top of the stack is popped to register C.

4) Increment stack pointer.

111

POP DE

1ҒАЕ

1ҒАЕ
lFAD
lFAC
lFAB
lFAA

Read Section 2. Subroutine:

Exercie 6-21

BCD stands for Binary Coded Decimal. What this means

is that the computations will be in a decimal form. This
allows operating on decimal numbers (adding, subtracting,
etc.) The reason for the DAA (Decimal Adjust the
Accumulator) instruction at statement 12 is to insure a
decimal result after each addition. Each time the computer
adds, it produces a hexadecimal result which must be
converted to decimal.

Read II. Example Experiment of the Experiment 5.
This experiment should read: Perform the following

BC — HL

DE -> ВС

HL => DE

using stack operations

Exercise 6-22

Experiment 6: Rotate Shift Instructions and
Multiplication Routines

112

When a CPU chip is designed, the designer decides what

features to incorporate. There is a limited amount of space
(Real Estate) in a chip. The instruction set must be
choosen very carefully. Until recently chips containing
multiply instruction were expensive and sometimes very
Specialized. How can a useful CPU be built that doesn't
contain a hardware multiply instruction? A hardware
multiply means that the multiply is accomplished by circuits
built into the CPU chip. А multiply is a series of actions.
You can multiply by using a series of instructions other
than the multiply command. А very essential instruction 15
the ability to shift and/or rotate. Read Section 1. under
the Theoretical Background. This section will introduce you
to the rotate and shift instruction group. Don't try to
memorize the instructions in this group. There are too many
of them.

Exercise 6-23

Read Sections 2. Binary Multiplication: to 5. Program
flowchart.

These are not easy sections. The object is to show you
how to multiply by shifting, bit testing, and adding. Read
these sections several times.

Follow II. Example Experiments:

Exercise 6-24

Experiment 7: Binary Division Routine

Read 1. Binary division by hand calculation. If you are
overwhelmed (snowed) by the explanation, you have а binary
choice. You may accept that the division method works and
proceed to 2. Division Program Design or read the
‘explanation below.

113

The problem is really

10100) 11101101 --> 20) 237

The first step is

10100)111011@1<—а1у1депа

divisor

shift divisor until it becomes smaller then the dividend

00001 quotient
) 11101101
10100

Then put a one in the quotient.

Now subtract

00001
) 11101101
10100

1001 -«—— New dividend

114

Bring down the next digit to the new dividend

10100) 11101101
10100
10011

Test the divisor

00001
10100 | 11101101

I 10100
10011
10100

No, dividend is too small. So put a zero in the quotient
and bring down the next digit

000010
10100 |11101101

10100
100110

Now divisor is smaller than the dividend. Put a one in the
quotient and subtract.

0000101
10100 111101101

10100

100110
10100 Subtract

10010 Мем Quotient

Bring down the next digit.

115

0000101

10109)11101101 ̀
10100
100110
10100
`100101

Divisor is smaller than dividend. Put a one in the quotient

and subtract.

11 quotient

0090901011 <-quotient (17) divisor 20/237 divisor
dur a JII191101 <-dividend(237) 21.
‚1 100110

qivisor 10100 20

(20) 100101 17 remainder

10100

10001 <-remainder(17)

Read 2. Division Program Design

Exercise 6-25

Experiment 8: Binary-to-BCD Conversion Program

Read only 1. Methods of binary-to-BCD conversion. А sample
conversion--Convert

00010011 (binary) to decimal. Тһе correct answer is
19 (decimal).

116

Number to be converted

01001 0011
Shift most significant
carry, add,

BCD number

00101 0011

Add, carry,

BCD number

00Й1 0011

Ааа, саггу,
BCD number

0001) 0011
BCD number

Add, carry,

0001 (011
Add, carry,
BCD number

0001 0@11
Add, carry,
BCD number

0001 9011

Ааа, саггу,
BCD number

0001 0011
Ааа, carry,

BCD number

Execute a DAA instruction because

carry,

and

and

and

and

and

and

and

and

double

double

double

double

double

double

double

a half carry occured
Add 6 = 0110 (binary)

into

double

117

BCD area

0000 0000

0000
0000

0000
0000

+ø
0000 0000

0000
0000

0000

0000
0000

0000

0000
0000

0000

0000
0000

0000

0000
0000

0000

0000
0000

0000

0000
0000

0001

The answer is 1 9

A second conversion converts 1111 1111 (binary) to 255

(decimal). The purpose of the shift into carry flag is so
that the selected bit can be added to the shifted result.
Each add (double) апа shift in carry will be shown as one
step

Number to be converted zeroed out BCD number

1 1 1 1 1 0000 0000 0000 0000

Peat ТЇ
(1) (2) (3) (4) (5). (6) (7) (8) decimal
Shift and add bit (1) 0000 0000 0000 0001 1

Shift and.add bit (2) 0000 0000 0000 0011 3

Shift апа add bit (3) 0000 0000 0000 0111 7
Shift and add bit (4) 0000 0000 0000 1111
BCD adjust 0110

9000 0000 0001 0101 15

Shift and add bit (5) 0000 0000 0010 1011
BCD adjust : 0110

0000 0000 0011 0001 31

Shift and add bit (6) 0000 0000 0110 0011 63
Shift and add bit (7) 0000 0000 1100 0111
BCD adjust 0110

0000 0001 0010 0111 127

Shift and add bit (8) 20000 0010 0100 1111
BCD adjust 0110

0000 0010 0101 0101 255

The answer 255 is correct. Read 2. Assembly Language
Programming Technique

Exercise 6-26

Example Experiments

118

Exercise 6-27

Experiment 9: BCD-to-Binary Conversion Program

The basic method of hand conversion is given in 2.
Principle of the checking process (3) under Theoretical
Background. As you can see by dividing the number to be
converted repeatedly by 2 and saving the remainder, a rather

easy conversion is obtained.

Exercise 6-28

Now a method of dividing over and over by 2 is needed.
Shifting a binary number to the right always divides by 2
with a remainder of 1 or 0. Shifting a BCD number to the
right will give an incorrect result in two bit positions in
each byte. Read 1. and 2. under Theoretical Background.
The shifting problem is explained.

Conversion from BCD to binary is rather straight foreward.
The program must: (1) divide by 2 (2) save the remainder

(3) correct two bits in each byte of the BCD number,and (4)
have two loop controls--one for the number of BCD bytes and
a second one total number of divides respectively.

Exercise 6-29

Experiment 10: Square-Root Program

Square root has never been considered one of the easier
methematical operations. Years ago, the only easy method
was to use square-root tables. Various other methods

existed for those who were interested in expanding mental
effort--slide rules, logarithms (again tables), and а hand
method which consisted of doubling dividing, and
subtracting. The hand method given in this experiment 15
easier than one taught in schools before calculators.

Binary numbers lends themselfs to square root computations.
Read 1. Calculating square roots of binary numbers by hand.
Try very carefully to follow the processes.

119

The square root of larger numbers сап be calculated by
enlarging X,Y, and R. The square root routine in section 2.
expands the size of number whose square root is to be found
and the size of the answer. First read only up to the
program. Now you will match the program with the flowchart.

Statement 7: LD А,В

The original data is not stored in register А and C but
їп ВС. So statement 7 loads B into A.

Statement 8: LD B,16

The original data to be shifted is contained in two
registers А and С. The 16-bit data is shifted two bits at a
time so the shift count would be 8. The fractional part of
the answer is 8 bits, thus 8 more shifts of 2 bits each time
are required. The total shifts, tests and subroutines are

16.

Statements 9-11

These statements will zero out the X area, HL, and the

R area, DE. HL <- DE — 0

Statements 12-13

Statement 12 subtracts (N) 40H from the contents of the

accumulator. On the first pass, A will contain the upper
part of the original data. Statement 13 subtracts R,(DE)

from X, (HL).

HLA <- НГА<-ПЕМ

XY XY RP

Statement 14

If DE is less or equal to HL, then the results of the

subtraction performed in statement 13 are to Бе kept. In
this case, the carry flag will not be set and control is
transferred to location 501 statement 17. If DE is greater

than HL, the number in HLA, XY needs to be restored.

120

—

Exercise 6-30

The square root of 81 and 16 are whole numbers
(integers). For a more interesting case, consider the

square root of 58. The square root of 58 is approximately
7.615. In binary numbers, a bit represents twice as much as
the bit to the right and half as much the bit to the left.
In 111, the middle bit represents value of 2. The left bit

is equal to 4 decimal and the right bit is equal to 1
decimal.

1 1 1
4 + 2 + 1 = 7 decimal

What is one-half of one? Опе-һа1Ё (1/2). Going to the
right of the binary point gives .1 (binary) which equals .5
decimal. The next position to the right is one half of 1/2
or 1⁄4 (.25)

.01 (binary)=.25 (decimal) То represent .75 use two bits
.11- .5 (decimal)+ .25 (decimal)= .75 (decimal) To obtain
decimal (fractional) results in taking square root, continue
the shifting process beyond the integer part of the number.

Interger result only

x Y 58 (decimal)

| 00111017

R P

Shift the value іп XY 4 times (2 bits each). Тһе result R

will be 0000 0111 (7 decimal).

Fractional result

Shift the value in XY four more times. Now bits representing

1⁄2 „5
1⁄4 .25
1⁄8 .125
1/16 .0625

have been used, the answer is: [08111.1001

121

Under these conditions the ̀ carry flag will be set -- the
jump instruction will not break the sequential flow апа
Statement 15 is executed next.

Statements 15 and 16

The original values subtracted from A and HL are added
back in. Thus the original number is restored except the
carry flag will be set. Remember this!

STATEMENTS 17 to 19

The carry flag will be shifted into R (register D & E
). If RP (register D, E and a constant are smaller than or

equal to XY (register Н, L, А, and C) then the carry flag
should be one (set). ІЁ RP was greater than XY then the

carry flag should be zero (reset).
However, the subtraction in statement 13 has left the

carry flag in the opposite condition, thus statement 17
complements the carry flag. Statement 18 and 19 rotate D
and E one place to the left. The carry flag enters the.
rightmost bit of E.

STATEMENTS 20 to 26

The first shift to the left of H, L, A and C is
performed by statement 21 to 23. Тһе second left shift by
Statement 24 to 26. Statement 21 -- shift C to the left one
bit апа put a zero in rightmost bit. Statement 22 -- rotate
A to left and receive the carry from C. Statement 23 --
shift HL to the left by doubling the register pair HL and
accept the carry from A by adding with carry.

— — d

LT - TL [MES
H L А C

ADC HL,HL RLA SLA C

Statement 28 -- Loop back 15 times (a total of 16 passes)

to SQO.

122

Questions of Exercises

6-1

6-3

6-4

Which of the following instructions are not allowed
-- give the reason?
a) ADD A,B b)ADD Е,А C)ADD A,HL

C) ADD A,A d)ADD AC,DH

On the second page of 8-BIT ARITHMETIC AND LOGICAL

GROUP is a column titled symbolic operation,
explain the meaning of A <= А+г for the ADD A,r
instruction.

(a) Using the first page of the 8-BIT ARITHMETIC AND
LOGICAL GROUP find the opcode for adding the memory
location (pointed to by HL) to the A register?

Using the second page of this same group locate the
row containing the symbolic operation for register
indirect.

(b) What is the symbolic operation?
(c) What is the mnemonic in the same row? Find the

intersection with the column labled орсоде.
(d) What is the opcode ?
(e) What is hexadecimal equivalent of 10000110?

Refer to the first page of the 8-BIT ARITHMETIC AND
LOGICAL instructions.

(a) What is the opcode for ADD A, (ІХ+4)?
(b) What is the significance of the +4?
(c) How does +4 show up in the hexadecimal codes DD 86

d?

(a) Write the mnemonic (assembly language code) for ап
add 3 to the A register.

(b) Write the mnemonic for adding -4 to A.
(c) The hexadecimal code for ADD A, 3 is C603. Can you

guess what the hex code for ADD A, -4 is?

If А contains 74 hexadecimal and В contains ВЕ
hexadecimal will the instruction ADD A,B add a) a
negative number to a positive number b) two negative
numbers C) two positive numbers. What do you think the
rightmost bit would be called?

The add with carry instruction comes in all the same
flavors as the ADD command. Use the information in
Appendix С 8-BIT ARITHMETIC AND LOGIC GROUP both pages
to answer the following questions. Fill in the blank
entries, [] below.

123

Instruction object code
(hexadecimal)

ADC A,D
ADC A,(IX+d)
ADC А,(1Х+4)
[(d)]
[(e)]

(f) The mnemonic for add with carry is given ав ADC
A,S (see second page of B-bit ARITHMETIC AND
LOGICAL GROUP). What does the s mean?

Execute the first exercise (I) under example of

experments (of Experiment 2 of MPF-I Experiment
Manual). Fill in the chart shown in this section.

(a) What is accomplished by the instructions

LD A, (1A@@H)
ADD A,E
LD L,A

Show your answer by using a diagram.

(b) See Experiment 2 (II. 2) What is accomplished by
the instructions

LD A, (1A@1H)
ADC A,D
LD H,A

Again show your answer using a diagram.

(c) Will above code always give a correct result?

(d) Using another method add two 16 bit numbers.
The operands аге in the locations 1А@@ and 1А01 as

before but the result (sum) is stored in HL.

A new instruction was used that requires knowledge
of 16-bit arithmetic. Turn to Appendix C 16-BIT
ARITHMETIC. The second page of this section shows
the Mnemonic ADD HL,ss in the first row. The

Comments column shows ss to be any one of BC,DE,HL,

SP. Thus ADD HL, РЕ is a legal instruction. The;
Symbolic Operation column shows HL is added to 55
and the result is placed in HL. When ss is DE the
operation is HL <- HL+DE

(e) Load and execute exercise 2.

124

6-10 Add comments to each statement below

(a) LD B,4

(b) LD ІХ, 1А@@Н

(c) AND A

(а) LD A, (IX)

(е) ADC A, (IX+4)

(£) LD (IX+8),A

(g) INC IX

(h) DEC B

(i) JP NZ,LOOP

(j) What two instructions could be replaced by
instruction?

(k) What is the replacement?

(1) Load and execute exercise 4.

Expand example 4 to add a 64 bit number.

Ехэапа example 4 to add a 128 bit number.

6-11b Perform 5. in Example of Experiments.

6-12 In example 3-1 convert all the numbers to base
ten decimal. Show your answers.

(a)

(b)

(c)

(d)

(e)

BEE | ү у у.

Now check the results of the addition

7F+AD=? and subtraction 7F-AD=? Are the answers

correct?

In Example 3-2 what adjustments would have to
be made if the leftmost addition results in a carry?

What is the significance of a set carry bit after
a subtract operation?
How many borrows occured in Example 3-2?

125

one

(а —

(b)

(c)

(d)

6-13

Fill in the names of operands in the boxes
below. Use Sum, Augend, Addend.

[ы]

жы h.
жамы

Again enter the names of the operands in the
boxes below. Use Subtrahend, Minuend, апа
Difference.

aed
sb

ЕКЕН
Study again the flowchart for addition. Note
that the decision box at the second step from
the end<>, can cause a repeat of 5 steps.

Each repeat is called a pass. Тһе page after
the flowchart shows what events occur on the
first pass. The diagram may be a little hard
to read at first. What is the first event?
Second event?
Third event?
Fourth event?
Fifth event?

The top part of the next page shows the events
of the second pass. The results of the third and
final pass are shown at the bottom of this page.
The complete program is shown at the end of this
section. Fill in the values of the registers. The
carry flag and memory locations for each step.

126

=

m

INSTRUCTION FLAG
Ав топу | z |

A, (IX)
ADC A, (ІҮ)
LD (ІХ),А
INC ІХ
INC IY

ADDLP

A, (IX)
ADC A, (ІҮ)
LD (IX),A
INC ІХ
INC IY

ADDLP

6-14

Show the object code and location counter in the
listing below. Assume the program starts at
location 1800H.

EXP3

LOC OBJ CODE M STMT SOURCE STATEMENT

ORG 1800H
7 LD B,3
8 XOR A
9 ADDLP LD A, (IX)
10 ADC A,(IY)
11 LD (IX),A
12 INC IX
13 INC IY
14 DJNZ ADDLP
15 RST 38H

127

6-15

То execute the 3-ВҮТЕ ADDITION PROGRAM. You must

first have IX and IY point to the data. There are
two ways to do this. What are they?

6-16

то perform the subtraction statement 10 was changed from ADC
A, (IY) to SBC A, (IY). (a). What was the code for ADC A,

(IY)? (b). What is new code for SBC A, (IY)? (c). Why is

the third byte of each command zero?

6-17

(a) In adjusting to five byte data how many lines of the
program changed?

(b) What changes were made?

(a) When is it correct to call the rightmost bit of the
flag register a carry flag?

(b) When is it correct to call the rightmost bit a borrow
flag?

(c) Read and perform Experiment 3-2 in Experiment 3 of the
MPF-I Experiment Manual. you can use both ADD A,(nn)
and ADC A,(nn).

6-19

(a) What is the parity of the bytes given below?
0110 1199
0100 0000

#111 1111

0100 0001

(bb In the bytes below what would be the setting (state) of
the parity bit (7) to have even parity?

0110 1100
0100 0000
0111 1111
0100 0001

6-20

Example Experiments of Experiment 4 (МРЕ-І Experiment
Manual)

Exercise 1 Follow the instructions--Before executing
the program add comments to each instruction.

128

6-21 Label the order of the actions in the diagram
below

Main Program

Subroutine 1

Subroutine 2

RET

6-22

(2) Explain this program statement by statement. Note
after shifting left four bits with method shown below
could result in the loss of data if the original
number is greater than 15 decimal.

1100 number is 12 (decimal)

112820010000 shifting gives по
data lost

Ex.

1111 number is 15 (decimal)

1 1 1 110 @ @ 0 no data lost

110000 number іс 16 (decimal)

900 6/8 O0 0 data lost, bit was

shifted out of the
register by adding

129

6-23

Find the ROTATE AND SHIFT GROUP in Appendix C in the МРЕ-1
User's Manual. On the second page of this group find the
column labelled Symbolic Operation.

Except for the last two operations RLD & RRD , all of the
instructions operate on 8 bits and the carry flag, CY.

(a) What is the real difference between instructions

starting with R (rotate) and starting with S (Shift)?

(b) Again, look at the diagrams for the rotate instruc-

tions, the bit shifted out of the byte is transferred
into the carry flag and in some cases the bit is also

transferred to the other end of the byte. How аге
these two cases separated by the assembler?

(с) Draw the symbolic operation for

RLA

RRA

RLCA
RRCA

6-24

II. Sample Experiments

(a) 1. Draw a diagram showing how the shift is performed

(b) 4. Comment on each line of the program show how it works

6-25

Perform the exercises given in Illustrations of Experiments.

6-26

Study the sample program EX@@1 LISTING

STATEMENTS 15 through 20 clear the BCD area. This is the
area where the result will be developed.

The contents of a particular register is loaded into all the
BCD bytes.

(a) What register is used?

(b) What statement zeros out A?

130

(с)

(а)

(е)

(f)

(g)

(h)

(1)

(m)

(n)

What statement puts zeros into the BCD bytes (one for
each loop)?

What are the statement numbers in the loop that zeros
out the BCD bytes?

How mary passes will be made ?

At what statement was B loaded with the number of bytes
to zero out ?

STATEMENTS 22 to 27 computes the number of shifts to be
made.

If the binary number consists of 3 bytes how many shifts
into the carry flag must be made ?

Assume D - 3 number of binary bytes. Statement 23 will
load this value into the А register. What do statements
24 to 26 do ?

What is happening at statement 27 ?

STATEMENTS 30 to 35 will shift all the binary bytes опе
to the left and leave the carry flag with the highest
order bit.

What is the address of the first byte to be shifted ?

What register pair points to memory when the ROTATE LEFT
(RL) command is executed ?

How is the starting addres for each series of shifts

loaded into HL ?

What statement numbers are contained in the loop that

adjusts all the BCD bytes each time a new binary bit is

available in the carry flag ?

How many passes will be made through the loop ?

(0) What do statements 47 and 48 decide ?

6-27

Example Experiments

Perform experiments

6-28

(а)

(b)

convert the decimal number 9 to binary. Show the
process.

Convert the decimal number 492 to binary show the

process.

131

6-29

Тһе BCD-to-Binary conversion program given in section 3 will
now be analyzed.

STATEMENTS 11 TO 17 divide the BCD number by 2. The result
must be tested for adjustment of bits 7 and 3.

(a) How many bytes will be rotated to the right by one place
?

(b) STATEMENTS 18 to 24 check the two potentially incorrect

bits.
Why is bit 7 being tested in statement 19 ?

(c) What is statement 21 doing ?

(d) What is the other bit position to be tested ?

(e) Statement 24 corrects what ?

(£) Discuss Statements 26 to 29 ?

(g) The STATEMENTS 32 to 35 rotate the bit that was shifted
out of the BCD numbers into the high order byte апа
rotate all the binary bytes to the right. How many
binary are there ?

(h) Discuss STATEMENTS 37 to 38.

6-30

Now that you һауе read how to hand calculate square root,

solve the problems below.

Compute the square root of 16 (decimal). Show the results

of each text, subtraction, and shift.

132

Answers to Exercises

6-1 [b) Operands are in the wrong order Ғог the assembler

correct instruction is ADD A,E

c) Can't add the 16-bit register pair HL to the 8
bit register A answer must fit in an 8 bit byte.

e) can't pair A and C or D and H.]

6-2 [The value of r is added to the contents of the A

register. The result, sum, is put into А.]

6-3 a. [86]
b. (А<-- A+(HL)]
c. [ADD A, (HL)]

d. [10000110]
е. [86]

6-4 a.[DD86 the index instructions have ап extended

opcode.]
b.[The memory location referenced will be four more

than the value of IX. For example if IX = 7000 then
memory location 7000 is referenced.]

c.[The 04 replaces the d.]

6-5 a.[ADD A,3]
b.[ADD A,-4]

c. [C6FC]

6-6 (а) 74 hexadecimal-01110100min binary so А is а
positive number. The leftmost bit is zero. This is
called the most significant bit MSB. The number
in B BF hexadecimal - 10111111 is a negative
number, the MSB is 1.)

[The least significant bit LBS. It is also bit number @.]

6-7 а. [8А]
b. [рр 8E d]
с. [DD 8E 04]

d.[ADC А, (ІҮ+25Н)]

е. [Арс А, (IY-3)]

f.[See Comments s is апу of r,n,(HL),(IX+d), (Іүға).

Also under comments r is given as any of
B,C,D,E,H,L,A.]

133

CARRY

d [

Preset Value

Register

Result of Program Execution’

Р/У | Carry
Depends оп when sampled

D E

ADD
OBJ CODE М STMT SOURCE STATEMENT

1 ORG 1800Н

7B 2 LD A,E

82 3 ADD A,D

6F 4 LD L,A

3Е00 5 LD A, 0

CEOQ 6 ADC A,0
67 7 LD H,A

FF 8 RST 38H

1Ай0

=

p
]

[_] іі

7): m9

[]cannv

H

]

No, if the values in lA90H to 1A@1H and DE

are large, the result (sum) will be 17 bits
in size.]

LD L,(1A00H)

LD H, (LA@1H)
ADD HL,DE]

134

ADD16BIT

LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1800Н
1800 3A081A 2 LD А,(1А@@Н)
1803 83 3 ADD А,Е
1804 6F 4 LD ,,А
1805 3A011A 5 LD A,(1A01H)
1808 8А 6 ADC A, D
1809 67 7 LD Н,А
180A FF 8 RST 38H

RESULTS
1А01 1А00 DE HL
aa 01 0004 0005

01 01 0703 0804 Zero flag set

a. [The number of passes through the loop 4 is loaded
into the B register.]

b. [Load the base (starting) value in the index

register ІХ.)
c. [Clear the carry flag.]
а. [Load the first operand into the A register.

(augend)]

e. [add the second operand to А; the result (sum) is in
A. A <- (IX) + (IX + 4)]

f. [Store the current sum at ІХ +8.]

g. [advance IX to point to the next set of operands and
sum. 1

h. [B <- В-1 |
i. [If the result of decrementing B is non-zero then

loop back to LOOP.]

l. LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 180 9H
1809 06904 2 LD В,4
1802 DD21001A 3 LD ІХ,1А0ОН
1806 А7 4 AND A

1807 DD7E00 5 LOOP LD A, (IX)
180A DD8E@4 6 ADC A, (IX+4)
186D 007708 7 LD (IX*8),A
1812 DD23 8 INC IX
1812 05 9 БЕС В
1813 С20718 10 ӘР NZ , LOOP
1816 FF 11 RST 38H

FOR ADD

1A03H—-1AQ00H 1A07H-1AQ84H ЈАЙВН-ЈАВЙВН FLAG REG
3B712345 8FFDAA109 CB6ECD55 42
FFFFFFFF FFFFFFFF FFFFFFFF 43

135

LD В,4
ADC A, (IX+4)
LD (IX+8),4

LD B,4
ADC A,(IX*4)
LD (IX+8),A

6-11b

FOR SUBTRACT

ЈАОЗН-1АЙОН

8FFDAA10

FFFFFFFF
3B712345
FFFFFFFF

LD B,8
ADC A, (IX+8)
LD (1IX+16),A |

NEW

LD B,16
ADC А, (1х+16)

1A07H—-1A94H 1АЙВН-1А08Н
548С86СВ
00000000

SUB4B

LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1
1800 0604 2
1802 DD21001A 3
1806 А7 4
1807 DD7E09 5
180A DD9E04 6
1800 DD7708 7
1810 DD23 8
1812 905 9
1813 С20718 10
1816 FF 11

FOR ADD & ОАА
1A03H-1A00H
12345678
35868794

87654321
44556699

LOOP

1A07H-1A04H lA0BH-1AQ98H
39999999
80425493

ADD4BDA

LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1
1800 0604 2
1302 DD21001A 3
1806 АЛ 4
1807 DD7E00 5
180A DD8E04 6
180D 27 7
180Е DD7708 8
1811 DD23 9
1813 05 10
1814 C20718 11
1817 FF 12

LOOP

136

(ТХ+32),А]

FLAG REG
42
42

1800H
B,4
IX,lAU0H
A

A, (IX)
A, (IX+4)
(IX*8),A
IX
B

NZ,LOOP

38H

FLAG REG
42
42

18009
B,4
IX,1A00H
A
A,(IX)
A, (IX*4)

(IX*8),A
IX
B
NZ,LOOP
38H

6-17a!
же

b' Yes

с Four bytes would have to be reserved for
the answer (not three). The carry would be

placed in the highest order byte of the

answer.

Carry

High order byte Low order byte
(Most significant digit) (Least significant byte)

dí ^ borrow has occurred.]

ef 2 |

6-13a[([AUGEND]

+ ГАРЕМ]

[SUM | 1
bí [MINUEND]

— [SUBTRAHEND]
—————————————D

DIFFERENCE| 1

сі LD A,(IX) Load the accumulator with the
contents of the memory location pointed to
by the IX index register.]

(ADC A,(IY) Add to the accumulator the

contents of the memory location pointed to
by the IY index register.]

[LD (IX),A Store the accumulator away in the

memory location pointed to by the IX index
register.]
INC IX Advance by one the IX register.]
INC IY Advance by one the IY register.] m m

137

-€€—— ее
d INSTRUCTION

ADD3 XOR A {

LD B,3

ADDLP LD А, (ІХ)

LD A, (IX) 7С 2 7С 65
F3 2 7С 65
E3 2 E3 65

INC IX ЕЗ 2 6A 65
INC IY ЕЗ 2 6A 48

| DJNZ ADDLP (ЕЗ 1 бА 4B

INC IX
INC ІҮ
DJNZ ADDLP

RET

EXP3
LOC OBJ CODE M STMT SOURCE STATEMENT

1800 ORG 1800H
1800 20603 7 LD B,3
1802 AF b XOR A
1803 DD7EØ9 7. ADDLP 1р A, (IX)
1806 FD8EQØ 10 ADC A, (IY)
1809 007700 11 LD (ІХ),А
1806 DD23 12 INC IX
180E FD23 13 INC IY
18104. 10F1 14 DJNZ ADDLP
1812 FF 15 RST 381

138

6-15 [Опе--Сһапде the code.

(LD B,3) and statement 9 (LD A,(IX) insert

LD IX,1900H
LD ІҮ,1А0ЙН

Two--Load IX and IY from the keyboard.
Press REG, IX, 1, 9, 0, 0

Press REG, IY, 1, А, Ё, Ø

Between statements 8

The test data must also be loaded by entering

ADDR, 1, 9, d, 8, DATA, B, D, +, 7, C, +,

ADDH, l, А, 8, D, DATA, A, C, +, 6, 5, +,

To run the table data--first set--replace
test data by

ADDR, 1, 9, 0, Ø, DATA, б, 5, +, 3, 8, +,

ADDR, 1, А, 0, 0, DATA, D, F, +, C, E, +, А,

6-1.a! FD BE 00]

b: FD 96 GB |
c! A displacement of zero was used--in effect,

there is no displacement.] |

6-12а(1]
b[Statement 8 became LD B,5]

6-1” a[when addition or incrementation is performed.
It is not incorrect to call this flag a carry
flag when subtraction is performed.]

Ы Only when subtraction is performed.]

CXOR А

LD _ A,(1820H)
ADD A,(1823H)
L) (1826H),A
LD A,(1821H)

ADD А, (1824H)
LD (1827H),A

LD A,(1822H)
ADD A,(1825H)
LD (1828H),A

139

6-19a! Even |

Odd]
Odd]

Even] m — — -—

[Reset (clear)]

[Set (on)]

[Set (on)]

[Reset (clear)]

[ORG 1800H ;Program code starts at 1800.

LD HL,1906H Тһе HL register pair will point
;to the memory location in which

ҙа byte is to be placed.
LD B,20H ;B is the loop counter which is

;used with DJNZ, 20 passes will

;be made through the loop.
LOOP LD (HL),A ;The current value in A will

;be stored at the location

;pointed to by HL.
INC HL ; Advance the memory pointer so

;that the next sequential memory
;location can receive the contents

;of A.
DJNZ LOOP ;Decrement the loop counter B

;and return to LOOP if B is non

;zero.
RST 38H ;Enter the monitor program.

Answers to Experimental results (1), (2), (3) under

exercise l of II. Example Experiments (Experiment 4,
MPF-I Experiment Manual)
(1) 1900H to 191FH are zeroed out. 1920H is unchanged.

(2) Now locations 190ЙН to 191ҒН contain 55H

1920H is unchanged.
(3) Locations 1900H to 19FFH contain 64H.

Remember loading zero in B and using DJNZ for loop
control will give 256 passes. DJNZ will first
decrement the value in B then test O00H-l-FFH (255

decimal).

2. Trace this program in your mind--play computer
(Trace the program in Exercise 2. Nested loops

under II. Example Experiments of MPF-I Experiment

Manual).

Hesults:

(1) Memory locations

19Й0-19@Е I910-191P ses 19EP-l9EF 19Ғ0-19ЕҒ

an 01 CE OF

Did you get the same results?

140

|

(2) Revised changes are

LD HL,1900H in place of LD HL,19FFH апа

INC HL instead of DEC HL

Test your progran.

3. Read MPF-I Experiment Manual, Experiment 4,

II. Example Experiments, Exercise 3. first.

Since DEC BC doesn't set flags, the JR NZ,LOOP

will be useless. Between DEC BC and JR NZ,LOOP

insert

LD A,B

On C

If any bit is set, the OR command will reset the
zero flag indicating a non-zero result.

4. Read MPF-I Experriment Manual, Experiment 4,
II. Example Experiments, Exercise 4, (1)

(1) Comment for each statement

[ORG 1800H ¿Program begins at 1800H
LD HL,1B09H ;First base address from which

;data will be transferred.
LD DE,1A909H ;First destination address for

;data movement.

LOOP LD A,(HL) ;These two instructions move one
byte

LD (DE),A ;From a source address pointed to

;by HL to a destination address
¿pointed to by DE.

1B00 HL

1A00 DE

CP ВЕЕН ¿After each byte is transferred,
;the A register will still contain
ҙа copy of the byte. Compare FF
;against the contents of the A
register. ІЁ А contains zero,

сес the zero flag.
JR Z,EXIT ;If the compare instruction

;found a zero in the A register,

;then a jump to EXIT will be made.
INC HL ;Continue here if A was not equal

;to OFFH. Advanced the source

;pointer to prepare for the

;next move.

INC DE ;Advance the destination pointer.

JR LOOP ;Make another pass through the
; loop

EXIT RST 38H ;Transfer control to the monitor.

141

(2) Comment оп еасһ instruction

ORG 1800H
LOOP LD А,(НГ.)

NEG
LD (HL) ,А

INC HL
AND À

SBC HL,DE

ADD HL,DE

JR NZ,LOOP

Main Program

6-22

ANSWER (1)

;Start program code at 1800H
;The current contents of the
;memory location pointed to
;by HL is loaded into A.
;Gives a two's complement of A

;Return complement value of A

;to memory.

;Advance memory pointer
;Clear the carry flag to get
;a correct result in the next
;subtraction.

;If HL less than DE, then

;the zero flag is not set.
;Restore the data at HL to

;its original state.
;If the result of the

; SBC HL,DE was non-zero (HL

;Still less than DE), then

;transfer control to LOOP.

PUSH

PUSH

PUSH

POP

POP
POP

Subroutine 1

Subroutine 2

1 ORG]8nheH ; Set location counter to zero.

2 Ln 5,211 ;Loop 21 times.

3 LD HL,lACGZSH ;First location to he shifted.
4 LOOP] PUSH BC sGave BC on stack because it

¿will be altered by the inner

;loop (LOOP2).

5 LD A, (HL) ¿Load memory byte to shifted

74 places into A.

6 LD B,4 ¿Number of adds (shifts) is 4.

7 LOOP2 ADI? A,A ;bach add will shift value in А

;:left one place.
8 DJNZ LOOP? ;Loop control--4 passes (loons).

9 LD (HL) ,A :кебагп shifted value to

;memory.
10 INC HL ;Advance memory pointer.
11 POP EC sRelocated value of BC that was

preserved on the stack bv

¿statement 4.

12 DINZ LOOP] stave 21 numbers been shifted?
хо, loop back to LOOP).

13 HALT ;Yes. Nuit.

(3) Change statement 11 to read ADC A, (HL)

LD HL, АВОИ
LU DE,lACQU
LD IK ILAAN
LD 5,0
CALL MADD

6-23

1 i i 1 i f either the 8
а[Іп shift instructions the bit shift out o ,

pit byte or the carry flag is not rotated around to opposite

end. It will be lost]

in the third position indicatees a
' fac

BITES Pressie п posite end of
transfer both into the carry flag and the op

the byte.]

143

RLA

RRA

ALCA

BECA

6-24

2.

E———— 32 bit data»

5

use МРГЕ-І manual page C-17

H

H

КА

L

LSB

D E

MSB

RRL

L

ез

р Е

RR/D RR/E

Note the carry flag has been drawn in several places
for convenience this is the same carry flag.

[MULTIPLY X 2

[ANSWER

LOOP2

LOOP1

1830H
B,5
BC
НІ,,1А00Н
B,4

144

]

]

3. [ANSWER

LOOP2

LOOP1

b4. [
MPYS LD

LD

LD

M1 ADD
RLA

JR

ADD
ADC

M2 DJN

RST

ORG
LD
PUSH
XOR
LD
LD
RLD
INC
DJNZ
POP
DJNZ

Z

1800Н

B,4

BC

А

HL, LAABH

B,4

(HL)
HL

LOOP 1

BC

LOOP 2 |]

BC,800H ; Load B with 8 thus shifting

; the value іп А 8 times.

; Zero out C

H,C ; Zero out the H register
Lac ; Zero out the L register
HL,HL ; Shift the sum left one place

; Rotate the most significant
; bit of A into the carry flag

NC,M2 ; Test if carry is set means
; that an add should occur

HL,DE ; Add if carry set
A,C ; Put bit shifted out of А back

; into opposite end of A
M1 ; Are there more bits to be

; tested in A
38H ; Return to the monitor

This program is different from the theoretical background
problem in only one respect.
problem is an 8 bit by 8 bit multiplication and in this
example a 16 bit number is multiplied by an 8 bit number.

So done

145

The theoretical background

II. Answer to ІІ. 5 is in Answer to Experiment 6

6-25 See answers in 6-24

6-26

af A]

bí 15 an exclusive OR of A will clear А and the carry flag.]

c[18]

d [18 to 20]

е [The number of passes equals the value in B]

£ [16 the D register contains the number of bytes in BCD area.

g [24]

h [Each statement doubles the value of A. The final result
is В * А =24 if D = 3]

i [Register C will hold the number of shifts.]

j [1A00H]

k [The HL register pair -- see statement 33]

1 [Statement 17 loads H with lA the value of H never changes.
statement 31 zeros out the L register]

In summary:

1A02 1A01 1А00

The numbers (1), (2), (3) аге pass numbers.

STATEMENTS 37 to 45 double the number; add the carry

(obtained from shifting the binary number to be converted

and then decimally adjust all the BCD bytes.

[40 to 45]

[The B register controls the number of passes. В is loaded
with D which has the number of BCD bytes.]

(Statement 47 decrements the bit count and statement 48

decides whether all of the bits in the BCD number have been
processed. |

Trace the program again, it is a good practice.

146

]

6-28

М wo

1 1 1 0
256 128 64 32 16 8 4 Nr -

256 + 128 + 64 + 16 + 4 + 2 = 492

147

a[5 — statement 12 loads the B register with 5 and the loop
at statements 15 to 17 is controlled by the DJNZ statement. |

bi А shift of a bit into this position doesn't divide the

higher digit by 2. The digit is worth 80 not 59.]

с! Applying a correction of 30. 87 - 30 = 56$ this statement
is only executed if bit 7 is'set.]

d! Bit 3. Statement 22 a shift of a bit into this position

provides an 8 instead of a 5.]

e[Bit position 3. 8 - 3 = 5 |

Е(The conected byte is stored away statement 26. HL is

decrement to point to the next lower byte statement 27.

The contents of the carry flag are restored for use in the

next potential shift statement 28. Now the value in B is
tested to'determine if more bytes are to be shifted.
-Statement:29 , a total of 5 bytes are to be processed on
each pass. See statement 12]

g[4. See statement 32. Statement 35 forces a loop back to

SHR4 if all the shifts have not occurred.]

h[These statements are responsible for determing if all the
BC bits have shifted right. Statement 9 sets the count to
32 and statement 37 decrements the by one. Statement 38
tests count. If register C -- the shift count register -
15 non zero, а jump back to DBLP is executed.]

6-39

[X Y

0001 0000 = 16 (decimal)
6102 0000

R P

I have used a carat, A , to show the end of the original
value.]

RP is greater than XY so in the hand method you avoid
subtraction. The computer has to subtract to determine

the relationship between RP and XY. If RP is greater
than XY restore the original result. Shift XY two
places to the left. Do not change ВР.

X Y marks the end of

| | Øl 00 02,00 the original value
ae | s =s

R P

148

Now RP equals XY so subtract R P from XY. Shift R one
place to the left and set the least significant bit
(rightmost bit) of R. Shift XY two places to the left.

x Y

ся 1
R P

RP is greater than XY; Shift XY left two places, shift

R left one place.

x Y

a йй йй]
P R

RP is greater than XY; Shift XY left two places, shift
R left one place.

x Y
[po 00 eo ор BA 00 00 00

1 00 |01
R P

These were 8 bits in the original number (in Y).

Four left shifts, 2 places each time, completes the
processing. The answer is in R, 100 (binary) = 4 (decimal),
which is the square root of 16 (decimal).

:149

EXPERIMENTS

Experiment 2

Answer to 1 under II. Example of Experiments in the =
MPF-I Experiment Manual, Experiment 2--Basic Applications
of Arithmetic and Logic Operation Instructions.

LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1890H
1800 7B 2 LD A,E =
1801 82 3 ADD A,D
1802 GF 4 LD L,A
1803 3Ей0 5 LD А,0
1865 CF00 6 ADC A, 0
1897 67 7 LD H,A .
1808 ЕЕ 8 RST 38H

Ansers to 2. under II. Example of Experiments of
Experiment 2 of the MPF-I Experiment Manual.

ADD16BIT

LOC OBJ CODE M STMT SOURCE STATEMENT =.

1800 1 ORG 1809H
1800 3A001A 2 LD А,(1А00Н)
1803 83 3 ADD A, E -
1804 6F 4 LD L,A
1805 3A011A 5 LD A, (1A01H)
1808 8А 6 ADC A, D
1809 67 7 LD Н,А
180A FF 8 RST 38H =

RESULTS

1А01 1200 DE HL

00 01 0004 0005 u

01 01 0703 0804 Zero flag set

3. Change ADC A,(IX*4) to SBC A, (ІХ+4)

150

ADD4B

LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1800H
1800 0604 2 LD B, 4
1802 DD21001A 3 LD ІХ,1А00Н
1806 А7 4 АМР А
1807 DD7E00 5 LOOP LD A, (IX)
180A DD8E04 6 ADC A, (IX+4)
180D DD7708 7 LD (IX+8),A

1810 DD23 8 INC IX
1812 @5 9 DEC B
1813 C20718 10 JP NZ , LOOP
1816 FF 11 RST 38H

FOR ADD
1А0ЗН-1А00Н 1A07H-1A04H lAOBH-1A8H FLAG REG

3B712345 8FFDAA19 CB6ECD55 42
FFFFFFFF FFFFFFFF FFFFFFFE 43

5. FOR SUBTRACT

SUB4B
LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1800Н
1800 0504 2 LD B, 4
1802 DD21001A 3 LD IX,1A00H
1806 A7 4 AND A

1807 DD7F00 5 LOOP LD A, (IX)
180A DD9E04 6 SBC A, (IX+4)
186D DD7708 7 LD (IX+8),A
1810 DD23 8 INC IX
1812 05 9 DEC B

1813 C20718 10 JP NZ ,LOOP

1816 FF 11 RST 38H

LA@3H-1AAGH 1А07Н-1Ай4Н lAgBH-1AQ08H FLAG REG
ВЕҒБрАА10 3В712345 548С86СВ 42
FFFFFFFF FFFFFFFF 02000000 42

151

FOR ADD & ПАА

ADD4BDA
LOC OBJ CODE M STMT SOURCE STATEMENT

1899 1 ORG 1800H
1800 20604 2 LD B,4
1802 DD21001A 3 LD IX,1A00H
1806 А7 4 AND A
1807 DD7E00 5 LOOP LD A, (IX)
186A DD8E04 6 ADC A, (1Х+4)
180D 27 7 DAA
180E рр7708 8 LD (ІХ%8),А
1811 рр23 9 ІМС ІХ
1813 05 10 РЕС B
1814 C20718 11 JP NZ , LOOP
1817 FF 12 RST 38H

1A03H-1A00H lAG?H-1A0@4H 1АЙВН-1АЙ8ВН FLAG REG
12345678 87654321 99999999 42
35868794 44556699 80425493 42

Experiment 3

Answer to 2. under Student Exercises: of Experiment 3,

in the MPF-I Experiment Manual.

LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1800H
1890 0603 2 LD B,3
1802 AF 3 XOR А
1803 DD7E09 4 ADDLP LD A, (IX)
1806 FD8E00 5 АПС A,(IY)
1809 DD7700 6 LD (IX) ,A
180С DD23 7 INC IX
180E FD23 8 INC IY
1810 10F1 9 DJNZ ADDLP
1812 FF 10 RST 38H

Augend Addend Answer Flags

1902-1900 1А02-1А00 1902-1990
793865H ABCEDFH 250744H 31
009543Н АВ1236Н A6A779H АВ
954717H 003390H 957AA7H 80

152

3.

LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1800Н
1800 АҒ 2 XOR A
1801 0603 3 LD B,3
1803 DD7E00 4 SUBLP LD A, (IX)
1806 FD9EAØ 5 SBC A, (IY)

1809 DD7700 6 LD (IX) ,A

180C DD23 7 INC IX
180Е FD23 8 INC IY
1814 10Ғ1 9 DJNZ SUBLP

1812 FF 10 RST 38H

Minuend Subtrahend Answer Flags
1902-1900 lA02-1A00 1902-1900

683147H 336700H 34CA47H 22
5935ABH 5877FFH ØØBDACH 42

049677Н F65B79H QE3AFEH 1B

Experiment 4

Answer to Experiment 4, МРЕ-І Experiment Manual

1.
EXP4

LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1890H
1800 210019 2 LD нІ,,1900Н
1803 0620 3 LD B,20H
1805 77 4 LOOP LD (HL),A
1886 23 5 INC HL
1807 10ЕС 6 DJNZ LOOP
1809 FF 7 RST 38H

2.
EXP401

LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1800H
1800 21FF19 2 LD HL,19FFH
1803 @EQF 3 LD C,0FH
1895 0619 4 LOOP2 LD B,16H
1897 71 5 LOOP1 LD (HL) ,C

1888 2B 6 DEC HL
1889 10ЕС 7 DJNZ LOOP1
180B ØD 8 DEC C
180С С20518 9 JP NZ, LOOP2
186F FF 10 RST 38H

153

OBJ CODE М STMT SOURCF

018001
218018

N оо

шо -J OY Un S UJ ke

OBJ CODE M STMT

1
21001B 2
11001А 3
7Е 4
12 5
FEFF 6
2804 7
23 8
13 9
18F6 10
FF 11

OBJ CODE M STMT

N UJ

оо +J OY Ul PWM =

ЕХР402

ORG

LD

LOOP LD

EXP403
SOURCE STATEMENT

LOOP LD

EXIT RST

ЕХРАЙА
SOURCE STATEMENT

ORG
LOOP LD

NEG

LD

INC

AND
SBC

ADC

JR

154

STATEMENT

1800H
BC,0180H
HL,18890H
(HL) , @AAH
HL
BC
A,B
A
NZ,LOOP

1800H
HL, 1BØØH
DE, 1AØØH
A, (HL)
(DE) ,A
ЙЕЕН
2,ЕХІТ
НІ.
DE
LOOP
38H

1800H

A, (HL)

(HL) ,A
HL

re

Experiment 5

ІІ. (2)

1 ORG

2 LD

3 LD

4 LOOP1 PUSH

5 LD

6 LD

7 LOOP2 ADD

8 DJNZ

9 LD

16 INC

11 РОР

12 DJNZ

13 HALT

1808H

B,21H

НЬ,1АЙ@Н
BC

;Set location counter to zero.

;Loop 21 times.
;First location to be shifted.

;Save BC on stack because it

;will be altered by the inner
;loop (LOOP2).
;Load memory byte to shifted
;4 places into A.
;Number of adds (shifts) is 4.
;Each add will shift value in A

;left one place. |
;Loop control--4 passes (loops).
;Return shifted value to

;memory.
; Advance memory pointer.

;Relocated value of BC that was

;preserved on the stack by

Statement 4.
;Have 21 numbers been shifted?

;No, loop back to LOOPI.

Yes. Quit.

(3) Change statement 11 to read ADC A, (HL)

(4)

HL,1A09H
DE, 1A08H
ЇХ,1АЙПН

MADD

For subtraction, change

ADC A, (HL)

SBC A, (HL)

to

For multi-byte binary addition/subtraction,
delete the DAA command at statement.

155

(5) Subroutine to complement HL

HLCOMP LD A, H

NEG
LD H,A
LD A,L
NEG
LD — Lu

Subroutine to complement IX and IY

IXCOMP PUSH IX

POP HL

CALL HLCOMP
PUSH HL

POP IX

IYCOMP PUSH IY

POP HL

CALL HLCOMP

PUSH HL

POP IX

(6) The method will be to 2's complement DE,
then add DE to IY.

PUSH DE
POP HL
CALL HLCOMP

PUSH HL
POP DE
ADD IY,DE

Experiment 6

II. Example Experiments:

5. This program is most easily solved by studying
the register assignments and flowchart in the
previous section on binary multiplication. The
only difference is the size of the multiplicand,
multiplier, and answer (product).

32 bits (4 bytes) Multiplicand

x 32 bits (4 bytes) Multiplier

64 bits (8 bytes) Product

156

The essential steps are

. 1)

2)

3)

Clear the product area 8 bytes.
Initialize the shift counter - 32 shifts of
the multiplicand, multiplier, and product.
Save the shift counter by PUSHing it onto
the stack.
Shift the product area left one bit.
Shift the multiplier left into carrry.
Test the carry flag. If set fall through
to 7). If zero, transfer to step 8).
Add the multiplicand to the product.
POP the shift counter into ВС.
Test B--Done? Yes--Exit step 10)

No--step 3)

10) Return to the monitor.

; CLEAR THE PRODUCT AREA

LD HL, 1Að8H; First location

LD B,8 ;Byte count

LD A, Ü
CLEAR LD (HL) ,@ ; (HL) «-0

INC HL ;Advance to next memory
;location.

DJNZ CLEAR ;More locations to be
;cleared.

;INITIALIZE SHIFT COUNTER

LD B,32 ;Total number of shifts.
SHFTAGANPUSH BC ;Save shift count

; SHIFT PRODUCT AREA

LD B,8 ;Shift the product (8 bytes)

XOR А ;С1еаг саггу

LD HL,1A08H;First location

PRODSHFTRL (HL) ;Shift

INC HL ;Advance to next memory

;location
DJNZ PRODSHFT;More bytes to shift?

;SHIFT THE MULTIPLIER

LD B,4 ;Total number of shifts

; (4 bytes).
LD HL,lA94H;First location

PLYERSHFRL (HL) ¿Shift

INC HL ;Advance to next memory

¿location
DJNZ PLYERSHF;More bytes to shift?

157

БО WE ADD?

JP NC,SHIFT32;Jump if no carry
; (no add).

; ADD

LD B,4 ;Add 4 bytes

XOR A ;Clear carry

LD HL, 1A@GH;Start of multiplicand

LD IX,1A08H;Start of product
FIRSTADDLD A,(HL) ;Load multiplicand

ADC A, (IX) ;Add product
INC HL ;Advance multiplicand

;pointer
INC IX ;Advance product pointer

DJNZ FIRSTADD;More bytes to be added.

; ADD CARRIES IN UPPER PART OF PRODUCT

LD B,4
SECNDADDLD A,

ADC A,(IX)

L2 (ІХ),А
DJNZ SECNDADD

.CHECK SHIFT COUNTER

SHIFT32 POP BC ;Restore BC

DJNZ SHFTAGAN;More shifts?
RST AFFH

The answer given above is one solution. You may
wish to use more registers and improve the code.

Experiment 7

II. 2.

{Dividend Divisor Answer Remainders Check

8686H 0020 0434 0006 00

FFFF 0005 5555 0000 10

5А48 0142 0847 UFA 0g

ØH 0142 00060 0000 40

1234H ØH FFFF 1234 ЫС

158

3»
[The key to modifying the division routine in part
one is to realized that the dividend is being
shifted bit by bit out of BC. Also that the
result is being shifted bit by bit in DE. This
problem requests а 32 bit result, a 16 bit register
and 16 bit fractional result. The division is
still a 16 bit number (division) divided into a
16 bit number (dividend). Маке the following
changes:

Statement 12 change LD A,16 TO

LD A,32

After statement 12 add

LD IX,1A90H

Replace statements 15 to 17 with

RL (IX)

RL (IX-*1)
RL (IX-*2)

RL (IX-*3)

The dividend is in locations 1A00 and 1А01.
The integer result will be locations lA00 and
1401. Тһе 16 bit fractional result will be in
locations 1A02 and 1A03. The jump relative
instruction at statement 27 will have to be
adjusted to jump the proper distance to руй.

4.

LD D, (1A01H)

LD Е,(1Үл00Н)

LD B, (1A04H)

LD C, (1A05H)

CALL DIVI16

LD (1A01H),H

LD (1A09H),L

159

5.

;CLEAR LOCATIONS 1А04-1А07

XOR A

LD B,4
LD HL,lA04H

CLEAR LD (HL) ,A

INC HL

DJNZ CLEAR

;SET IX TO POINT TO DIVIDEND

LD IX,1A092H

;SET AND PRESERVE SHIFT COUNT

LD А,32
PUSH AF

;ROTATE DIVIDEND INTO TEST AREA

ROTATE RESULT BITS INTO LEAST SIGNIFICANT BIT
OF DIVIDEND AREA

руе RL (IX)
RL (IX+1)
RL (IX+2)
RL (IX+3)

;SHIFT TEST VALUE

LD B,4

LD IY,l1A04H
SHIFTTSTRL (IY)

INC IY

DJNZ SHIFTTST

; SUBTRACT THE DIVISOR

XOR A

LD B,4
LD HL,1A20H
LD IY,l1A04H

DIVISOR Lh A, (IY)
SBC A, (HL)
INC HL
INC IY
DJNZ DIVISOR

¿WAS THE DIVISOR LARGER THAN THE TEST VALUE?
NO. JUMP TO DV1

JR NC ,DV1

160

;DIVISOR LARGE

BACK IN

RESTORE

; ADJUST CARRY

DV1 CCF

; TEST FOR ALL

POP
DEC
JR

You might wish to add comments to each statement.

Experiment 8

2.

Hexadecimal

0200Н

ЕККЕН

18009Н

5A48347FH
0100000000

8000000000000000

FFFFFFFFFFFFFFFF

3.

LD

LD

PUSH

LD
CALL

LD

LD

POP

R THAN TEST VALUE.

A

B,4
HL,1820H;Divisor is

3 3A20-1A23H
IY,lAU4H

A,(IY)
A, (HL)
HL

IY

RESTORE

FLAG

32 SHIFTS

AF
A
NZ,DV0

BCD

512
65535
98304
1514681471
4294967296

ADD DIVISOR

at locations

09223372036854775808
18446744073709551615

(1801H) ,D
(1800Н),Е

DE

DE,0202H
BINBCD

Н,(1809Н)

L, (1808Н)

DE

161

LD A, E

ADD A,A *2
ADD А,А *4
ADD А,А *8
SUB A,E 8-12*7

4.

A second way

LD A,E
ADD А,А *2
LD (1А0ЙН),А
ADD А,А %4
ADD A,(1A00H) *4**2-*6
ADD A,E *6+]=*7

Experiment 9

3.

The method shown below for BCD to binary conversion
is a brute force method. Your solution may be
different and shorter. The BCD number is contained
in the HL register pair. The binary equivalent will
be contained in the DE register pair. Тһе B register
is used as a loop count (16).

H L | D E

BCD "number

162

1800

1800
1802
1804

1805

182В

182D
1830
1831
1832
1833

1600
1Ей0
АҒ

0610

10DA

21401А

о омоли м

ORG 1800H

;CLEAR BINARY AREA AND CARRY FLAG

LD D,£
LD Е,0
XOR A

;SET LOOP COUNT (SHIFTS)

LD B,16

;SHIFT H,L,D,E TOGETHER ONE BIT
TO THE RIGHT

SHIFT RR H

RR L

RR D

RR E

;ADJUST REGISTER H

LD A,H
BIT 7,8

JR Z,COR1
SUB 30H

CORI BIT 3,А
JR Z,COR2

SUB 3
COR2 LD Н,А

;ADJUST REGISTER L

LD A, L
BIT 7, A
JR Z,COR3

SUB 30H
COR3 BIT 3,А

JR Z,COR4
SUB 3

COR4 LD L,A

;MORE SHIFTING? YES — JUMP BACK
TO SHIFT

р2 М2. SHIFT

;NO — SAVE DE AT 1A40-1A41

LD HL,1A40H
LD (HL), E
INC HL
LD (HL) ,D
RST 38H

163

M

e
x

pra R
E

N
a
a
t

Ж
а
л
ы

S
dd

m
57

"aA

кіргеннен

Introduction

s oz Р

The purpose of а monitor is іо Stiow the user to interface
with the computer with a minimum of effort. At power up,
the microprocessor Monitor has to perform some
initialization tasks--e.g.,check for location of the RAM
memory, display uPF-I on the screen. The monitor then
continously scans the keyboard, checking for a pressed key.
If you press the key labeled PC, the monitor responds Бу
accessing a routine labeled KPC (Key Program Counter). This
routine will perform the series of tasks you would expect
when pressing PC The monitor has provided а human
interface to the computer.

WARNING

The monitor represent 2K of fairly advanced code. The
explanation below is written for users who want an in-depth
view of software. At times, you will have to struggle to
understand the routines. Also answers are not provided to
all the exercises. You should discuss your answers with
associates or your instruction.

167

7.1 Major Divisions of the Monitor

Refer to the book MPF-I Monitor Program Source Listing. The
listing is composed оҒ two parts. Тһе first part is the
code. The code starts with statement 1 and ends at
statement 2659. Pind statement 2659 then turn to the next
page. At the top of this page is the title Cross Reference.
The cross reference listing is the second part of the
listing. Look under Symool for KPC. You sould see

SYMBOL VAL м DEFN REFS

KFC 61C2 727 2434 2435 2435 2436

The column DEFN indicates (defines) at which line number the

label (symbol) KPC is defined. Find line 727. The label
KPC is on this line. The colon ":" forces KPC to be a
label. KPC is a label for the code that follows. The code
starts on line 731. Between line 731 and KPC are two
comment lines and a blank line. The current value of the
location counter for line 731 is given in the leftmost
column. The value is Й1С2. Look again at the cross
reference listing under KPC. The column labeled VAL (value)
contains @1C2. VAL is the first address of the routine KPC.

The REFS (reference) area tells the programmer all the
Statements that refer to KPC. The first reference is оп
line 2434. Find this line. Yes, КРС is referred to

2434 KFUN DEFW KPC

ПЕ“ (define a word -2 bytes)-- tells the assembler to
re зіме space for two bytes and put the address of КРС іп
these bytes.

We will »se the cross reference list again.

7,2 The Code

The first part of the monitor listing contains four major
items:

1) The start-up code.

2) The routines which interrupt and respond to

a key press.

3) Special entry points, e.g., the interrupt INTR
entry.

4) Tables

169

AN OVERVIEW ОЕ THE SEQUENCE ОЕ ACTIONS
AFTER THE POWER IS APPLIED

еэ .

@000-0014 DELAY

PROCESSING UNTIL

MPF-I IS STABLE

PROGR^M THE 8255

361—309
5САМ1:624-664 ми

3CC-354 DISPLAY
MPF-I

0017—001A
FIND LOWEST
RAM ADDRESS

CALL
RAMCHK

5F6-5FD

FIND LOWEST

RAM ADDRESS

RAMCHK =

0010-0026
SET КАМ ADDRESS

SKIP BREAK ROUTINE

170

0032-0035
TURN OFF MASKABLE

INTERRUPT

SKIP BREAK ROUTINE

0054-0062
INITIALIZE USER'S

STACK POINTER AND

INTERNAL MONITOR

FLAGS

SKIP ММ1 (NON-
MASKABLE INTERRUPT
AREA

@0D0-00DB
CHECK FOR LEGAL
USER'S STACK
ADDRESS

USER'S STACK
ADDRESS LECAL

040B-0439 MEMDF2

SET UP USER'S
PC FOR DISPLAY

DO NOT DISPLAY

USED PC

171

000Е-00Е1
INITIALIZE
SYSTEM STACK

5FE-623
SCAN THE KEYBOARD

UNTIL A KEY
IS PRESSED

@0EF4-
CALL BEEP

6CB-6Dt*

SOUND ВЕЕР

KEY PRESSED

172

00Е9-0Й ЕВ

KEY ІМ RANGE

00-ЙЕН

МО

00Ғ2-0Е9

KEY ІМ RANGE

10-17H

NO

10Е
ҢАМСЕ

HEXADECIMAL KEY

0111-118 KHEX

03В0-03ВА BRANCH

JUMP TO ROUTINE

YES A HEXADECIMAL

YES
SUBFUNCTION KEYS

23В0-03ВА

BRANCH

JUMP TO ROUTINE

ES
FUNCTTON KEYS

03В0-03ВА
ВВАМСН

KEY WAS PRESSED

KEY IS ONE OF

THE FOLLOWING:
*,-,GO,STEP,DATA,

SBR,INS,DEL

KEY IS ONE OF

THE FOLLOWING:
PC,ADDR,CBR,REG,
MOVE,RELA,WRTAPE,
RD TAPE

JUMP ТО ROUTINE

173

DETAILED EXPLANATION OF THE PRINCIPAL

MONITOR FUNCTIONS

Use the flowchart 7-1 while tracing the monitor code.

Locations 0000--0003

Statements 100 & 101

When power is first applied to a circuit, the circuit should
be allowed to stablize. Some I/O devices need a time delay

before they can function. There are two timc delays in the
MPF-I. One time delay 15 in the hardware. The circuit
connected to the Reset (RST) pin will prevent the MPF-I's
Z80 from immediately starting execution. The other delay is
provided by the two instructions at statements 100 and 101.
B is first loaded with zero, then the DJNZ $ will decrement
the value of B, and as long as B is non-zero, a jump to self
(re-execute the instruction) will occur.

17A

Questions of Exercises

Exercise 7-1

How long is the delay at line 100?

Statements 106-107

These two statements program the 8255.

The 8255 chip has two lines Ай and Al to tell it what
function is being selected. If Ай and Al are high, then
the 8255 is being programmed. The instruction

OUT (P8255),A

sends the controls in the A register over 8 address lines AØ
to A7. P8255 is equal to 03 (hexdecimal) or 0000 0011
(binary). The right two bits which are high connect to Ай
and Al.

Before the contents of the A register are output, it is
loaded with a pattern, namely

10010000 Port C lower is output
—

Port B is output

Port B is mode 0

port C upper is output

ort A is input

Select mode zero configuration for Port À

175

Mode zero means that the ports аге used for input ог output.
Each half of Port C is programmed separately. Thus, Port А
will accept input from the keyboard, the user key, and the
cassette. Port B is used to control individual segments in
a display. Port C is used to select a display, to scan the
keyboard, and for output to the cassette, tone, and LEDs
(light emitting diodes).

Statement 114 and 115

The output is to Port C of the 8255. This is Port 02 in
МРЕ-І. Тһе data sent to the 8255 will prevent a break. Bit
6 is made high. This sets PC6 (Port C, bit 6) high. The
break circuitry is enabled by a low on Port C bit 6. The
data sent to 8255 will also set the gate of the transister

controlling the sound and the LED high.

Statement 116

The system stack pointer is set to an address in the RAM.

Exercise 7-2

What is the top of the system stack?

Use the cross reference to answer the question.

Statement 121-123

Read ёе contents of the location POWERUP. If it is not
equal to PWCODE, then CALL subroutine INI. The designer
assumed that on power up that the location PWCODE could not
ре equal to A5H--this is probably true.

176

ы

Exercise 7-3

Using the cross reference list.

What is the address of POWERUP and INI?

What is the value in PWCODE?

Statement 1347-1368

The first pattern to be displayed will be all blanks. Look
at the six bytes starting at location @07A5—— all zeroes.
DEFB means define a byte. Register C will be used to make
the uPF-I pass through the code at statement 1363 to 1368
seven times.

Statements 1363 to 1365 call 5САМ1 ten times with IX
register pointing to the same pattern. After the screen has
been blanked out for 0.16 second it is time to set up а new
pattern. The next pattern is 5 leading blanks with a "u" in
rightmost position. Decrementing IX, statement 1366 will
give this pattern. Look at line 2536 to 2541. IX now
points to location 7А4. The loop control statements DEC C
and JR NZ,INI1 will decide whether to transfer control to
statement 1363 label ІМІ1. Control will be transferred to

INI1 six times. At this point, the screen will read

МРЕ--І

177

Statement 1370 апа 2382-2397

Load the PWCODE into А and then transfer control to INI3
(initialize code port 3). At INI3 statements 2382-2397 load

the powerup code (byte) into location POWERUP, sets the beep
frequency and duration, апа returns to INI4. At ІМІ4
statement 1372, a code of 0066 is loaded into HL. Then «һе

next instruction puts this code into location IMIAD.
Whenever a code of FF is executed, the MPF-I will transfer
control to location 38H (effectively a call to 38H). The
routine at location 38H will then direct the MPF-I to
transfer control to IMIAD. Before the MPF-I goes to the
code to establish, if a break point is in effect, the break
point address is set to ØFFFFH. In the present MPF-I,
address QFFFFH does not exist. Read the comments at
Statements 1329 to 1383. At statement 1387, a return is

made to location 0014 statement 123.

Exercise 7-4

Change the key beep frequency by trying different values in

location lFFl statement 2657. Сап You set the frequency So

low that you can't hear it? Сап the frequency be set so

high that you cann't hear it?

Change the duration of key beep-by changing locations 1FF2

and 1FF3. Тһе monitor value is 2F in 1FF2 and 00 іп lFF3.

Try larger values then smaller values. Try zero in 1ЕЕ2 and

1FF3. At least one value will cause you to loose control of

the Micro-Professor. How can you regain control?

178

Exercise 7-5

(OPTIONAL-ANSWERS NOT PROVIDED)

Try to explain the comments and code at statements 194 to

214. You may need to read additional reference material.
Make a drawing. It will help.

Statement 123-140 and 2103-2119

HL will point to location l1000H and then we are off to the
subroutine RAMCHK at location 5F6 statement 2110. Does this
routine look familiar? It should. Тһе code was explained
earlier. If location 1000H is the start of available RAM,

then when RAMCHK is exited, the zero flag vill be set. The
return is location 1D statement 131. At this statement, we

ask: Is the zero flag set? If yes, then transfer control to
PREPC location 21 statement 133. "he pointer to the
beginning of user НАМ (USERPC) will be loaded with 10A@H.

If a non-zero value is returned, then user RAM is assumed to
Start at 1800H. Statement 132 changes the value of the H
register to 18. Before jumping to RESET1, register Н is
loaded with zero. Now Н and L are both zero.

Statement 177-184

The interrupt register and the interrupt control flip- flop
are not discussed in this manual. Consult the Z80 technical

reference manual.

Statement 248-263

Statement 249 takes а fixed value USERSTK (1F9F) from ROM
and loads it into the HL register pair. Then the next
Statement puts this value in USERSP. The contents of USERSP
will point to the current top of the user's stack.

179

Exercise 7-6

Why is а pointer іп БАМ used to indicate the сор of the
user's stack?

Statement 251 and 252

The statements at 251 and 252 clear the byte labeled TEST.
Bit zero must be set at the beginning of a new numeric
entry. Setting bit zero of TEST to zero will automatically
clear the data buffer when а hexadecimal key is pressed.
The service routines for hexadecimal key entry reference

routines are PRECL1 апа PRECL2. (See statement 811-900).

PRECL1 and PRECL2 test bit zero of TEST апа ргес1еагѕ one

(PREC1) or two (PRECL2) bytes (statements 1402-1428).

Setting bit 7 instructs the monitor to ignore the current

key press and to send out a warning message. The. routine

IGNORE is called by keyboard routines which have discovered

an illegal key press.

A Case Study

You have pressed the set break point key SBR, and have
entered an illegal address. The keyboard monitor routine
will branch to routine KSBR (Key Set Break) statement 587

to 608. The KSBR routine uses RAMCHK to determine if your
breakpoint address is a RAM location (CALL RAMCHK). If the

address is not in RAM, a jump to IGNORE 15 executed
(statement 1336). The routine IGNORE sets bit 7 as a
warning message. The RET instruction transfers control back

to the MAIN loop (statement 387). The next three
instructions executed are

JR MAIN
LD SP,SYSSTK
CALL SCAN

SCAN tésts bit 7 of TEST (statement 2138-39). If bit 7 is
set, then the screen is blanked as warning of an illegal key
press.

180

Did you enjoy tracking the effects of the flags in TEST. We
got a little ahead of ourselves. The keyboard scanning
routine has not yet been explained, but its kind of nice to
get a preview. The actions of TEST may seem rather devious.
One routine calls another routine which calls another
routine. Some nesting of routines is permitted in a small
monitor. In a large scale operating system, the accessing
of nested routines must be carefully planned in advance Let

us now finish the code RESET2.

Statement 258 sets IX to point to the initial display
pattern MPF-I. When SCAN is called, IX is used as a display
pointer(read statements 2125 to 2128) A jump to SETSTO

avoids executing the code for a non-maskable interrupt.

181

Statement 353-373

Statements 360-361 clear the STATE. Read statements 459 to
474, you will gain some insight to the functions of the
keyboard routines. The MPF-I uses a software breakpoint. А
breakpoint 15 set Ьу replacing the opcode of an instruction
with a restart instruction RST 28H. А RST 28H saves the
contents of the program counter--the next instruction to be
executed--on the stack and then transfers control to the

break routine at location 28H (statement 143). The replaced
opcode is saved away іп location BRDA (Breakpoint Data

Address). The location of the breakpoint is BRAD
(Breakpoint Address). Statement 362-363 will restore the
data at BRDA to location BRAD. Why is this done? During
power up statements 362 and 363 accomplish nothing because

the breakpoint address is a nonexistant area of ВАМ. After
power up, assume a program has been entered and a breakpoint
set. The program starts executing and the breakpoint
address is accessed. The program will halt. You now decide
to investigate several registers and then to return to the
monitor. Pressing MONI will transfer control to location
66H statement 266. The code at statement 266 to 351 15
executed. At statement 351, a jump to BRRSTO statement 362
is performed. The breakpoint is removed. Thus by pressing
MONI, you can return to the monitor and remove the

breakpoint. Many monitors have this feature. The actions
of the CALL C,MEMDP2 at statement 371 will depend upon which
instruction sequence preceded this statement. If this is a
power up sequence, then statement 258 sets IX to point to

uPF-I and statement 360 cleared the carry flag. Control
will not be transferred to MEMDP2 and MPF-I will be
displayed. If the user's stack is not in RAM, then the code
at statements 328 to 335 will display ERR-SP. If the user
stack and the system stack use the same area (overlayed)
then the code at statements 341 to 347 will display sys-sp.
If по errors are detected after the MONI key is pressed,
then the routine MEMDP2 is called. MEMDP2 (statements

1451-1492): 1) updates the state register, 2) calls routine
ADDRDP to display the address of the program counter, 3)
calls routine DATADP to display the contents of the address
of the PC, 4) checks if the address to be displayed is a
breakpoint, and 5) finally returns to location @00DE

statement 380.

182

Statement 375-390

After setting the system stack, a call to SCAN will return
the key code of the key pressed. The BEEP routine does the
obvious thing--it sets up the parameter for a time and calls
TONE to.get a sound. Perhaps not so obvious is the command
at statement 2411 JP KEYEXEC. When this command: is
executed, the А register contains the internal code of the
key pressed. The routine KEYEXEC processes all keys except
RS, MONI, INTR, and USER KEY.

As indicated earlier when a key function has completed, the
RET in the key randling routine returns control to Statement
387 (JR MAIN) which then re-execute MAIN.

Statement: 392-457: KEYEXEC

KEYEXEC separates the internal codes of the keys into three
groups. This is done to simplify the branching to each

routine which process a. key function. Read statements 2410
to 2422 to understand the branching method. The routine

KHEX loads registers for use by the routine BRANCH. HL is
loaded with a base address. Assume the GO key was pressed.
Tbe internal code for GO is 12. Since 12H is greater than
10H, statement 403 will not transfer control to KHEX.
Statement 428 will subtract 10H, leaving the difference of 2
in A. 2 is less than 8, thus control is transferred to

BRANCH--statement 1301. The object of BRANCH is to transfer
control to the routine which will service the pressed key.
А table has been designed to hold pointers (branch

addresses) to the correct routine. Тһе table for KSUBFUN is
at statements 2424 to 2433. The function of BRANCH (in the
case of GO) is to add together the contents of the first
table address 011В (statement 2425) and the table entry for

KGO, ØA (statement 2428). Тһе address of the routine KGO is

123H (11ВН + @AH = 123Н). Study statements 1301 to 1334

carefully to see how register A and register pair HL
determine the jump address (statement 1333) by using the
tables beginning at 2424,

Read the comments at statements 2411 to 2422, and 1302 to

1316.

This completes the explanation of the monitor. The
interrupt system was not discussed.

183

Exercise 7-7

Tracing monitor code

Trace the actions of pressing a key from each of the three
groups given under KEYEXEC. Verify your answer by reading
the operations performed by the key in the User's Manual 3.1
Basic Operations.

If time permits, step through the code for all of the keys.

184

185

When you read а schematic, you are looking at the
results of the hardware design. А set of а hardware апа
software specifications are developed by a combined staff --

management, sales, software, and; of course, engineering.

When а microprocessor is composed of only a few chips,
then a single sheet can show all of the schematics. The
MPF-I contains 13 chips, a voltage regulator, displays, а

- keyboard, and two 40-ріп extension connectors. Four sheets
are required for the MPF-I schematics. Each sheet is
numbered e.g. "Sheet 2 of 4"

Sheet 1 of 4

The components on this sheet, are vital to the MPF-I,
microcomputer. Ul is the 780 CPU. U6, U7, and U8 are the

memory chips, ROM and RAM.

We will first consider the requirements of the 280 CPU.

Voltage and Current

Most new CPUs use a Single 5 volt voltage source. Chip
specifications will tell the user (designer) the allowable
voltage variations. Turn to sheet 4 of 4, you will find the
voltage regulator. It is located in the upper right hand
part of the page.

What voltage variations are allowed into the voltage
regulator? (+7V to -24V) For the 7805 to work properly,
the input, I, must be higher than the output, O. The output

voltage is +5V.

189

Тһе allowable input voltage range is given just to left
of Input. What is it? (+7V +24V)

A smooth (clean) voltage can be supplied by the
regulator, yet noise may appear on the voltage input to an
IG. Some of the noise comes from circuits switching on and
otf. Each component that can malfunction due to noise (or
Sound spikes) must in some way be prevented from interacting
with power supply. The property of a small capacitor is to
allow high frequencies to pass through them. This action
will filter out much of the noise. A noise spike is really
a high frequency signal. Look immediately below the voltage
regulator circuit and you will observe a series of

capacitors shown as gis cus sls
T T

| These capacitors are typically used to filter out
noise. Some filtering takes place before the yoltage is
regulated. The input capacitor has a capacitance of 4.7 uf.
What is its part number? [C6]

Exercise

Look at your MPF-I board and find Cl, C2.... (drawing)
If you were to design your own power supply, how could you
learn about voltage regulators? Some manufacturers publish
data books with explanations, (tutorials) on how to use their
components. An excellent book on voltage regulators is
Motorala's Voltage Regulator Handbook. The author--Henry
Wurgburg--has a section on "Selecting a Linear ІС Voltage
Regulator".

190

Clocking Requirements

The 280 CPU can be operated over a range of clock
frequencies..: The 280 CPU in your MPF-I is certified by the
manufacturer to operate at a maximum rate of 2.5 MHZ.
Designers sometimes specify a chip set allowing operation at
a particular maximum frequency and then drive the chips at a
lower frequency. There are two reasons for the lower
frequency. One reason is that the circuits will operate
more reliably. The other reason is that the clock may be

performing another task requiring а specific frequency.
Your MPF-I clock could be used to control the frequency
(baud rate) of information sent and received in

communications.

The clock circuitry (on sheet 1 of 4) is in the upper

left hand corner (D-8). The base frequency of 3.58
megahertz is generated by a quartz crystal. а

Exercise

The drawing for a crystal is two plates with the
rectangular crystal drawn between the plates. Draw the
crystal

j|] =

The crystal has the property of oscillating at an exact
frequency when given a small amount of electrical energy.

191

The control circuit suppling the eletrical energv is
composed of two sections of an ІС, two resistors, апа а

capacitor.

In sheet 1 of 4, D-7

Кж
x

How can a circuit use only a few sections of an IC?
It's simple. Ме can do this by only connecting two sections
of the IC to the clock circuit.

The 741514 contains six elements sections called
Schmitt Triggers (don't worry about detailed operation of a
Schmitt Trigger). However, if you are interested in
learning about Schmitt trigger, read the next section

Schmitt trigger.

Schmitt Trigger

vcc 6A 6Y БА 5Y 4A 4Y

6 |
lA ly 2A 2Y ЗА ЗҮ GND

Fig. 74LS14 Hex Schmitt Triggers

192

In digital circuits, the state of а signal can switch
from 0 to 1 ог from 1 to 0. In conventional ТТІ, circuits а
zero centers at 0.4V. Typically a value up to the 0.8У and
somewhat less than zero volts is accepted as a zero level.
A one centers at 2.4V. Typically a value down to 2.0У апа
all the up to about 5.25 volts is accepted as a one level.
Here is an ideal TTL circuit.

Notice the immediate transition from 0.4V to 2.4V. The
transition can never be instantaneous but usually а quick
transition is desirable. Неге is a very slow transition.

2.4, w— š — — im = — s -- -- -- -- w -------- --- ~ 8}

А slow transition сап cause а problem. Devices

attached to a slowly changing signal will become confused

because too much time is spent in between the @ and 1 level.

The device is prone to say it's a one, no it's a zero, no

it's a one. How can a quick rise time be achieved. A

circuit са11ей-а Schmitt Trigger will wait until a changing

voltage has passed a particular point and then snap to the

new state.

SCMMITT

OUTPUT INPUT TRIGGER

193

DIVIDING THE OUTPUT OF THE CRYSTAL

OSCILLATOR

The crystal outputs а frequency of 3.58 MHz. But the
280 CPU operates at 1.79 MHz. As you сап see, the clock
frequency was divided by two. Between the crystal circuit
and the Z80 CPU is an IC, namely, 741574. The name of the
function of а 741574 is Dual D Positive-Edge-Triggered
Flip-Flops with Preset and Clear.

This information may not help your understanding of the
circuit. Another way of looking at the function of the
74LS74 is shown below:

74LS74
3.58MHZ 1.79 MHZ

in CK Q out

Here is a trace diagram of a 741574 Rising
Rising ed

CK edge =

о сі

Notice that the signal О only changes on the rising
edge of the CK (clock). Therefore, the clock is divided by
two.

194

Restart (RESET)

Your 280 CPU пау be out of control e.g. looping. А
circuit controlling the RESET line into the Z80 CPU allows
the operator to regain control. The object is to push a
button and which will hold the RST (pin 26) line low for а

few cycles. Then the line should go high.

RS Е
RST

74LS74 C9 I

U26

Sheet 1 of 4, C-6

If RS is not pressed, pin 12 of 74LS74 U2b(D) is
connected to 5V through a resistor. The 5 volts at рїп 12
will pass through 741574 (U2b) so that pin 9(Q) will be
high. Pin 9(Q) connects to the RST line and no action is
initiated by the RST pin. Now press down on RS. Pin 12
will be grounded and a low will pass through U2b to ріп 9.
The low at pin 9 will present a low at pin 26 (the reset).
This will cause the Z80 CPU to stop executing at its current
address and immediately transfer control to location zero.
You may wonder what the capacitor C9 does. It will hold the
signal low for a few cycles when RS is pressed. Remember
the RST line must be low for a few cycles.

There are two more ways of gaining control of the 280
CPU. To be in control is to start at a predetermined
address. Pressing the INTR key will transfer control to the
monitor when the maskable interrupt system is enabled.

m

Pressing down on the INTR key will short the interrupt line
(INT) to ground. The INT interrupt is said to be active
low. Signals which are active low have a bar above their
names. When the INTR key is released the short to ground is
removed and 5 volts is applied through resister R3. The

resister which allows the voltage to be pulled up without
damage to the power supply is called a pull ир resister.
Pulling INT low by shorting it to ground doesn't guarar.tee
that the CPU will be interrupted. An INT will Бе ingored
when the instruction DI (disable interrupt) has been

executed. When the Z80 CPU is powered up, the maskable
interrupt system is disabled.

195

The monitor code never enables the INT pin with an EI
(enable interrupt) instruction. Іп the workbook, the uses
of the maskable.interrupt will not be discussed.

The second way to gain control of the Z80 CPU is to
press the MONI (monitor) кеу.

[]

280

Sheet 1 of 4, В-7

Мопі H

When the MONI key is pressed, a series of coordinated

actions must occur. Тһе object of pressing the MONI key is
to cause а non-maskable interrupt (NMI). It is sufficient
to know that a low at the pin marked with NMI will transfer
control to memory location 66H. The coordinated actions are
controlled by the 74LS90 which is a counter. The counter
will change the level (e.g. high to low) of the signal at
ріп 17 (NMI) of the 280 CPU.

Optional: A Detailed Analysis of the Operation of the 74L S90

user presses down on the monitor key, a low must appear at
the 780 CPU's NMI with a minimum of delay. Secondly, when a
break point is sensed during program execution, the break
signal BREAK must be delayed until 4 instructions have been
executed. The monitor key must take precedence over a break
signal.

The MONI Key

Before MONI is pressed, а 5 volt level is applied to
рїп 9 of the 74LS14(d) coordinates B-7 on sheet 1. Тһе 5
volts is supplied through the 10K ohm resistor. This
resistor pulls the voltage level up when the MONI input is
not grounded. Тһе resistor is called a pull up resistor.
When MONI is pressed, one end of the 10K ohm resistor is
grounded and the level at 74LS14(d) goes to ground. The
74LS14 will. invert the ground level from a low to a high.
The level at pin 6 (R9(1)) and 7 (R9(2)) is high. Consult
the 741590 truth table below

196

RESET/COUNT FUNCTION TABLE _
RESET INPUTS [OUTPUT 2

в0(1) R@(2) R9(1) R9(2)| Ор Qc Op AB.
H De d Lo oL

hb L L L
H L L H

741590 -- Reset/Count Truth Table

Line 3 R9(1) and R9(2) high indicates that Qa will be high.

Qa hiqh will be inverted by the 74LS74(C) to a low. The low

is presented to pin 17 NMI of the Z80 CPU. Pressing MONI
interrupts the 780 CPU. Line 3 also shows that the

condition of R0(1) and RØ(2) are irrelevant when R9(1) апа
R9(2) are high. This means that the MONI key takes
precident over the BREAK.

Break

Understanding the actions of а breakpoint requires
tracing both software and hardware. A breakpoint is set by
replacing the opcode of the instruction at the selected
breakpoint with a RST 28H instruction. When this instruction
is executed, control will be transferred to location 28H.
The routine to service an NMI (non-maskable interrupt) is
located at 28H. The software sequence is 1) the routine
KSBR (Statement 587) responds to the user request for a

breakpoint by setting the breakpoint address in location
BRAD. 2) When the GO key is pressed, the service routine
GDA (statement 1024) puts the hex code EF (RST 28H) at the

breakpoint address. When a break is recognized а transfer
is made to the break trap routine at location 28H. The
second part of the break routine starts at location ЗЕ
(statement 221). Statements 236 to 241 will now be analyzed
in detail.

187

Statement 236 LD A,10000000H

The A register is loaded with the break enable pattern

the leftmost bit is set.

Statement 237 OUT (DIGIT),A

The pattern іп A is output to PC@ to PC7. PC? sheet 2
of 4 coordinates B-4 connects to the 74LS9@--sheet 1

coordinates B-7.

Statement 238 to 241

These four, instructions will be executed before а
non-maskable interrupt will occur. As long as both of the
BREAK inputs Ro(1) and Ro(2) are high, the break will either

set Qa through Qd low (see 741,590 truth table lines 1 and 2)
or have no effect if R9(1) and R9(2) are both high (line

3). Assume R9(1) and R9(2) are low and a BREAK signal is

sent. Тһе 741,590 will begin to count. The count sequence

is dependent upon how Ain and Bin are wired. Тһе 741,590 has
QD connected to Ain. The count sequence is BI-QUINARY.

OUTPUT
Qa Op Oc Op

L -È

тасш шшш гг Иа ГЕ F t кы ы ps meee н шг г гш шг

0
1
2
3
4
5
6
7
8
9

Count sequence for the 74LS90

The first four counts after the base value at COUNT 0
hold QA low. Тһе fifth count COUNT 5 changes QA to а high
and thus causes а non-maskable interrupt. A count occurs
сасһ time the line at Bin (ріп 1) goes low. Bin is
controlled by a signal (М1) from the Z80 CPU which goes low
every time a new instruction starts (or an extended opcode
is read). Remember after the software issued the interrupt

signal to the 741,590 for more instructions were executed.

Why was the 741590 choosen because both the MONI key and а
BREAK could be serviced with MONI overriding BREAK. The
counting feature of the 74LS90 may not be necessary.

198

Memory Selection

The memory ranges оғ the ROM and RAM for the basic
MPF-I are shown below:

Address range Address range in binary Chip functional/type
in hex

06 0000--0FFF 0000,0000,0000,0000--0000,1111,1111,1111 Monitor /PROM

U8 1800--1FFF 0001,1000,0000,0000--0001,1111,1111,1111 Programs/RAM

07 2000--2FFF 0010,0000,00900,0000--0010,1111,1111,1111 Programs/PROM

Each binary bit is wired up to an address line. The
address 19ВЕ (hexadecimal)(= 0001 1001 1011 1111 binary)

would be in the user RAM (U8). The corresponding address
lines would be

А15 А14 A13 А12 All А10 A9 A8 A7 Аб A5 А4 АЗ A2 Al АЙ

The upper four address lines А15 - A12 control the
selection of which memory chip is active.

To select any of the memory chips А15 апа А14 must be
low. On the schematic sheet 1 of 4, (A, 5-4), there is a

chip labeled 74LS139. Find U5a on sheet 1 of 4 (A, 5-4).

The 74LS139 is a "two to one of four" decoder. What
this means 15 that if you enter one of four binary values
00, 01, 10, 11 into the chip, only one of the output lines
is selected (goes low).

The 74LS139 has two sections. Each section has two
input lines A and B, and a line which turns on (selects,

enables) the section, and the four outputs.

199

will be low i£

input was

INPUTS

ENABLE SELECT

G
H

00
01
10
11

OUTPUTS

ҮЙ ҮІ Y2 Y B

= 7415139 Truth table

U5a is used to turn on (select) U6 or U? or U8 only
when 1А and 1B are low. 1A and 1B are connected to А14 and

А15, respectively. So whenever A14 and A15 are both low, 1Y@
goes active low and one of the memory chips is activated.
The pin labeled 1б which enables 74LS139(a) is active only
when an instruction requesting memory is used. The
instruction LD A,(HL) is a memory request instruction and
will activate the memory request line MREQ pin 19 of the Z80
CPU (coordinates В-5). An instruction which will perform
input-output operations such as IN A,(25H) will not activate
MREQ. Which memory chip is activated? To select U6 whose
addresses range from 0000 through OFFF, both A12 and A13
must be low.

14 Both A12 & A13 are low
A12 2Y0 p

2А 7415139

А13 2B U5b

Line 2Y0 іп U5b goes low when both А12 апа А13 аге low.
Therefore, 2Y0@ of U5b is wired to the chip selection line of
U6. A chip selection line activates a chip.

| To select U7 address line A12 must be low and address

line A13 must be high. what line of U5b should be selected?
The answer is 2Y2.

200

Finally, to select U8, the following must occur: A13,
low; A12, high; and All, high. Do you see why А11 must be
high? Because the memory chip on U8 has a range of
addresses starting from 1800 (@001,1008,0000,8000) to lFFF

(0001,1111,1111,1111), any number which is smaller than 1FFF
and bigger than 1800 is qualified to be used to point to a
specific memory location. If you want to pick a binary
number which is smaller than 1FFF and bigger than 1800, the
conditions for such a number is that the 16th (А15), 15th

(A14), and 14th (A13) bits should be @ and 13th (A12) and
12th (All) bits should be 1. That means А12 and All must be

high.

Because All must be high, an additional decoder U9a is
required. Trace the connections and see if you agree with
the line selected to control the chip select (CS) of 08.

Cross Reference of Sheet-to-Sheet Schematics

An inspection of the right or left margin of sheet 1
reveals some lines that do not connect to any components on
‘Sheet 1. However, the lines do have a label.

We will now formally discuss how to locate a specific
location on the schematics and use cross reference between
different sheets. Perhaps you have noticed that the four
sides of a circuit map (schematic) are marked with A, B, С,
and D, and 1, 2, 3, 4, 5, 6, 7, and 8. If we refer to the
lowest and rightmost location of the circuit map, the words
"(А-8)" is used to point to the location. Now find the
location (D-1) on sheet 1. What you see is

The SH2,3 means that you shuld refer to the schematics оп
sheet 2 and 3.

201

The lines involved on (D-1) of sheet 1 аге даға

lines--DQ through D7 (eight lines). Where do these lines

go? SH2,3 indicates that sheets 2 .and 3 are to Бе
inspected. Turn to sheet 2 and use the coordinates (D-8)

and (C-8), you will find:

SH 1, 3

The label SH1,3 indicates that lines DØ through D7 are
connected to sheet 1 and sheet 3, At (B-1) iS another set

of lines connecting to sheet 2 and 3. Actually, only А@,
Al, Аб, and A7 connect to sheet 2 and AØ and Al connect to

sheet 3. On the location (C-8) of sheet 1 is the RST line.
It can also be found on (С-8) of sheet 2, and (А-8) of sheet
3.

Extending the Capabilities of MPF-I

All of the pins of the 280 CPU are available as
external signals. This feature allows all of the
controlling signals available for use by add-on-boards.
Turn to sheet 4 of 4, the pin assignment of the fourty pin
connector Pl are shown.

202

Sheet 2--The Control Function of the 8255

The 8255

The dominant IC on sheet 2 of 4 is the 8255 (U16),

which is installed on the location A-D, 5. This chip is
designed to control input/output on three ports. When the
МРЕ-І is turned оп or reset, a monitor program determines
how the ports of 8255 will function. Port A will be used
for input and Ports В and C will always output. Тһе 8255
competes with other chips for selection by the CPU. The
decoder at (А-7) апа (А-8) selects one of the three chips

8255, PIO, or CTC. The selected chip is said to be

activated by the CPU. Each of these chips is said to be on
a port. The details of I/O selection and control аге not
covered in this handbook. Ап extensive discussion of the
actions of the displays Ul6 to U21 and the key matrix were
covered earlier. However, the function of 012 and Ul15 (the

75491 chip) was not discussed. Тһе 75491 is a segment апа
hex digit driver. The 8255 doesn't have enough power to
drive displays. So ап IC is required between the ports of
the 8255 and the displays. 013 (the 75492 chip) is a driver
which selects (activates) ап entire display.

Speaker

The speaker circuit at (B,C-1,2) of sheet 2 consists of
a transistor Q2, resistor R9, and a speaker. The transistor
is necessary to furnish more power than a typical integrated
circuit can. "Port РС7 of the 8255 controls the frequency
and period of the sound.

Cassette-Microphone

A resistance and capacitance ае (В-1,2) shape ‘the
cassette recording signal output at port PC7.

Cassette-Earphone

Diodes, а capacitor, а resistor, and two sections cf
the 74LS14 receive and shape the signal received from the
cassette. This signal 15 then read into the 8255 at porc
PA7.

203

User Key

The user key is a key that has no monitor functions and
therefore is available for user definition. Sheet

3--Counter Timer Circuit (СТС) and Parallel 1/0 (PIO)

Sheet 3--Counter Timer Circuit (CTC) and Parallel 1/O (РІО)

The actions and programming of the CTC were covered in
an earlier programming excercise. Parallel I/O using the
280 PIO will not be covered in this course.

Sheet 4

P2--Pin Functions

You can locate the position of P2, which is a 4@-pin
bus connector for the Z8@ PIO and СТС.

The two ports of the Z80 PIO and the clock inputs апа
outputs of the 280 CTC have been wired to the 40-ріп bus
connector P2. The pin functions of P2 are listed on sheet
4.

Memory Options

The user can install several different memory chips.
This capability is made possible by allowing changes to the
wiring. The user must cut some traces (wires) and jumper
some points when using either a 2732 or 6116. A chart at
(B-1,2,3) of sheet 4 shows the circuit changes.

204

APPENDIX
Appendix А Reference

Z80 ONLY

1. Microprocessor Applications Reference Book
Volume 1 02-2145-01, Zilog Inc.

2. Programming the 280--Rodnay Zaks
SYBEX

3. 780 Assembly Language Programming
Lance Leventhal, Osborne-McGraw Hill

4. Z880-Assembly Language Programming Manual
‘Zilog 03-0002-01, Rev B. April 1980

5. 280-CPU 280A-CPU Technical Manual

03-0029-01, Zilog Inc.

6. 280 Microcomputer Handbook, William Barden
SAMS

7. 780 Microprocessor Programming and Interfacing
Book 2, Nichols, Rony; Blackburg

8. Z80 Software Gourmet Guide and Cookbook

Nat Wadsworth, SCELBI

9. Zilog 1981 Data Kook

COMPUTER CONCEPTS

1. Introduction to "icrocomputers Volume f

(Basic Concepts) Adam Osborne

Osborne-McGraw Hill

2. Introduction to Microcomputers Volume I
(Basic Concepts) 2nd Edition

Adam Osborne, Osborne-McGraw Hill

3. Introduction to Microcomputers Volume II
(Some Real Microprocessors)
Adam Osborne, Osborne-McGraw Hill

A. Introduction to Microcomputers Volume III

(Some Real Support Devices)

Adam Osborne, Osborne-McGraw Hill

5. Introduction to Microprocessors, Software,

Hardware, Programminj--Lance Leventhal

Prentice Hall

^. Microprocessors and Programmed Logic

Kenneth L. Short, Prentice Hall

205

PROGRAMMING TECHNIQUES

(Not in Assembly Language)

1. PASCAL with Style, Henry F. Ledgard
Hayden Book Company Inc., Rochelle Park,
New Jersey

2. Programming Poverbs, Henry Ledgard,
Hayden Book Company Inc., Rochelle Park,
New Jersey

MICROPROCESSOR DESIGN

1. Digital Hardware Design, John B. Peatman,
McGraw Hill

2. Introduction to Microprocessor System Design,
Harry Garland, McGraw Hill

3. Microcomputer-Based Design, John B. Peatman,
McGraw Hill

4. Microprocessor System Design,
Edwin E. Klingman, Prentice Hall

INTERFACING

1. CMOS Cookbook, Don Lancaster, SAMS

2. Microcomputer Interfacing, Bruce Artwick,prentice-"'all

3. TV Typewiter Cookbook,

Don Lancaster, SAMS

4. 780 Microprocessor Programming and
Interfacing Book 2, Nichols and Rony,
Blacksburg

DATA COMMUNICATIONS

1. Data Communication and Teleprocessing Systems,

Trevor Housley, Prentice Hall

2. Distributed Processing and Data Communications,

Daniel R. McGlynn, Wiley Interscience

206

3. Technical Aspects of Data Communications,
DEC Educational Series JB002A
Digital Equipment Corp.

GENERAL REFERENCE

Computer Dictionary, Charles J. Sippl, SAMS

207

Appendix В

Alphabetical Listing of Monitor апа Interrupt Key

The gray and orange topped keys are either sensed
by a monitor.keyboard scan routine or by a CPU

interrupt. One exception is the user key--it is
Sensed by a user program.

Name Function Keference

ADDR Sets a menory address. раје 11

CER Clear the breakpoint in a Page 23
user's program.

DATA Inputs data either to Page 11
memory or a register.

DEL Deletes one byte from Page 27
memory.

Gt) Start execution at the Page li

current program counter

address.

INS Inserts one byte into Page 22
memory.

КЫШ Interrupts the executing Appendix i sheer
program. This interrupt lof 4
nust be enabled by the
user.

-(®INUS)becrements а value--use Seo Key

depends upon previous key functions
function.

MONT Interrupt the user's program. Раҙе 24

MOVE moves a data block fron one Paje 25
area to another area.

РС Display current projrai Page 17
counter--the STEP function

vill now be active.

*(PLUS) Increnents a value--use see rey

depends upon previous key functions
function.

REG Allows the user to select Page 14
Zü“ registers.

RELA Conputes the relative address Page 29
in a junp relative
instruction.

208

ТАРЕ

ТАРЕ

USER

KEY

RD

WR

Performs a hardware reset.

Sets a breakpoint.

Executes a single step
whenever pressed.

Allows user to set up tape

read parameters.

Allows user to set up tape
write parameters.

Available as a user progranmed Appendix B
key.

209

Page 11

Page 20

Page 19

Page 32

Page 30

Sheet 2 of 4

Appendix С

REGISTERS

ТҺе principal difference between a register and a memory

location is the speed of accessing the data. The
iegisters are on the CPU chip and can be accessed

rapidly.

Memory access involves addressing memory and then
fetching the data. The power of many CPUs is determined
by the number and organization of the registers. The
280 CPU has more registers than the 8080 or 8085--
two very popular chips. Тһе 280 CPU has many more
registers than Motorola's 6800, but the register
organization of the 6800 is different. То determine what
registers are absolutely necessary in a computer which is
register based. Read the explanation of registers below.

The A register

There must be an A register to hold the results of arith-
metic (add & subtract) and logical (AND, OR etc.)

operations. The register which participates in most
arithmetic and logical operations is the A register
--the accumulator. The register is a byte wide (8 bits)
register. To add larger numbers than a byte's width,
the A register is used repeatedly.

The HL register pair

Some method is needed to load numbers into the CPU
registers so that sums, differences, etc. can be
computed. The HL register pair is used frequently to
point to a memory location. The instruction

LD A,(HL)

will load the A register with the one byte of data from
the memory location pointed to by the HL register
pair. Registers H and L may also be used separately
(unpaired).

The BC and DE register pairs

Register pair BC and DE may also be used to point to
memory. The register pairs can only be used to load
the A register. The HL register pair will load a byte
from memory into the A,B,C,D,E,H and L register. BC and
DE are used in other instructions. For example, to perform
a lo-bit addition. The instruction

210

ADD HL,BC

adds BC to HL. B,C,D and E may be used as 8 bit

register (unpaired).

Consider the following arrangement of memory

SUBROUTINE

XXX

DATA

PROGRAM A

Memory space management dirgram

The PC register

The processing begins by executing Program A. The
location from which instructions are to be fetched
(executed) is pointed to by a program counter, PC.

The IX and ІҮ register

The data area can be accessed by any of the three pairs
--HL, BC, and DE. Н (high part of the address) and

L (low part of the address) needed to be snapped to-

gether to form a l6-bit address. Тһе 280 possesses
two more data pointers, the 16 bit registers IX and IY.

pointers, the l6-bit registers IX and IY.
B and C, D and E, are also snapped together.
In many instructions, IX and IY, are used to point
to a base address. The actual location accessed uses

the base address plus an offset displacement. For
example, the instruction

LD A, (IX+4)

211

loads the contents of the location from bytes beyond
the value in the IX register.

3005
IX+4 3004

3003
3002
3001

ІХ. 3000

Іп the diagram above where ІХ contains 3000, IX+4
would point to 3004. Because of the indexing feature
(base address) of the IX and IY registers, the "I" stands

for index. IX and IY are index registers. The Space
Management Diagram can now indicates the usage of some

registers.

SUBROUTINE
ххх

HL, BC, DE, IX, IY

PC PROGRAM A

The SP register

The stack is used to hold a temporary result or other
non permanent information. When a transfer is made
to subroutine XXX by Program A, the return address
is stored on the stack. When the subroutine completes,

the address on the stack is used to return control to
program А. Тһе stack is controlled by a stack pointer,
SP. Тһе stack pointer moves down or up depending upon
whether data is added or removed. Turn to Appendix
C in the MPF-I User's Manual. The second page of this
appendix contains the Z80 CPU Register Configuration.
Only the I and R 8-bit registers in the special
purpose г: jister area have not been mentioned.

212

The i апа R register

The I register is used with an Interrupt system designed
to work with 280. Тһе R register supports a type oí
memory that needs a Refresh signal. Neither the I or
R register are discussed in this workbook.

The F register

The Flag register indicates the kind or type of result.
After an ADD, was the result negative, zero, or positive?

Did the ADD produce a carry? The appropriate flags and
their meaning are described in the notebook chapters.

The Alternate register set

The registers hold the current results and the next
numbers to be processed. When you want to interrupt
the current processing for a few seconds and service a
short routine, you must typically preserve one or more
registers. One way to preserve registers is to store
them in memory. This storing process requires accessing
memory--tell it to get ready and then moving the register
contents from the CPU chip to memory. When the interrupt
routine is run again, the reverse process must take
place.

The 280 CPU has a faster way to change executing
routines. А computer much larger and more costly than

the 280 CPU was used a few years to process simultaneously
(at the same time) two jobs (routines). The computer
was bought to control traffic. In the morning the rush
hour traffic would build up along certain avenues.
Sensors placed on avenues and streets counted
the number of vehicles passsing by. Periodically,
the computer was interrupted to process the vehicle
count. If a large number of vehicle were on a parti-
cular avenue, then the signals were timed to move
traffic faster on that avenue. When traffic processing
was completed, the computer switched to processing the

financial data for the city.

213

Main register set Alternate register set

In the diagram above, the current processing is for

traffic control. When the processing completes, the
280 CPU can shift to the right set of registers by
executing two. instructions

EX AF, AF' апа EXX

The alternate register set becomes the main register
set,

Alternate register set Main register set

^

O

The switch from one set of registers to another set will

typically take from 2 to 4 millions of a second.

214

MULTITEGH INQUSTRIAL CORPORATION
FFICE/ 977 MIN SHEN E ROAD TAIPEI 105.

TAIWAN. R.O.C.
TEL:(02)769-1225(10 LINES)
TLX:23756 MULTIIC, 19162 MULTIIC.

FACTORY/5, TECHNOLOGY ROAD III 111
HSINCHU SCIENCE. BASED INDUSTRIAL PARK
HSINCHU TAIWAN. 300. R.O.C.
TEL:(035)775102(3 LINES)

Multitech Electronics Inc.
195 West El Camino Real

Sunnyvale, CA. 94086

U.S.A.

Tel: 408-7738400

TIx: 176004 MAC SUVL

Fax: 408-7498032

DOC.NO:M1M09-302C

