

,~

I
I
I
I
I
I
1.

I
I
I
I
I

,~, -o 'u-iL~ -o I

. TM

~Micro-Professor
THE INTRODUCTION TO
BASIC PROGRAMMING

0 MULTITEIJH IN[)USTFUAL IJClfi'1ClfiATICJN

Copyright© 1982 by Multitech Industrial Corp.
No part of this publication may be reproduced,
stored in a retrieval system,
or transmitted,
in any form or by any means,
electronic, mechanical, photocopying,
recording, or otherwise,
without the prior written permission of the publisher

Second Version

'µ1rPl MULTITlaH IN~USrnlAL ~VAPVILUllJN OFFICE/ 977 MIN SHEN E. ROAD, TAIPEI, 105,
TAIWAN, R.0.C.
TEL:(02)769-1225(10 LINES)
TLX:23756 MUL TllC, 19162 MUL TUC.

FACTORY/5, TECHNOLOGY ROAD 111,
HSINCHU SCIENCE-BASED INDUSTRIAL PARK
HSINCHU, TAIWAN, 300. R.O.C.
TEL:(035)775102(3 LINES)

~ Miera-Professor™
CHAPTER I. COMPUTER • 5

1 • 1 Computer ••• , ••• , , 7

1 • 2 Human Brain Vs Electronic Brain • 10

1 • 3 Hardwar:e •.... ir,

1 • 4 Computer· Language •••••••••••••••••••••••• , • , ••••••••• , , l 9

CHAPTER 2. START WITH THE MICROCOMPUTER • • • • • • • • • • • • • • • • • • • 2 3

2 • 1 The Leaming of Microcomputer • 2 5

2 • 2 Binary Number System • • • • • • • • • ••••••••••••••••••• , • • • • • • 27

2 • 3 Memory • • • • • • ••••••••••••••• •• , • , •••••• , • , •••••• , • , • • • 31

CHAPTER 3. PRESENTING THE MPF·ll 35

3 • 1 MPF-11 Main Board • • • ·, ••••••••••• ,, •••••••••• , ••• , , , , • • 38

3 • 2 Video Dlsplay •••••• • · -• •..... 3CJ

3 • 3 Power Supply •• , 10

3 • 4 Cassette ••• , , • , 4 l

3 • 5 Printer

3 • 6 Remote Control Box

3 • 7 Software Cat1rldge

3 • 8 Inside the MPF-11 • 4?

3 • 9 Memory

CHAPTER 4. HOW TO OPERATE THE MPF-11 · . 4 s

4• 1 Power On • • •• • ••• 4 7

4 • 2 Study the Keyboard • 4 8

4 • 3 The Cassette Recorder • 5 4

4 • 4 Loading • • • • • • • • • • • • • • • · • • • • • • · • • • • • • • • · · · • • • • • • • • • • • • • • 56

4 • 5 A First Look at the Print Statement ••• 5 9

4 • 6 Abbr.eviated Print Statement •••• 61

CHAPTER 5. THE MPF·ll AS A CALCUUTOR · • · 6 3

S • 1 Immediate Mode • 6 5

5 • 2 Addition and Subtraction

5 • 3 Multiplication and Division •••••••••••••••••••••••• • • • • • • • • 6 6

5 • 4 Exponentation •••••••••••••••••••• 6 7

5 • 5 Math Function ••••••• 6 8

5 • 6 MPF-ll's Format for Numbers

CHAPTER 6. ELEMENTARY PROGRAMMING · 71

6 • 1 Statements • 7 3

6 • 2 Programmed Mode •••••••••••••••••••••••••••••••••• • • • • 7 5

6 • 3 Line Numbers • 7 6

6 • 4 New, List, End and Home • 8 flJ

6 • 5 More Basic Statements • 8 3

6 • 6 Data ,, 8'1

6 • 7 Let and Variables • 9 1

6 • 8 Input • 98

6 • 9 For·· .. ·· Next Loops • 105

6 • 10 Advanced Editing Techniques' •118

6 • 11 Remarks • 12 1

6 • 12 Plotting and Developing in Color • 1 7. 2

6 • 13 Handling String ••••• •.• 129

6 • 14 Random • • •••••••••••••••••••••••••••••••••••• • • • • • • • • 13 6

6 • 15 Array DIM • 14 0

CHAPTER 7. COMMANDS RELATING TO THE FLOW OF CONTROL · · · · · · · · · 14 3

7 • 1 Instruction Analysis Related to System • 14 5

7 • 2 Instructions Related to Execution : • 14 7

7 • 3 Instructions Related to Editing and Format • 15 7

7 • 4 Control Instructions of Printer • 16 4

CHAPTER 8. VARIABLES, OPERATORS AND STRINGS · · · · · · · · · · · · · · · · · · 1 6 5

8 • 1 Value Variable and its Operation • 16 8

8 • 2 String • 1 7 6

8• 3 Array···········•·••••···•···••····•··•·····••••••••··· 185

CHAPTER 9. •PUT AND OUTPUT INSTRUCTIONS · 191

9 • 1 Input and Output Instructions • 1 9 3

9 • 2 Plottlng • 20 4

9 • 3 Low-resolutlon Instructions · • 2 lil s

9 • 4 Hl11J·resolutlon Instructions • 2 0 s

CHAPTER 10. LOOP AND ARRAY • • • • • • • • • • • • • • • • • • • • • • • • • 21s

10o1

10. 2

10. 3

10. 4

ON· ... ··GOTO• 218

GOSUB and· RETURN1 •• • • • • • • • •

222

ON·· .. ··GOSUB • 228

ON ERR GOTO and RESUME• 2 3 0

CHAPTER II. MATHEMATICAL FUNCTIONS • 2 3 3

11 • 1 Trl1onometrlc Functions • -:n"

11 • 2 The Plottln1 of Functions • ~ 4 0

11 • 3 Other Functions • 14 ')

.

WELCOME

The MPF-II (Micro-Professor II) is a low-cost R6502
based microcomputer system which provides an interesting
and inexpensive way to enter into the computer world . Its
built-in BASIC language makes it easy to cre a te user pro
grams . The color and sound capabilities help keep the
user interested in programming .

This manual is designed for people who want to learn
to program in MPF-II BASIC . With this manual , and a MPF-II
computer , and a bit of your time and attention , you will
find that there is nothing difficult about learning how to
program a computer .

r:;;:;:_ is

nothing

At first , as with anything new , programming will be
unfamiliar , but this manual was designed t o all e viate
any apprehension you might have . First of all , there
are no hidden secrets that you have to know before you
can read this manual. Everything is revealed , and only
one thing at a time is explained . If you sta rt at the
beginning , try everything as it comes along, and make up
your mind to take your time , it is pretty much guaranteed
that you will learn how to program .

- 1 -

The r~al secret is taking your time and trying every
thing . You cannot learn programming by merely reading
this or any other book. Like learning to ride a bicycle
or play the fiddle, you must learn by doing . You must
make mistakes and correct them, and not feel too bad when
you do make mistakes.

~

{ IF you rno.ke. misto.kes do

\ too bo.d, jl.ISt correct
~

not feel J
them :_____/

If you already know how to program , a quick run through
this book will make you familiar with the features of MPF-II
BASIC . We suspect that you will be quite impressed with
the ease of doing high resolution graphics and using the
other features that make the MPF-II a fine computer for a
wide variety of applications .

This book is a tutorial manual . We hope you enjoy
using this manual as much as we have enjoyed writing it .

- 2 -

INTRODUCTION
The Installation Manual will show you how to plug in

your MPF-II (easy) and will be a guide as you learn to
program it (also easy). If you are an Old Hand at pro
gramming, you will find some new features and conveniences
in MPF-II BASIC that make programming a lot more enjoyable.
If you are a Newcomer to programming, you will find many
features and conveniences in MPF-II BASIC that make pro
graming a lot of fun. But, if you are a Newcomer , be
warned that programming, though not difficult, can only
be learned by doing . More will be said on this topic
later, but remember--this is a book to be used, not mere
ly perused.

This manual will help you learn to program even if
you have never touched a computer before . It d~scribes the
MPF-II itself and then covers the common peripheral devices.

What is an MPF-II? How do you make it work? The first
two chapters of this book answer those questions. You have
probably noticed that the MPF-II system is made up of several
pieces of equipment all connected together with wires and
cables. The first chapter tells you what all the pieces are
and what they are used for. The second chapter tells yo u
how to operate each computer part. With this knowledge you
are ready to use any of the ready-to-run programs that are
widely available for word processing, financial analysis,
bookkeeping, computer-aided instruction, and entertainment.

The next two chapters of the book teach you how to
write your own BASIC programs on the MPF-II. Chapter 3
introduces MPF-II as a powerful ca l culator. Chapter 4
starts things off with a tutorial approach to the fund
amentals of BASIC that are available on the MPF-II.

The rest of the chapters continue with a coverage of
adva nced programming topics and BASIC features.

- 3 -

CHAPTER

1. Computer

2. Starting With the Micro-computer

3. Presenting the MPF-II

4. How to Operate the MPF-II

5. The MPF-II As a Calculator

6. Elementary Programming

7 . Commands Relating to Flow of Control

8. Variables, Operators

9. Input, Output, and Graphics

10. Loop and Array

11. Some Math Functions

- 4 -

COMPUTER

- 5 -

Computer

A modern computer is composed of electronic circuits.
When we mention computer , we should first think about the
word "computation" .

co.lculo.tor
Since the beginning of human civilization , "computa

tion" has become a k i nd of brain- racking and inevitable
business . Therefore , mankind is striving for all kinds of
computing devi ces to help solve the complicated tasks of
computation . Yet , the Chinese abacus , which was invented
three thousand years ago, can be regarded as the earliest
ancestor in the history of compute r.

{7

(f "oJ\)

~I
~

The development of computer parallels technological
advances . Computer technology made little progress until
in 17th century . In 1642 , the French scientist Blaise
Pascal invented the decimal cogwheeled mechanical calculator .
The computer was then transferred from a manual device to
mechanical one . Even so , the importance of abacus was
still not down graded .

- 7 -

Po.sca.1'.s ten - co~whee led
co.lcu la.tor

The real breakthrough of computer science should be
attributed to the progress of elctronic technology. I n 1945 ,
the University of Pennsylvania produced the first compuer
equipped with vacuum tube to solve complex computation.
This is the first generation computer, which was called ENIAC ,
the acronym stands for Electronic Numerical Integrator and
Calculator.

First generation computer

Wow! 318800 v~UU"l tu~)
~";~)

~

Aided by advancement in electronic technology, elec
tronic elements developed from vacuum tubes to transistors,
and then to integrated circuits (IC). As a result, comput
er science also advanced.

In 1950's, the second generation computers came to
the world. They were equipped with transistors, each one
able to replace a vacuum tube , but the size of t r ansisitor
is much smaller.

In 1960's, the third generation computers came into
existance . The y used integrated circuits (ICs). The size
of each integrated circuit is about the size of a thumb.
Each IC equals tens up _ to hundreds of transistors. Thus,
the size of computer decreases, the speed increases, and
the consumption of electricity lessens.

In 1970's, I BM company produced the IBM 370 computer
which can only be regarded as a three-and-a-half gener-
ation computer, but not the fourth generation. The fourth
generation refers to the microprocessor-centered micro
computers. Microprocessor, as are l arge as a thumb, con
sists of thousands of transistors (or more). Consequently,
the size of microcomputer decreases, the consumption of elec
tricity lessens, the power increases and the computer co s ts
less. ,,

- 8 -

Even a. match. ftea. cJ

than art

~-)

A computer is an essential dev ice for processing in
formation, and we usually associate t he term " informati on"
with "computer". Although the term computer does not
necessarily mean i nforma t i on, after a compu ter processes
data, we ca n then compreh end the meaning of the infor
mation.

- 9 -

Human Brain Vs Elecb'onic Brain

Now, we would like to explain why computer is also
referred to as "electronic brain".

In addition to computation, we are frequently required
to judge, to analyze and to compare in our routine lives.
When we are performing these tasks , we need lots of data
as input. In order to acquire this data, we have to collect,
compute and classify it first . Yet, in all these tasks,
the human brain plays the control part .

As a matter of fact , the computer can perform not
only computing, but also judging, comparing and analyzing.
And because it can help our brains work by being an
"artificial brain" , we may call it " electronic brain" ~s
well .

Now that "electronic brain" is a machine to help human
brain work , so an understanding of the workings/of a human
brain can be the basis of the understanding of computer.

·::::--
~QQQ

A computer 9Q9Q-y iS G}Qg QQ

IL O Similar to Q.

~ human. bmirt

Mankind is the master of all the creatures in the
world , because mankind knows how to think . From the ancient
times, human beingi have been thinking how to improve thei r
lives , this has resulted in various efforts .

Mankind knows how to think , and computer is the mechan
ical device to aid mankind's thinking ~

UJhllt makes mank1r1.d

d;ffere11l TS Olli" power

to think. .

- 10 -

We have known that the brain power enables human beings
to invent tools and machinery and thus makes human beings
more versatile . Because the computer was invented, human
beings have accelerated the pace of life .

Since computers were invented to help human brains ,
once we understand the thinking process of human brains ,
it will be easier for us to understand the theory of com
puters .

Since the computer is the machine which helps human
beings think, we must discuss further the detailed process
of how men think . First , let ' s review how we think :

For example , if one day you overslept , when you woke up ,
your first reaction must be: "Augh , it is too late for the
school!" Suppose you did everything step by step as usual ,
you would certainly be late . Therefore, you would probably
give up brushing your teeth, washing your face , or even
your breakfast , and go out in a hurry .

Perhaps , after think i ng , you realized that there was
still time to wash face . You would probably wash your face
first and then go out , although you didn't have time for
breakfast .

Perhaps , after thinking , you thought you could afford
to take a taxi to reach school on time , thus to save time
for you to wash your face , to brush your teeth and to have
breakfast .

Facing the above situation, you should first think
about "Can I go to school on time?", and then come to a
certain conclusion, for example, "I will skip everything.",
"I will still wash my face", or "I'll go by taxi", etc.
But, how are these conclusions reached? Of course, it is
not without resources. These conclusions arrived by think
ing would probably be the product of using the "memory"
area of your brain¥

You were late for school, because one day you overslept,
but you still had.your breakfast and washed your face as usual.
Or perhaps, you yourself didn't have such an experience, but
you did see that your classmate was reprimanded for bejng late,
so this fact was rooted in your memory. Of course, in order
to arrive at a similar conclusion mentioned above, you not
only have to have a memory as a source, but also apply judgement.
For example, you overslept last time and went to school without
washing your face and brushing your teeth, and you were stared
at . by your classmates. ~his time, in order not to be involved
in the same situation, you choose to go by taxi. So, we know
that these conditions mu~t be judged each time according to
your memory patterns ~

From the above, we realize that human thinking is com
posed of "memory" an~ "judgement". ~ Our various daily think
ing activities call all be regarded ' as the judgements made
according to our memory. Therefore, we have to study
"memory" and "judge~ent" in order to research the human
thinking pr0eess.

A r/f

To research hvmM th;rik;ng , "'e ho.ve to

stu<!_y "memory~ and "jvd~ement'1

- 12 -

"Memory" is produced by experience. And so-called
experience can be regarded as the external things gained
by our sense organs.

The sense organs refer to the five senses, the eyes,
ears, nose, tongue and skin. We see with eyes, hear with
ears, smell with nose, taste with tongue , and feel with
.skin . Even thougn human beings have intelligent brains,
if without the five senses to feel the external things,
there is no way to accumulate experience. That is, with
out the five senses, human beings can't receive the external
stimula.

The so-called external stimula here means input. All
the stimula received by five senses are referreq t o as
input .

INPUT

Our thinking capability starts from input. The fi v e
senses first receive some external stimula and then transfer
them to the central nervous system where the stimula are
processed by judging and memorizing to reach a conclusion,
finally this conclusion is expressed by means of mouth, face,
hands, feet and body. The reaction of such expression is
output.

OUTPUT

- 13 -

In order to comprehend human behavior, please loo k at
the following picture. This picture is the first step in
studying computers .

nervous

rv-/\..._,........~
God. 1 .r
can't stond .1

it! J"J

00

tn;
S'jStelft. 'bo to he.I\ ! :

• •

We shall first focus on "memory". When we are thinking
we have to revive past input from memo ry and then apply it.

Al t_hough the above thinking process is interesting, it
is still a little difficult to apply this to explain a
computer . Let's now have another simple example:

EJ------ __
_ o'v- 1 ----M£HORY

~\.O Cl) Sf2

- 14 -

bJ
[co~Roj

I

' I I --- , -·- .. --

As shown in the picture, when a pupil is performing a
mathematical addition : he first sees the computing pattern
5 + 2 in his memory, therefore he loads this pattern into
the processing area of his brain ; and then the pattern
5 + 2 = 7 comes into his ~ind, therefore he concludes that
the answer for this computation is 7. Then, the central
nervous system commands the hands to produce the answer.

From above example , we see that computer has also
an input section. This input section transfers messages
into the core of computer which has already had prior
information memory as means of judgement, and then it
transfers a result to the outer world through an output
section .

7lre more memory c.o1'al>•h9',
l:he moni poM1er.

Make judtt'rr1erit acc.ordn .. .g to memory

[ej~
I

We have mentioned over and over that our daily thinking
activities are altered by what is in our "memory". There
fore, good thinking must have an abundant memory as its
source . Certainly, a man with a large memory cannot neces
sarily make a good judgement ; but we can be assure that,
without "memory" as source of judgement , there must be lots
of mistakes. These mistakes are what we usually call mere
conjecture.

In fact , the capacity of computer is determined by
the amount of its memory , thus the capacity of a computer
is in varies with the size of its memory . The more larger
memory a computer has, the more capacity it can afford .

- 15 -

1·3 Hardware
There are two important terms in computer terminology:

hardware and software .

flo.rci ware ?

Computer hardware refers to the parts which can be
seen and touched , and is composed of electronic circuits .

In last section we have learned that human activities
involve memorizing and judging, and that memory is an
essent i al part in computer. The Central Processing Unit
(CPU) is r e spons i ble for the tasks of controlling and
judging in computer. Just a s human beings do, a computer
needs input and output too . Card reader has been the main
device for input . Printers are still one of the main
devices for output.

Now we will explain the three hardware parts shown
below indi v idually :

cp u

MEMORY

- 16 -

1. Central processing unit (CPU)

The CPU is the neadqua r ters of a computer , it deals
with all kinds of compdting and processing . The letters CPU
is the acronym for Central Processing Unit .

headg_uo.rters
of computer-

~ i Cf'U iS Centro./ J
procesSing unit,
a. htt/e bro.in .

~

2. Memory

The existance of a memory is the reason why a computer
possesses the capability of memorizing ~ecording infor
mat i on . All the data waiting to be processed e x ists in
this area . The arrangement o(a memory 'is just like the
picture shown below , which has each location numbered .
These numbered locations are called addresses in computer
te r minology .

3. Input and output

The input and output are the media by which the com
puter communicates with the outer world . The Card reader
with r eads in the data is the input device . The printer
wh i ch recordes on paper the results is the output device .
In addition , a keyboard is a very important input device ,
and screen an important output device .

Screer\

- 17 -

The main function ot a system program is to make it
easier for you to use the computer. Two classes of s ystem
programs that are particularly useful! are: translators and
computer operating systems .

account

"f'rocessin9

Soft.ware
System

A translator helps us to write application program ,
which on operating system helps us operate a computer.
These. programs are provided· by computer manufacturers and
specialists, thus we only have to comprehend the functions
of these programs .

~
~~

Systetn]'ro3m111

iS drff icu/t !

- 18 -

f 1 -will master
SJ.Stem 'f'rD!J n:ur1

,Sooner or /a.t.er
\

'~--~

1 • 4 Computer Language
In using the computer to solve problems , we must use

a computer language to communicate with computer .

A computer language can be called a machine language to
distinguish it from natural languages such as English, Chinese ,
Japanese , etc .

Software refers to the program which operates the computer .
In writing programs , we have to use a machine language accept
able by computer . Also, data have to be loaded into the compu
ter in a way which is understandable by the computer .

Computer)o.nguo.ge iS to cornrnunico.te

with computer.

A modern computer understands only two digits : 0 and 1 .
This simple number system (binary) uses binary numbers. That
is, a modern computer understands and processes only binary
numbers .

Obviously , it is impractical to communicate with
computer in binary machine language . It is also rather
difficult and time-consuming for programmers to write programs
in binary language .

Oh , the b;riaiy milch ;ne.

~~~ts:V 
- 19 -

Computer can only 

process brno.ry number 



The first step in simplifying programming is to use 
more easily understandable symbols to represent the binary 
language which is meant to communicate with computer. As 
a result, symbolic language which is similar to English 
came into existance. 

A symbolic language makes it easier for us to write 
programs, but we have to add a translator program in the 
computer. Translators are provided b y manufacturers and 
computer specialists. A translator makes it easier for 
us to communicate with computer. In a computer s y stem, 
a symbolic language is translated by translator into a 
machine language understandab l e to c omputer . Therefore, 
in this way computer is able to work for us. 

A symbolic l a ng uag e i s sti ll quite different f rom 
the way we express ourse lves, even though symbolic language 
makes it easier to use a computer , thus, some languages more 
similar to English have been produced. 

FORTRAN and BASIC are the examples of these language. 
Machine language and symbolic languag e which bear a re
semblance to computer lang u~ge are referred to as low-le vel 
l a nguage. Whi le FORTRAN a nd BASIC whi c h bear a resemblance 
to human l ang uage are referred to as higher-leve l language. 

- 20 -



Oh./ I ow -!eve/ 1fm8tlffje 

I cant y11derstand it..' 

I vnciers&ind 

h1'jher - /eve/ lan.jw.je 

The main purpose of this manual is to instruct you how 
to use the computer, therefore, we will use a higher-level 
language to communicate with computer . How a higher-level 
language is translated into machine language will not be 
discussed here . 

Now , let us discuss some advantages of applying a higher 
level language: 

1 . The computation pattern used by higher-level lan
guage is rather similar to the computation pattern 
used in mathematics , so it is easy for us to learn 
higher-level language . 

2 . The user does not need to know the actual memory 
locations used by the program in the computer . We 
only need to know the rul~s of a higher-level lan
guage , and use some variables as lat~ - then compu
ter itself will arrange it for us. 

3 . A Program is composed of some English ~ . . tences which 
are simpler than actual English sentences , so it is 
easier for us to use higher-level language . 

Of course , there are many other higher-level languages, 
we can surely learn more as time and interest permit . But 
in reality, if we master one, it is quite simple for us to 
learn another . 

This manual uses the easy and simple BASIC language to 
instruct the beginners . BASIC is the acronym of Beginner's 
All-purpose Symbolic Instruction Code . 

- 21 -



BE&INNEllS All-'PUR.'POS.E 

Q 
tbdJ 

SYMBOLIC INSTRUCTION" CODE 

The advantages of BASIC are the following: 

1. Easy to learn and with powerful functions . 
2. Most inexpensive and popular microcomputers use 

BASIC language, thus your ·knowledge of . BASIC can 
we used just about everywhere. 

For next. chapter. 

• • 
Sto.rti",9 from 

• 

- 22 -



STARTING FROM 
MICRO-COMPUTER 

- 23 -



- 24 -



2 • 1 The Learning of Microcomputer 
Before microcomputers came into existance , computers 

were quite expens ive . gven if I were presented with a compu
ter as a gift . I would be troubled as to whether I had 
enough room in my study to for it . But this condition 
changed greatly • since microcomputers came into the world. 
Nowadays the situation becomes that almost everybod~ can 
buy a set of a microcomputer to use at home . And .the · young
sters are even more interested in assembling sets of micro 
computer by themselves . If you have the chance to drive around, 
stores selling microcomputers are everywhere. You surely can 
sense that the era of microcomputer is on its way. 

This is a good chance for those who are interested in 
computing to learn with the microcomputer as an learning aid 
instead of starting with a mini-computer at school . 

~ 1 111\11 
Hey f G/a.d to med you/ 

We are miCY'o -

computers. 

As for the learning of computer , there are two different 
ways that should be noted : 

l . One of them is to use a home computer or personal 
compute~ as the learning aids . Those microcomputer 
that are available worldwide including MPF-II , PET , 
TRS-80, APPLE-II etc . 

2. Another one is the using of microcomputer learning 
machine as the learning aids, MPF-I: etc . 

- 25 -



Use microcomputer 

to learn han:Jwo.~ 
and system pru9rom 

/earnin9 mo.chine 

This book emphasizes the learning computing using a 
home computer and personal computer . And the main emphasis 
is put on the learning of application programs by using the 
BASIC as the higher- level language . This is an easy approach 
for everybody to learn computing. 

The Microcomputer learning machine lays more stress on 
the hardware and system programs by using a low-level lan
guage , which is closely connected with machines, such as 
symbol language and machine language. For those who want to 
go more deeply into hardware - how a computer works - a 
microcomputer learning machine such as the MPF-I can help 
you reach your goal . 

This manual introduces you briefly to microcomputer 
application programs by using the BASIC language. 

- 26 -



2 • 2 Binary Number System 
Let ' s imagine that there is meter whose wheel only 

consists of two digits, 0 and 1 . When turning the wheel , 
0 appears first and then 1 and then 0 appears agian . Since 
the meter has only binary digits , this meter is called a binary 
meter . In order to get a concrete idea of the binary meter , 
let ' s look at a distance meter first (odometer) . 

The meter shown below consists of six drum gears . When 
the first gear turns to 9 , if you turn a little bit more , it 
will then turn back to 0, and at the same time advance the 
neighboring gear on the left side to 1 . 

0.7 KM Recorder- process1n3 

i:en thousond 
digit di9it 

o.fte~ forwat-d one KM 

ten one 
d'.9;t di3it 

The concept of return-to-zero and advance the higher 
wheel can be applied to the binary meter . When 1 turns back 
to 0 , the next higher digit unit place will advance . 

The phenomena of the calculating of a binary 7peed-meter 
on an automobile is shown below . In a new automobile , all 
the digits on the binary speedmeter are all 0 . 

After driving for one mile , the scale will be 

00001 (1) 

Afte r driving for one mile more , the digit on the first unit 
place will retu r n to 0 and advance the next position . The 
scale will be 

00010 (2) 

After driving for three miles , the scale will be 
000 11 ( 3) 

- 27 -



After driving for four miles, what will the condition be? The 
first gear returns to 0 and advances the next digits; the 
second gear returns to 0 and advances the next digit; the 
third digit is 1. It will be 

00100 (4) 

After driving for more miles, the scale will be 

00101 (5) 
00110 (6) 
00111 (7) 

After driving for eight miles, the first gear returns to 
0 and advances the next digit. The same with the second 
and the third one . And the fourth gear · becomes 1. The 
result will be 

01000 (8) 

After nine miles, it will be 

01001 (9) 

After teh, it will be 

01010 (10) 

(Do the following by yourself.) 

Now you form the concept that each mile adds l to the 
first gear. After revolving for one circle, the digit will 
return to 0 and advance the next gear (digit). Similarly, 
if the second gear revolves a circle, it will return to 0 
and advance the next gear, and so will the others. 

A binary speedmeter can show the binary number con
sisting of a set of digits, l and 0. 00001 represents l; 
00010 represents 2; 00011 represents 3 and so forth. 

When dealing with great numbers, it is inconvenien t to 
use binary numbers. For example, 01000 represents 8, 01 001 
represents 9; 01010 represents 10. Therefore when it is not 
really necessary, we will not use a binary number. But 
when analyzing the performance of computer, it is frequently 
necessary to use binary numbers . Why? Just as with the 
limitations of a binary speedmeter, a computer circuit can 
only handle binary numbers. 

- 28 -



!/()/@ 
L_3Jooo 

Computel"" on!Y 

'<:::::: recognizes 0 11r-d 1 j 
~ _/-

The last thing to mention is that when the display of 
the decimal speedmeter is 00314, the two zeroes can be 
omitted and read as 314. Similarly, when the display of 
a binary meter is 00111 , zeroes can also be omitted and 
read as 111 . Omitting the zero, binary counting will be 
0, 1, 10, 11, 100, 101, • • ••••• • •• 

From what is mentioned above, we know that any numbers 
that are used in the binary system can be expressed only by 
a combination of zeroes and ones. 

Bino.ry system < o and 1) 

can re~;esent anJ nvmber-. 

As a matter of fact, it is frequently more convenient 
to use the binary system instead of decimal system. We can 
see from the following example : 

Suppose there are ten bulbs put side by side and we 
hope to make use of the ons and offs to represent a certain 
number. 

1 . When, in the decimal system, 1 0 lighted bulbs re
p r e s e nt a certain number 10; 6 bulbs represent 6; 
3 bulbs represent 3 . This means that only eleven 
numbers, from 0 to 10; can be shown. , 

2. When we apply the binary system, 1 means lighting 
up and 0 means turning off . When all the bulbs are 
lighted up, it will represent 1111111111 (binary) 
which means number 1 023 (decimal) after some calcu
lation . There are 10 24 numbers from zero to 1 023. 
Numbe r 9 in the de c ima l system can be represented as 
0000001001 in a b inary system. 

- 29 -



'd-C5cY666 o o o o 7 < decl1110.I system) 
' I / ' I 1,, 

00 00000 0 0 0 g < b1no.ry system) 

'b'b'b'<)'ooo oo o 
Silt 11;6t128+ 64+32+16-t-8 +4+2 +I= 10 2 3 <binary systel11) 

Soi you can make a cqnclJsion: 

A bit can represent 0 an~ 1, only two values in . 
Two bits can represe~t 4 values, that isJ 2• = 4 
Three bits can repreient 8 values, that is, 2 3 8 
Four bits can represent 16 values, ~hat is, 2+ = 16 

8 bits can represent 256 values, that is, 2' = 256 
16 bits can represent 65536 values, that is, 2~ = 65536 

From above example, we know that the CPU of a 650 2 has 
oniy the dat~ of 8-bits which can only show 256 different 
numbers. It means that only the numbers from 0 to 255 can 
be shown . 

The 6502 uses 16-bit addresses so that there are 65536 
digits from 0 to 65535 which can be used as addresses . 

FOR CPU6502 
.Da.i'a. 

rtclolrt>SS 

- 30 -

Orv 255 (2t) 

: 0 "-6S5"3S ( J-'') 



2 • 3 Memory 
There are two kinds of memories that are used in a 

computer : 

a . Magnetic memory : it includes magnetic tapes and 
magnetic disks. They store data using magnetic 
recording theory . 

b . Semi-conductor memory : data is stored using solid 
state characteristics (semi-conductor theory) . 

Owing to the progress that the semi-conductor techno
logy has made , the semi-conductor memories have become the 
main memory in a computer while the magnetic tape and magnetic 
disk function as the peripheral memories. ~n this section , 
only semi-conductor memory will be discussed . 

There are two kinds of semi-conductor memories: ROM 
and RAM ~ - ROM is the acronym for Read Only Memory. The 
data or commands stored in it will not disappear when power 
is removed, but ROM can not be altered (corrected) . 

RAM is the acronym for Random Access Memory . The data 
and commands in a RAM can be corrected at random, but when 
the machine is switched off , the RAM contents are lost. 

(RoM~t~ts _ ~) a.s /01115 as 
. neve.r c flange. 

~ma.ins on 

- 31 -



When the switch is on, the computer is ready for you 
to give it commands. The computer already contains a super
visory program and a translator program in ROM. Turn off 
the computer and these programs are still there . Because 
the translating program is always there you can program 
in BASIC at any time. 

~ LI ho.ve a L 
supervisory 
program to 
control ;:.ompvter: 
,~ 

I ho..ve oJso -l: retnS lo.tor-

1::-o t;mnsl ate BAS JC 

/rm9uo..3e 

· ... __/\_ 
'-

RAM is the memory that can be read and written at 
random, It is available to the user . The user puts the 
written program the input data, into the RAM. The larger 
the RAM memory , the more memory space available to the user . 

We have Used the binary number system and the smallest unit 
in the system is a bit. Because the bit unit is too small, 
we are in need of a larger unit. You may know that most CPUs 
can process 8 bits at a time, so 8 bits are combined into a 
larger unit. This unit is called a byte . 

8 bit iS 1 byte 

- 32 -



But byte is still too small to describe the capacity 
of a computer memory. We need a much larger unit. I n decimal 
number system, we use thousand as mul tiple and represent 
it by K. In a computer, we can also us e K. The K of . a 
computer ~emory does not represent 1000, but 1024. Because 
2 1 0 = 1024 and it is c l ose to 1000, we ca n use it as unit . 

1 K iS /024 m computer 

1K BYTES = 1 x I 02(/. 7!.Y7E.S = I o2'f BYT.tS 
4K BYTES= * x I o.24 BYTES = 'folj 6 B'YTfS 
SK BYT.E.S = 8 x /o14' BYT.ES = '6192. 73Yi.ES 
/t.K BYTES= 16 x 102q. BYTES= /6381./- "BYTfS 

Now we know that a computer wi t h 64K byte memor y can 
s tore 1024 x 64 = 65536 bytes. 

If you want to buy a mi crocomputer, you have to pay 
heed to the amount of ROM and RAM, and you shoul d know that 
the programs put in a ROM are either supervisory programs 
or trans l ating programs; RAM i s availib l e for yo u to ~se. 

~ 
MPF - JI.-Rot1 : / 6 k Byt.~s 

~ R4M: / 6k Bytes 
6LfK 'Bytes 

The picture below can give you a synthesis explanation: 
Memory can be d i v i ded into ROM and RAM. Those pu t in the 
ROM are superv i sory programs a n d translating programs; RAM 
is the area for you to use . Each address in ROM or RAM 
is a byte consist i ng o f 8 bits. 

- 33 -

8 b;t 

R 
0 

"' 



For general family computing , 16K RAM is suffic i ent. 
But in consideration of the needs of future e xpansion , 
a model with 64K RAM is provided . Users can choose the 
model that best suits a user's needs. 

Up to now, let's have a review: 
The main b_9ard in MPF- II consi s ts of three parts : 

• CPU: 6502 

Memory: ROM 16K bytes 
RAM 16K bytes 

Keyboard 

• CPU : 

· Memo~ : 

6502 

-[ROM 
RAM 

• key f<eyboo..rd 

- 34 -

1G K 
16 K 
6</-k 

Bytes 
Bytes: 
Bytes 



----------' 11 
3 

PRESENTING THE MPF-11 

- 35 -



- 36 -



MPF-II (Micro-Professor II) is a low-cost R65Ql 2 
based microcomputer system . Its built-in BASIC language 
makes it easy to create user programs . The color and 
sound capabilities help keep the user interested in program
ming . 

MPF-II Application Fields : 

1 . Learning computer languages such as BASIC, 
PASCAL , and FORTH. 

2 . Games 

3 . Education : such as spelling , mu s ic , Chine se, 
mathemati c s, bridge , ••• etc . 

4 . Home and business management . 

- 37 -



Figure 3-1 is a figure of a typical MPF-II computer 
system . Notice that it takes several separate pieces of 
equipment to make up a complete system . 

Monitor 

Remote Corrl:rol Box 

Soflwo.re 
Co.r-frid!Je 

SwikhinJ f'ower Svpp _!y 

Co.sseH.e 

Printer 
Figur .; 3-- l. 

Typical MPF-II system 

Your system may not look exactly like the one pictured 
in Figure 3-1 . Many system components come from a list of 
optional equipment . But there are three components that 
e v ery s y stem has in common : 

MPF-II itself , the built-in keyboard, and a television . 
Let ' s take a closer look at each of these and at some of 
the more common- pieces of optiona l equipment . We will also 
describe how to hook up the s e components to the MPF-II . 

3 • 1 MPF-11 Main Board 

(I> MPF - "JI. SYSTEM coMpo!{ENTS 

r<.:i.) HOW TD I-look up ? 

The MPF-II Main Board provides the major functions 
of the s y stem and provides interfaces to the peri pherals. 

- 38 -



The keyhoard and TV screen allow the user to com
~unicate with the MPF - II . A standard typewrite7-style . 
keyboard comes with the MPF-II . It transfers instructions 
from your fingertips into the MPF-II . 

3 • 2 Video Display 
The display screen can either be an ordinary color 

television set or a color television monitor . A black
and-white TV works fine too , but of course color displays 
will show up in black-and- white . The screen not only 
echoes everything you type so that you can visually verify 
its accuracy , it also displays the reactions of the MPF - II 
to your instructions . 

11111 III IIll I1 /0l 

- 39 -



The standard display screen has three different 
modes of operation. One is for black-and-white text charac
ters only and the other two are chiefly for graphics. I n 
the text mode, the standard screen is divided into 24 li nes 
of 40 characters each . The graphics modes deal with points 
and lines, not characters, and subdivide the screen more 
finely (graphics are discussed further in Chapter 8.) 

~ T 
24-In -!:ext rno~e, th~ t ~ 

·s divided iVI o 
$(yE'E!r1 I 

24 /;nes of ~o _y LIN£S 

cha~ 

J_ 
An MPF-II user may use a television set for his d ispl ay 

screen either because he has one or because it's a good 
excuse to get one. The televison monitor produces a shar
per picture than a TV set in the computer e nvironment, 
but you can't use it to watch Sea Hunt, Highway Patrol, 
or the 6 o'clock News. 

1 Moniter can't. be used 
to watch TV pr-ogram 

3 • 3 Power Supply 
The power supply provides the power used in MPF-I I , 

external me mory , a nd I/O expansion. 

~ 40 -



3 • 4 Cassette 
A cassette provides the auxiliary storage for saving 

information. The MPF-II can save prog ram on audio cassette 
tape and read it back again . 

Cassette 

3 • 5 Printer 

A printer with a Centronics interface may be con
nected to the MPF-II. The printer provides the capabil
ity of listing programs , memory contents and makes hard 
copy of the video display. 

pr-inter 

3 • 6 Remote Control Box 

Two Remote Control Boxes may be connected t o the 
MPF-II for game applications. 

3 • 7 Software Carbidge 

Th e ca rtri dge p r ovides the capacity for the user t o 
e nter spec i a l programs in BASIC o r ASSEMBLY language to 
the MPF-II. Such as Games, Assembler,· •••• etc . 

- 4 1 -



3 • 8 Inside the MPF-11 

The MPF-II itself houses the part of the computer 
that controls the rest of the system -- under your guid
ance, of course! Lurking behind the keyboard are the 
main MPF-II memory banks, the microprocessor, the connection 
points for all the accessory components, and much more . 
Figure 1-7 discloses the true identity of these undercover 
items. 

The inside of your MPF-II may look a bit different 
from the one in Figure 1-7 . 

inside the MJ>F -JI. 

3 • 9 Memory 
Compute~ memory size is typically measured in units 

called bytes. Each byte of memory can hold one character. 
Depending on the number of chips, your MPF-II computer 
has anywhere from 16,384 to 65,536 bytes of memory. This 
is usually stated 16K to 64K, where K represents 1,024 
bytes. The amount of memory available determines how 
much the MPF~II can do, as we will see later. 

1K B YTE.S = 102'1- BYTES 

- 42 -



The MPF- II actually has two k inds of memory . One is 
called read- only memory (ROM); its contents never c ha nge , 
even when you turn the power off . ROM contains the pro
grams which give the MPF-II its unique identity and e nable 
i t to understand and respond appropriately to the commands 
you type in at the keyboard . The other kind of memor y is 
calld read/write memory (also called random-access memor y 
or RAM) ; its contents do change . In fact , the program in 
read/write memory determines what task the MPF-II i s cur
rently executing . 

Read/write memory works only as long as the power 
remains on. As soon as you turn the MPF- II off, e very
thing disappears from read/write memory . 

ROM contents of it 

nevel'" cho.n3e 

- 43 -

RAM wol"kS OS lo~ OS 

ihe power l'emoins on 



- 44 -



HOW TO OPERATE 
THE MPF-11 

- 45 -



- 46 -



Any computer system can be a bit intimidating when 
you first sit down in ftont of it , e v en if it ' s all hoo ked 
up , as your MPF-II system must be before you go any furt her . 
This chapter ~ill make you feel more comfortable wh en using 
the MPF-II by e xplaining how to use it . 

4 • 1 Power On · 
This first thing to do , now that al l t h e 

connections hav e been made , is t o turn on the MPF-II . 
First , find the switch on the switching power suppl y , 
which is a bo x about 5 . 51 inc hes l ong , 3 . 14 inch es 
wide , and 1.49 inches tall (1 4 x 8 x 3 . 8 cm) . Turn the 
switch o n . You should h e a r a beep from ins ide the MPF
.II . The beep tells you the MPF-II i s ready. The power 
lamp on the upper right co r ner of MPF-II main board 
will be on now . 

Switchinj pawer 
SU!'PIJ 

torn orr t llis 
s witc:J\ 

The title "MPF-II" s houl d a lso a ppea r on the top 
of the s c reen along with a " >" a nd a sequare " " c a l l ed 
the " cursor " to the f ar left. 

Mi! 
if > and -o.ppeo..r 
its our t.vm ! 

- 47 -



4 • 2 Study the Keyboard 
If you are familiar with standard typewriters, you 

will find a few differences between the MPF-II keyboard 
and a typewriter keyboard . First, there are no lower 
case letters. You can get only capital letters on the 
MPF-II . Thi-s is all you need for programming in MPF-II 
BASIC , 

! " # $ % & f C ) * RESET 

DDREJm;tmlfJIEIDIEI• 
. - :=: .... mm nm 110 m omm 

BELL A ((§; ; 

aommmmoaoe 
< ,. / 

oaamomGJmao 
'mm mm - maon-=• 

SHIFT-Key 

Using the diagram , locate the SHIFT keys on the 
keyboard. Tne reason the keyboard has the SHIFT keys 
is to allow for nearly twice as many characters with 
the same number of . keys . A keyboard with a separate 
key for each character would be very large , making it 
hard to find any desired key . 

! " # $ % & f C ) * RESET 

DDREJm;tmlfJIEIDIEI• 
- ~ + mmnmoo m omm 

BELL A ((§; ; 

aommmmoaoe 
< ,. / 

oaamomGJmao 
·mm mm - maonm=• 

If you only press a key which has two symbols on 
it , the lower symbol will appear on the screen. If 
you press the same key while also holding down the SHIFT 
keys, the upper symbol will appear on the screen. You 
will find that the SHIFTed comma and the SHIFTed period 
are "<" and ">" respectively. You will also find other 
symbols on the MPF-II keyboard that are not on a standard 
typewriter . Feel free to try operating any of these keys . 

- 48 -



If there is no upper symbol on a key, then holding 
down the SHIFT while the key is pressed has no effect, 
except the G. 

The G key has the word "B ELL " above the "G". But 
SIFT G does not put a bell on the screen , it just puts 
a "G" there . The meaning of the word "BELL" on the G 
key will be explained later . 

An important difference between usin3 ~PF-II key
board and most typewriter s is that you cr.o nnot ernp l oy a 
lower case "L" for the number " l" . Of course, there is 
no lower case "L" on the MPF-II, but some typist s will 
hav e to break the habit of reachinJ for the l etter "L" 
when th ey are the number "l". 

- 49 -



When the Hindu mathematicians invented the open 
circle for the numeral zero, they didn't use the Roman 
alphabet. So they chose a symbol that, while not con
flicting with their alphabet, looks just like our letter 
"0". The computer (and any straight-thinging individual) 
will want to keep zeros and oh's distinct. The usual method 
for doing this, on the MPF-II and many other computers, 
is to put a slash through the zero. Now yQu can tell them 
apart. The keyboard and the TV display both make the dis
tinction clear . Try them. 

The Reset Key J 

& and 0 o.re 
not t.he srune 

Reset is a very special key on the MPF-II keyboard. 
When Reset is pressed, everything stops. No matter what 
the MPF-II is doing when Reset is pressed, control of 
the MPF-II returns to the keyboard. Reset will cause 
MPF-II prompt to appear. 

f o # $ % 8. f C ) * RESET oomegmar;iom• 
- ::: + mmamaomumm 

0Ell " f<i, ; oommmmo rrt oe 
.. 

< > / oaamrnmmmau 
1 Em111mim - CIDDDI::• 

- 50 -



The Return Key 

As you type along , the characters you type show up 
on the display screen . In addition , the MPF-II saves 
everything you type in its memory but does not try to 
interpret what you type as an instruction until you press 
the Return key . 

! I/ # $ % & f C ) * RESET 
00 ~nr:tm&Dom• . - = + mmomaomoem 

BELL A (© ; oummmm 01308 
< > / oaamrnmmmau 

' mm rmD - m D o n E=:•j 

Even if the 
MPF-Jl show vp 
011d saves, it 

·does not 
interpret unt;/ 

you pr-ess the 

RE.TURN k:J 

The Return key signals the MPF-II that you have 
finished the line you have been typing . When you press 
Return , the MPF-II erases an y stray characters that might 
be to the right of the cursor . Then it examines every
thing on the line that you just typed in . If those charac
ters make up an instruction that the MPF-II can understand , 
i t will take the appropriate action . Otherwise you will 
hear a beep and see the message . 

I do not. under-stllnd 

w~~ 
The MPF-II is letting you know that it ~id not 

und e rstand what you meant by the characters you typed 
before you pre s sed Return . You must retype the . line 
{without the error that trippd up the MPF-II) . 

[ The Control Key 

The control key is always used together with another 
k e y in the same manner as the SHIFT key . You hold the 
Control key down while y ou press and release another ~ey . 

- 51 -



The ~ and ~ Keys 

co.nee I 
"';yped 

J;ne be;n.9 
Current!.J 

The two arrow keys are called left-arrow and right
arrow. You will find the ~ and ~keys very useful 
because they allow you to correct any typing mistakes 
you might make, and allow you to change information you 
have already entered. The -4---key works like the back
space key on a typewriter. 

Each time you press it, the character under the 
cursor is erased from the MPF-II memory and the cursor 
backs up on space. Try it right now. Type in any 
word (try PRINT). Press the -<--key several times and 
watch the cursor back up along the word you just typed 
in . Notice that the characters you back over do not 
disappear from the display screen. You can rest assured 
the MFP-II has put them out of its memory . Try backing 
the c ur s or all the way to the left edge of the screen. 
When you get to the edge and press the~key again, 
the cursor jumps down one line and a new prompt character 
appears. 

- 52 -



As you might suspect, the - key moves the cursor 
to the right along the display line. As the cusor moves 
forward along the line, every character it passes over 
gets copied into the MPF-II memory exactly as though 
you had pressed the key to generate that character . To 
see the~key in action , type in another word and back 
the cursor up a few spaces using the---..key . Now press 
the key a few times. Each time you press this key, 
the character the cursor passes over gets put back 
into the MPF-II memory exactly the same as if you had 
r etyped it. 

The Other Keys 

The other keys on the MPF-II keyboard are no doubt 
familiar t o you . These are the letters of the alphabet , 
the numbers zero through nine, and a standard set of 
symbols. 

Many typists do not distinguish between the number 
zero and the letter 0 or the number 1 and the lower-case 
lette 1. The MPF-II can ' t cope with this ambiguity . "/, 
must be very careful to type a numeral when you mea~ ~ 
numeral. To help you remember , the MPF-II keyboard sh< 
the zero with a slash thro ug h it, and zeros are display, 
on the screen with that slash, too. 

be careful! 

- 53 -



4 • 3 The Cassette Recorder 
If your MPF-II system includes a cassette recorder, 

you can load programs from cassette tapes . Some prog ram 
tapes come with the MPF-II, you can buy others, and you 
can make your own as well. 

Handling Cassettes 

You should exercise care with the cassettes them
selves. They are very easily damaged, and not easily 
replaced. 

Be very careful not t o touch the surface of the 
tape in the cassette. No matter how clean your skin is , 
natural oils will contaminate the tape . .Make sure yo u 
put tapes back in their cases when they are not being 
used . Never store them in hot areas, direct sunlight, or 
near magnetic fields (like those found near electric 
motors). 

Label Every Cassette 

You should label every cassette with information 
about the progra ms it contains. This avoids t he headache 
of search ing throug h cassette after cassette for the pro
gram you need. 

Write-Protecting Cassettes 

Each cassette has two notches in the rear edge. 
Most cassette recorders can sense the notches and wi ll 
not record when they are present. Blank cassettes hava 
tabs cover ing the notches s o the t ape may be reco rded 
over. You can protec t important programs by remo ving 
the correct tab and expos ing the notc h. 

To determine which tab is co rrect, hold the cassette 
so that the exposed tape is awa y from you an d the side 
you wish to protect is facing up. Remove the t ab on 
the right side to prevent reco rding over the side facing 
up (see Figu re 2-2). Covering a notch with adhesi v e tape 
will allow recording ove r a cassette that has been 
protected. 

wnte pr-ot'e~+ 

nin-c..r-.e~ 

- 54 -



Setting the Tape Recorder 

(If you are not using a cassette recorder , skip 
this section . ) Now press the RETURN key . The prompt 

' and the cursor that show on the screen's left edge to 
let you know that this is your turn . Now you are ready 
to set the volume control on the tape recorder. 

When you play a tape recorder , it is usually with 
the intent of making sounds that you can hear . If it is 
too soft , you miss some of the words or music . If it 
is too loud , it is annoying . 

When you play the tape recorder into the MPF-II, 
it is with the intent of putting the tape ' s informatio 
into the computer . If the volume setting is too soft , 
the MPF-II will miss some of the information , and it 
will complain by giving an error message . If the volume 
setting is too loud , the MPF- II will also complain . 

To find the right volume setting , you will use a 
trial-and-error method . You will play a MPF- II tape 
softly to the computer and see if the information got 
in OK . If it doesn ' t work , you will try the tape again , 
a little louder this time . If that doesn ' t work , you 
will make it a little launder still . Eventually the 
volume will be just right for the MPF-II , and it will 
say so with a beep . 

- 55 -



4 • 4 Loading 
The MPF-II can be loaded with two types of cas

sette tapes: 1) tapes of MPF-II format, and 2) some 
tapes compatible to Apple II format. (Note that not 
all tapes of Apple II format can be loaded into the 
MPF-II . For those of you possesses Apple II cassettes , 
you may use the try-and-error method to find out those 
tapes of Apple II format which can be loaded into the 
MPF-II.) 

Tha MPF-II receives filenam~s of from zero to six 
alphanumeric characters . But when your cassette only 
contains one file , it is not necessarily to enter the 
filename. 

Two commands--"LOADT" and "LOADA"--may be u~ed to 
load your program data into the MPF-II . LOADT is used 
when loading cassettes of MPF-II format into your MPF
II , while LOADA is entered when loading cassettes of 
Apple II format into the Micro-Professor II . 

One advantage of using the LOADT command when 
loading a program into the MPF-II is that the video 
display will show the number of file records and a down 
counter used to count whether a program has been read 
completely. If the program is read without error , the 
display will show OK . Otherwise , the display will show 
error messages . 

Now try the following steps to 
diagnosis cassette "Micro-Nurse " into 
each position of the volume control , 
to do the following : 

1 . Rewind the tape to the beginning . 

load the self
your MPF-II . For 
you are suggested 

2 . Type: L O A D T "filename " <----
3 . Pre~s the Play button on your tape recorder . 

After you have finished the three steps, the 
cursor will disappear . It may take up to 15 seconds 
before the video display shows 

NURSE 1 14 40 WAIT 

Filename (0 to 6 alphanumeric 
characters) 
The number of file records 
The down counter that counts down 
from 40 through 00 . 
A reminder 

If the video display shows 

- 56 -



NURSE! 14 14 WAIT OK 
> 

Then your program has been read by the MPF-II without 
error. If the display shows 

? SYNTAX ERROR 

Then, it is telling you that you have typed the LOADT 
command incorrectly. If the display shows 

ERROR 

Then, your MPF-II has been loaded with incorrect data. 

In summary, the following possibilities may happen: 

a. The message? SYNTAX ERROR appears. 
b, Nothing at all happens. 
c. The message ERR or ERROR appears (with or without a 

beep). 
d. The computer goes "beep" and nothing appears. 

In case a, do not reset the volume control, but go 
back to step 1 where you rewind the tape. 

? SYNTAX ER.R.D'R. 

In cases b and c, make sure you waited for 15 seconds 
before giving up. If there is no prompt characte or cursor, 
and the MPF-II does not respond to its keyboard, press 
RESET, set the volume control a bit higher and go back to 
step 1. Once in a great while the LOADT command may not 
work properly, and the cursor will appear on the screen 
immediately without waiting for the tape to be LOADed. 
If this happens just turn your MPF-II off and then on again 
with the power switch on the awi tching power supply, and 
then try LOADing the tap~ again. 

The use of the LOADA command is very similar to 
that of the LOADT command. After you have entered the 
LOADA command, filename, and pressed the PLAY button 
on your tape recorder, the three possibilities men
tioned previously may occur. If any one of those 
phenomenon happens, you can solve the problem following 
the procedures mentioned ~hove. 

- 57 -



If the MPF-II goes "beep" and the display shows 
the prompt character ">" and square curs6r, then you 
are on the right track . When you hear the beep, wait 
another fifteen seconds. Either you will get an error 
message (case c), or the prompt character (>) and the 
blinking cursor will reappear. If they do reappear, 
stop and rewind the tape. Mark the position of the 
recoder's v'Olumn control, so that you· can use this 
setting each time you LOAD a tape . in the future. Then 
type 

The Usual Procedure for Loading Tapes 
(once the recorder's volume control has been set 
correctly) 

1 . Rewind the tape. 
2. Start the tape playing. 
3. Type LOADT . 

After you press RETURN the cursor will disappear . 
Nothing happens from 5 to 20 seconds, and then the MPF-II 
beeps. This means that the tape's information has 
started to go into the computer. After some more time 
(depending on how much information was on the tape, but 
usually less than a few minutes) the MPF-II beeps again 
and the prompt character and the cursor reappear. 

4. Stop the tape recorder and rewind the tape. The infor
mation has been transferred, and you . are finished with 
the tape recorder for the time being. 

5. Type RUN and press RETURN, and your program will begin 
to execute. 

1-. Rewind the to.re 

2. Sta.rt tne tare r10f"j 

3.Type LOADT 
q. Stop and rewind 

.s. Type RUN and p~ss all 

- 58 ;,,. 



Computerniks use many different words to describe 
the process of taking information from a tape and putting 
the information into the computer. The computer is said 
to "read" (pronounced "read") the tape. The information 
on the tape is said to be "entered" or "read" (pronounced 
"red") into the computer. The act of reading a tape is 
also called " loading " a tape into the computer and the 
information on the tape is said to be " loaded into" the 
computer. All these expressions are ways of saying the 
same thing . 

A Helpful Hint 

What is it that the computer finds so interesting 
about these tapes? Listen to one of them. It's not music 
to your ears. Yet you can recognize some of the sounds 
the computer listens for . The information starts with a 
steady tone. Th e tone is at 1000 cycles per second. This 
pitch is just below the C two octaves above middle c. After 
the tone comes a burst of sound rather reminiscent of a 
rainstorm. 

When you are used to the sound of a good tape, you 
can quickly check a tape by ear to see if it is a computer 
tape or not. If you can tell what the tape contains by 
listening to it, you are a mutant, and wi ll go far in the 
computer world . 

~· 

- 59 -



4 • 5 A First Look at the Print Statement 
When you power on the MPF-II, the prompt character 

(>), followed by the blinking cursor, will appear at the 
left edge of the screen each time you press RETURN. 

Now that you have the prompt character (>) and the 
blinking cursor on t he sc r een , you are ready to begin 
using the MPF-II BASIC language. 

Type 

PRINT "HELLO" 

and the computer will print the word 

HELLO 

on the next line . If it d i dn ' t, ask yourself this ques
tion: "Did I forget the RETURN?" If you misspell the 
word "PRINT", you will get this error message: 

?SYNTAX ERROR 

C Augn! 
r:n misspelled 

"l'RI/l/T'' 

If you forget either the first quote or both quotes, 
the computer will print a zero (you can . tell it's a zero 
by the slash) : 

If the final quote is the last character before the 
RETURN, you don't have to type it: the word "HELLO" will 
be printed with or without it . It ' s a good idea to put 
the end quote in anyway , though. The habit of putting 
in the final quote will become important later. This 
manual will assume that you use the final quote. 

- 60 -



,, 
,, 

The statement PRINT "H ELLO" is an instruction to 
the computer telling it to display on the screen all 
the characters between the quotes, in this case a word 
of qreeting . You can use the PRINT statement to tell 
the computer to display any message you wish. However, -
if you type much beyond 240 characters, the computer 
will start to beep , then it will give yo u a backward 
slash and let you start over again. 

4 • 6 Abbreviiated Print Statement 

MPF- II BASIC allows you to abbreviate the PRINT 
statement with a question ma rk (?). Here are some 
e xamples you can try : 

For- exafr'ple 

? ~* 2 an4 

? SGR<2) an~ PP.INT SQ{2(z.) 15 me Same. 

~·~ 
? is PRIN:_; 

- 61 -





THE MPF-11 
AS A CALCULATOR 

- 63 -





This chapter teaches you how to use your MPF-I I as 
a calculator·. 

5 • 1 Immediate Mode 
When you first put the MPF- II in BASIC , it is in 

immediate mode, also called direct or calculator mode . 
In this mode , the computer r esponds immediately to any 
instructions you issue it . Try typing in this example : 

PRINT "385" 

The computer obediently prints the number 385 on the next 
line , as expected . But type 

Immedio.te Direct - Cetlcv la-!:or 

PRINT 385 

and the computer again prints the number, without error 
message about the missing quotation marks. MPF-II will 
let you PRINT any number at all without error in quotes . 

Without further study , the MPF-II ca~ be used as a 
desk calculator . 

5 • 2 Addition and Subtraction 

Try this on your MPF-II 

P"lINT 3 + 5 

- 65 -



The answer, 8, appears on the next line. The MPF-II 
can do six different elementary arithmetic operations: 

1. ADDITION. Indicated by the usual plus sign (+). 
2. SUBTRACTION. Uses the conventional minus sign (-). 

Try again 

PRINT 8 - 3 
PRINT 38 + 56 
PRINT 79 + 63 - 54 

<-tJ APDITLON 
RETURN (-;) SvBTRACTION 
RETURN 
RETURN 

5 • 3 Multiplication and Division 

3. MULTIPLICATI9N. Many people use an "X" to re
present multiplication •. This could be confused with the 
letter "X" . Some people use a dot (.), but this could be 
confused with a period or a decimal point. So the MPF-II 
uses an asterisk (*). To find 7 times 8 (in case you don't 
remember the answer), just type 

'INT 7 * 8 

and have your memory jogg~d. 

4. DIVISION. As is customary, use a slash (/). To 
divide 63 by 7, type 

PRINT 63/7 

i the correct answer will appear. 

Try dividing 3 by 2. The answer is one and one half. 
The MPF-II gives the answer to you in the decimal form: 1.5. 

Multiplic~tion < *) 
rite o.lpho.bet < x) 

l>iviSiol'\ <I> 

- 66 -



One thing we should point out here is that you can 
do more than ohe arithmetic operation in the same instruc
tion . For example , it is legal to say 

PRINT 3 * 5 * 9 * 4 

The exact rules governing such usage will be given 
later , but you can experiment with it now if you wish. 

5 • 4 Expo1'1entation 

mult;p/;ca.t.1ori 

then add;tion 
and 

and Substrri.ct1on_ 

5. EXPONETIATION . It is often handy to multiply a 
number by itself a given number of times . Instead of 
bothering to write 

PRINT 4 * 4 * 4 * 4 * 4 

you can substitute the shorthand ,,,,---~ 

dAhi S12 and 5l iS~ PRINT 4 'f' 5 

~us~j 
~t2:: .52 312 = J"• 

lsHIFT I 00 The upward pointing arrow is typed : 
There is nothing special about exponentiation . 

is just an abbreviation for repeated multiplication! 
non computer-notation , this would be written with a 
script five , like this: 45 

Fir-st A 

and them * a.n d / 

finally + and -

- 67 -

It 
In 

super-



5 • 5 Math Function 
The MPF-II has many math functions . Here is just a 

brief description of the "SQR" function . 

Try this on your MPF-II : 

PRINT SQR (2) 

The answer , 1.41424 , appears on the next line . 

SQR computes a positive square root. This is a 
special implementation that executes more quickly than 

,f\·5 • 

5 • 6 MPF-ll's Fonnat for Numbers 

Type 

PRINT 45.340 

Your computer responded with 

45 . 34 

and didn't PRINT the trail{ng zero . The MPF-II does not 
PRINT leading or trailing zeros , that is , zeros that are 
at the beginning of a number and to the left of the decimal , 
or zeros that are at the end of a number and to the right 
of the decimal. 

- 68 -

It doesn't print 

the tra.i I ing ZERO 



Very, very small numbers {between about .000000000 
00000000000000000000000003 and -.0000000000000000000000 
000000000003) will be converted to zero by th~ MPF-II. 
(We hope that was the right number of zeros.) An easier 
way to write these numbers is 3 * 10t- 39 and -3 * 10 t 
- 39. Don't take our word for it. Try it yourself . 

Very, Ve~ SmCl.11 numbers 

will be converted 
;------::.:::2:==========~ 

Now type 

PRINT 985788.6898 

Surprise! The last two digits are lost , and the 
number left behind is the closest approximation the compu
ter can think of . This process is called "rounding" . Try 
typing 

PRINT 788.6898 

Your computer did not round the number, but PRINTed 
it just the way you typed it. Madness you say? Ah, but 
there is a method to this seeming madness . Numbers are 
rounded only if they have more than nine digits. Any number 
that has fewer than ten digits will not be rounded. The 
computer does the best it can, but it only has nine digits 
to work with. 

If you type a PRINT statement with a long number like 

1234567890 

the MPF-II responds with 

1. 23456789E+09 

Scientific rt ota.ti o rt 

"E ,, 

- 69 -



The numbers 1234567890 and 1.23456789+09 have the 
same value. Really, the number PRINTed by your computer 
is in "scientific notation". If you need numbers like this 
you probably know how to read them. 

Try some more numbers. How many digits can a numbei 
without a decimal point have before the MPF-II changes it 
to scientific notation? If scientific notation seems com
plicated, don't worry. You probably won't be wanting to 
use number that require it for some time yet. Remember 
that any number will be PRINTed just the way you type 
it if the number is surrounded by quotes. However, the 
MPF-II can't use numbers in quotes for some time yet • .. 

- 70 -



ELEMENTARY 
PROGRAMMING 

- 71 -





This chapter teaches you how to start writing your 
own BASIC programs on the MPF-II. 

BASIC is a programming l•nguage . Like any pro
gramming language, it consists of a set of statements 
which you combine to create programs . A program defi~c~ 
the task you want the computer to perform . 

You on_!y need to l<now 

'\) LET. INPUT . GOTO 
PR.If.IT . l{E W . UST. R.UN. 

then you cart write your . 
pro9ra.rrt 

6 • 1 Statements 
A program consists of one or more statements which 

provide the MPF- II with an e xact and complete definition 
of the task which it is to perform . If the task is short 
and simple , the program can be sho r t and simple as well. 
The immediate mod~ instructions we have e xper i mented with 
so far are each small, simple programs . Each one has 
just one statement - one instruction to the MPF-II. 
These are trivial cases . Most programs have at least 
10 statements , and some have move than 1000 , or even 
more statements . Consider the following statements : 

PRINT 
MICRO 
PRINT 
MICRO 
PRINT 
MPF-II 
PRINT 
HELLO 

"M ICRO" 

" MICRO PROCESSOR" 
PROCESSOR 
"MPF-II " 

" HELLO MPF-II" 
MPF-II 

Each of these immediate mode programs prints a 
line of text on the display screen . Each program 
has exactly one statement and exactly one line . 

- 73 -



MPF-II allows you to put more than one state
ment on a line . You c a n se parate multiple stat~ments 
on the same lin e with a c olon ( : ) . Compare this 
immediate mode pr og ram with the example above : 

PRINT " MICRO ": PRINT " MICRO PROCESSOR" 
PRINT " MPF - II " 

MICRO 
MICRO PROCESSOR 
MPF-II 

This three - statement , one-line program prints 
the same three lines of text as the p r evious three 
one- statement programs . 

I; // 

:P42I /\I T MIC/20 ' • ' 
: . : 
' ' 

S t -., 0 multiple epo.ro. '"J 

stotements with 

Ct. ca/ont '' : " 

There is no specific limit to the number of 
statements on one MPF-II BASIC program line . 
Remember that a line cannot be longer than 255 
characters , though . If you are typing a long line , 
the computer will start beeping when you type the 
248th character to warn you ~ ~~~, 

(Its 2q.ath charad:.er; 
v--~ 

are approaching the limit . If you exceed the limit , 
it automatically delete the line , just as if you had 
typed CTRL-X , and you must start over . It does not 
perform any of the instructions you typed on the too 
long line . So there is a limit as to how much you 
can do with a one-line immediate mode program . 

- 74 -



6 • 2 Programmed Mode 

The programming we have done so far is educa
tional and, hopefully, interesting, but there is 
only so much you can do in immediate mode. 

Another problem with immediate mode programs 
is that you have to retype the program each time 
you want to use it. There are some advanced 
editing techniques which we will discuss shortly 
that wil l allow you to reuse the program as long 
as it still appears on the display screen, but 
this is still a limitation. 

What you need is a way to enter several program 
lines and to hold off using those lines. That way 
you can write programs to do tasks that are too complex 
for one-line programs. 

There is a way to get around the problems of immedi
ate mode~ and that is to write programs in programmed mode, 
also called deferred or indirect mode. In programmed mode, 
the computer accepts and stores the program in its memory, 
but does not perform any of the operations spec ified by 
the program until you tell it to do so. You can enter as 
many program lines as you want. Then, when you enter the 
appropriate command, the computer performs the operations 
specified by the programmed mode program. · 

We say the computer executes or runs a program wpen 
it performs the operations whi ch the program specifies. 

In immediate mode a program i s executed as soon as 
you press the RETURN key. 

- 75 -



.IiVl rn e d i21-te. 

rr.oc!e··· 

~~-:\ 
J' No Line number it e><ecutes 

\:> immed;o.te.Jy as soon as 
you press RETU'R..N ke_; 

. ·~ 

In programmed mode you must issue the RUN command 
to execute a program . Each time you do so , the program 
runs all over again . 

To tell the computer to store a statement , just 
type a number before typing the statement . For e xample , 
if you type 

100 PRINT 3 + 4 

nothing seems to happen , when you press RETURN . The 
MPF-II has stored the statement . 

Immed1'a.te 
I/ 

I>,-rect 
II 

Co./cu /o..ior 

- 76 -



10Pf2fNT-3x5> 

Line numbers make programmed mode possible . A line 
number is simply a one, two , three , four , or five-digit 
number entered at the beginning of a program line . The 
line number is the only difference between a programmed 
mode program line and an immediate mode program line . 
There are some instructions that can be used only in 
immediate mode and others that can be used only in 
programmed mode ; we will discuss them later . 

Try this sample programmed mode program: 

/O FRfNT 21'3 

.-0 H<INT 2-*:3 
~o ~Top 

Each line number must be unique . No two program 
lines can have the same number . If you use the same line 
number more than once, the computer only remembers the 
last program line you used it with. To see how this 
works, type in these program lines : 

- 77 -

Remember 
onjy the LAST Lme 

yov used it with 



Line numbers determine the sequence of program 
lines in a BASIC program . The first line must have 
the smallest line number, while the last line must 
have the largest line number. Even if you type in 
the lines out of order, the MPF-II will internally 
rearrange them in the proper sequence by line number . 
Consider this program , with line numbers out of order : 

>30 PRINT "cur'' ' ~~;iy >I 0 PR"INT "FISH''411t ~o.rrnng~ 

>20 PRINT II OR..'' .,, 
>40 PRINT "BAI"TIJ 
>so END 

>RUN 
FISH 
oR 
CUT 
BAIT 

To prove· that the MPF-II does not forget pro-
grammed mode in programs, run the program again. 

It is a simple matter to add program lines to a 
program that is currently in the computer 's memory. 
You can add a line to the beginning, the end , or 
anywhere in the middle of a program by typing the 
line with a line number that will position it where 
you want it. 

- 78 -



Suppose you wanted to add a line to the begin
ning of the last example program. As long as you 
have not typed the command NEW, the program will 
still be in the MPF-II's memory. Since the lowest 
line number currently in that program is 10 , any 
program line you type in now with a line number 
less than 10 will be placed at the beginning of the 
program . Try this : 

>5 PRINT "EITHER" 
>RUN 
EITHER 
FISH 
OR 
CUT 
BAIT 

It 's a good thing the original program started 
with line 10 rather than line 01. It's always a 
good practice when assigning line numbers to star t 
your program wi th a fairly high line number and leave 
plenty of room between line numbers so you can add 
program lines later on. 

You ca? put more than one statement on a single 
program line . The first statement follows the line 
number. The second statement follows the first, with 
a colon (:) in between . Colons separate the statements 
on a multiple-statement line. 

Multiple-statement program lines are allowed in 
MPF-II BASIC in both programm~d and immediate modes. 
In both cases, the line length limit is 255 characters , 
as we described earlier. 

- 79 -



6 • 4 New, List, End and Home 

Clearing Out Old Programs 

Because the MPF-II stores programmed mode pro
grams in its memory , you must specifically instruct 
it to erase ah old . program before you type in a new 
program . Do this by ~yping the command NEW . If you 
forget to type NEW , your new program will be mixed 
in with your old program . 

Listing Program Lines . 

You can see what program lines the comput e r has 
stored in its memory ~t any time by typing the command 
L~ST . Try i~ right now. If you have no t tyµe d NEW, 
since you tried the last example , you should see the 
last program lines displayed on the screen: .,.. 

--.--- - -----------

The end of an immediate mode program is obvious. 
Not so with programmed mode , as we shall see. The END 

•tetement tell• ~~;ing yo"' p<og<em . 

- 80 -



Example 

To make sure that the computer ' s memory is cleared 
of any previous programs , type 

NEW 

Like almost everything else you have seen , NEW has 
to be followed by a RETURN . To tell the computer to 
store a statement, just type a number before typing 
the statement . For example , if you type 

UJel PRINT 3 + 4 

nothing seems to happen, even if you press RETURN . The 
MPF-II has stored the statement . To see that it has 
stored the statement , you type the instruction 

LIST 

Try it. Unless you mistyped someth ing (and probabl y 
got a 

?SYNTAX ERROR 

for your effor t) , 

100 PRINT 3 + 4 

appears on the screen . Now t ype the statement 

RUN 

and the answer 

7 

appears on the screen . 

Typing RUN caused yo u r stored statement to be 
executed , but the computer has not forgotten the state
ment . You c an RUN the same statement as many times as 
you like . Try i t. 

What's more, the computer does not for get the s tored 
statement when you clear the screen. Here's a new way to 
clear the screen : 

clear the scree.; 
and pvt c.urso r 

at i.op 

- 81 -



HOME 

The HOME command clears the screen and puts cursor 
at top . 

The HOME command can be used in deferred execution 
as well as immediate execution . To try this out, type 

100 HOME 

Now when you type 

RUN 

the computer faithfully executes the sto r ed statement 
and clears the screen . Type 

NEW 

and then 

LIST 

and see what happens . Typing NEW has caused the 
stored statement to be lost permanently . Type 

RUN 

and nothing appears on y our screen . That is because your 
old statement has been erased by the NEW command. 

It is possible to store many statements by giving 
each of t h e~ a different number . Try typing this : 

1 PRINT "HE LLO " 
2 PRI N7 4ts 
3 PRI NT 6 7/1 2 

Nothing '"uch has happened so far. But now type 

RUN 

and watc h the ans wers appear . 

- 82 -



6 • 5 More Basic Statements 

This section introduces more of the frequently 
used statements when programming your MPF-II. From 
here on , we can begin to write interesting programs 
for home , school , and personal use . 

Now you will learn what the following statements 
and commands mean , how they work, and how to use them . 

LET, INPUT1 <:ro To, >AVET 

C..ONTRoL C / "12E~ET~ <:oN'T,PEI.., 
Rc/'1 ~ c:oNrRoL ?(. 

F0/2····NcXT 

We wi ll emphasize having fun while learning things 
that can be used for both fun and serious use of the 
computer . 

Now, we are ready to enter a program in the memory 
of the MPF-II, our program causes the MPF-II to PUT 
John ' s name on every line of the screen . Here is the 
program. 

10 HOMc 

20 Pf<INT''J"oHf\/' 

~o qo "10 10 

The above program consists of three statements. 

1. The statement 

10 HOHE 

tells the computer to clear the screen . 

- 83 -



2. The statement 

2f/J PRINT "JOHN" 

tells the computer to print the word JOHN on the 
screen. 

3. The statement: 

3f/J GOTO 2f/J 

tells the computer to go to line 2f/J and continue . 

When we type RUN and press RETURN , the computer 
begins the program , beginning with the smallest line 
number . The computer executes line lflJ, then 2flJ , then 
line 3flJ , then line 20 , then line 3f/J , and so on -- until 
you press the CONTROL C, which stops the computer . 

Here is a slightly different program. Draw arrows 
to show the order in which things are done . 

RU~ 

JO HOHe 
~o Pf<J>/T 'J"o H).}' 

30 GiO to /0 

This program causes JOHN's name to blink rapidly 
in the upper left corner of the TV screen . Why? 
Because HOME clears the screen and also moves the cursor 
to its "HOME" position in the upper left corner of the 
screen. Difficult to explain, but easy to see when you 
RUN this Plogram on your MPF-II! 

- 84 -



Now, we want to change line 20; but only line 20, 
we do not type NEW. Instead, we do this: 

We type: 20 PRINT "JOHtf' i .._( Se111icolon al -the end) 

We type: LIST 
It prints: 10 HDHE OLD Lme io 

20 PRlNT '''JOHN'"; f{E.W Lme 20 

30 GO TO 20 OLD .1...me ~o 

Our new line 20, with a semicolon on the right 
end, replaces the old line 20 which did not-have a 
semicolon. 

What does the semicolon do? As usual with 
computers, the best way to find out is to experiment 
-- try it and see what happens. 

SEMICOLON(;) 

So, type RUN and press the RETURN k~.-

- 85 -



6 • 6 Data 
The main business of computer programs is to input, 

manipulate, and output data . So the•way a programming 
language handles data, whether it be numbers or text, is 
very important indeed. We will now describe the types 
of data you may encounter in an MPF-II BASIC program . 

Strings 

A string is any character or sequence of characters 
enclosed in quotation marks . We have already used strings 
with the PRINT statement as messages to be displayed on 
the screen. Here are some more examples of strings : 

A 

"BYTE , BIT'' 

., MPF-IL BASIC'' 

'' R6So2 cpu'' 
''MIC.RO - PROC.E.SSOR JI.. 11 

11 BUIL T IN A4SIC. L.4N'q:UA~E 11 

String iS enc./osed irr <uuoto.tion mo.r-l<s 

- 86 -



With just a few exceptions, a string can contain 
any character you can produce at the keyboard using 
the normal alphabetic and numeric keys, with or with
out the CONTROL or SHIFT keys. The exceptions are 
<~, ~>, RETURN and CONTROL-X. These exceptions 
either move the cursor around or end the line you're 
working on, or both. 

Strings can be any length from 0 to 255 characters. 
A string with no characters in it is called the null 
string. 

We will describe "string" £urther in chapter 7. 

Numbers 

There are 
in the MPF-II: 
any fractional 
floating point 
parts . 

0.. sb-mg cart 

canto.in a~ cho.rG1.der
except - , .,... , RETURN, 
o.nd CONTROL-X 

two kinds of numbers that can be stored 
integers, which are numbers without 

part, and real numbers (also called 
numbers), which can have fractional 

You must express all numbers without commas. For 
example, you must use 32000, not 32,000. 

- 87 -



.1. Integers 

An integer'is a . number that has no fractional 
portion or decimal point. The number can be negative 
(-) or positive'(+). An unsigned number is assumed 
to be positive. ·· Integer numbers must have values in 
the range -32767 to 32767. The following are examples 
of integers: 

2 .. Rea.I Nun;ibe.rs 

0 
I 

44 
~26QQ 
-I~ 

A real number can be a whole number, a whole number 
with a decimal fraction , or just a decimal fraction . 
The number can be negative (-) or positive (+). If . 
the number has no sign it is assumed to be positive: 

The sm~llest (most ne9ative) t"ea/ nutnbeYs iS 

-1 o o ooooooooooocxxxxx:x:;>00C:GOoooocoooooo 

and the lo.r_qest IS : 

I 00000000000000 ocoooooooo 00 0000 OOCXX:;o 

Here are some examples of real numbers: 

- 88 -



5 -1; 
b;ooo 

16 / 
0 

0.5" 
0.0165432 

-0.0000009 
1,6 

24.00;5 
- 64,2 

When the value of any fractional number gets closer 
to zero than about 00000000000000000000000000000000003, 
it will be converted to zero . 

3. Scientific Notation 

Very large and very small real numbers are 
represented in MPF-II using scientific notation . Any 
number that has more than nine digits in front of the 
decimal point will be expressed in scientifi.,c notation. 
Any fractional number closer to zero thani +.01 will be 
expressed in scientific notation. · -

A number in scientific notation has the form: 

number E ± ee 

where: number is an integer, fraction, or combination, 
as illustrated above. The number portion contains the 
number's significant digits; it is called the coefficient. 
If no decimal point appears, it is assumed to be to the 
right of the coefficient . 

E is always the letter B. It stands for the word 
exponent. 

± is an optional plus sign or minus sign. 

ee is a one-digit or two-dig it exponent. The exponent 
specifies the magnitude of the number, that is, the 
number of places to the right {positive exponent) 
or to the left (negative exponent) that the decimal 
point must be moved to give the true decimal point 
location. 

- 89 -



He r e a r e some e xamples of scientific notat i on : 

Standard N'otAtion 
10000000000 

•00000000 o/ 
200 

·Scientific. Noto.tiotl. 
IE. t O'f 
/E - O'f 
2E t D2 

- I . 2 3 'l-.S G 7S 'I -/.23'~5678'1+ oq 
-o. 0 0 000/234.S678q - /. 234567g9 - 06 

As you can see , scient i fic notation i s a convenient 
wa y of e x p ressi~ v e ry large and very small numbers . The 
ma xi mum a nd min i mum v a l ues fo r r eal numbers , which we 
just e xp r essed with lots of zeros , can also be e x p r essed 
a s lE + 38 , r especti vely (much more compact) . Similarly , 
the closest a numbe r can get t o ze r o i s 3E- 38 . 

4. Roundoff 

mo.ximum - IE:. +38 
rrtif'lin1Ul1l ~ -/Et3i 

Closest to zero -----+ 3E -38 

We ment i oned earl i er in this c hapter that real 
numbe r s can ha v e as many as n f ne digits of precision . 
Fo r a n umber greate r than 1 o r less than - 1 , this 
me a ns o n l y the lef t most n i ne d i gits can be nonze r o . 
The MPF-II r ounds off any dig i ts in excess of nine. 
He r e are some e xamples (note that larg e num bers print 
in scient i fic notation ) : 

> PRINT !23~5678t// 

/. 234-5678 'IE + o'f 
> ? -/23456789 /.2311-$678'1 

· -/.23(ts67S9E +17 

> ? -/SOOOO //-7.5. 7.S 

-1.s 0000 476 

> ? 9 0000000. 7SS8 

90000000. g 

- 90 -



Fractional numbers (those between 1 and -1) are 
subject to the same limitation. In this case, though, 
the nine digits of precision start with the first 
nonzero digit to the right of the decimal point. Here 
are some examples: 

> 'PRINT . /:J.3'+.S6789 I 

·!23'1-G6789 

> ?-12?.Lf-~678't 1239"!,67~9 
-/.231./-56789£ f 17 

6 • 7 Let and Variables 

Variables 

Thus far in our discussions of data we have only 
considered constant values. It is often handier to 
refer to data items by name rather than value . That 
is what variables are all about . 

If you have studied elementary algebra, you will 
have no trouble understanding the concept of variables 
and variable names. If you have never studied algebra, 
then think of a variable name as a name which is assigned 
to a letter box. Anything which is placed in the letter 
box becomes the value associated with the letter box name, 
until something new is placed in the letter box . In 
computer jargon we say a value is stored in a variable. 

A c 

E 

- 91 -



A variable does not always have to refer to the 
same value. That is its real power -- it can represent 
any legal value. You can change its value during the 
course of a program. BASIC has a number of statements 
to do this; we will describe them later. 

Varl_!lbles Names In MPF·R BASIC 

A variable name can have one, two, or three cha
racters in MPF-II BASIC. The following rules apply: 

ooo. 

L 
LAST CHARACTER 
$ for strin9 vo.ria.ble 
% for ;nte,9er va.rio.ble 

real vo.tiable otherwise 
SE.CONJ> . CHARACTER. (OPTIONAL) C.AN BE 

ANY LETTER oR DlqIT 

'FIRST CHA'RAC.T.E'R. MUST BE A UTTE.'R. 

Thus the last character of the variable name tells MPF-II 
BASIC which type of data the variable represents. 

Strini Varlables• '·· · · 

A string variable in MPF-II can store a string 
value of any length from 0 to 255 characters. Here 
are some examples of string variable name, both 
legal and illegal: 

.. --r/- h, 
~e .) 

~ 
Ci} 

IlL£qA(_ 

We can imagine that, a string variable is a 
box placed in the computer's memory in which we 
can store information. 

- 92 -



We can give a box a name consisting of a letter 
followed by a dollar sign ($) . For example, below 
are boxes called A$ , 8$ , N$ , XS, and Z$. 

A$ .____ ____ ___. 

a~.__! ___ ~ 
Nj_I --~ 
Xf> 
z~.__~~~~~~--

Into any box, we can put a string. A string is 
simply any bunch of keyboard characters, typed one 
after the other . For example : 

A string can be a name: 
A string can be a number : 
A string can be gibberish: 

JOHN 
123456789 
AB#$%JFDZ?* 

Almost any keyboard character can be part of a 
string . One improtant exception is th• double quota-· 
tion mark (") . It can't be part of a string. Instead, 
quotation marks are sometimes used to enclose a string, 
as follows . 

" 

The string JOHN is enclosed in quotation marks. 

Below a~e some boxes . We have already stored 
strings in some of these boxes, For example, JOHN 
is in box A$ and 415 323 6117 is in box 8$. 

/)$ I WAD<:rE-TS: 23 I 

8$ I 415 323 6117 

E$l':'1$H$HI 

- 93 -

F'f. l 1m11 BRITAIN . C.T 

H$ ._I_~ 



A box will be as short or as long as necessary to 
hold the string we want to put into it. Actually, 
there is a limit on string length. You may use strings 
with up 255 characters. Here is how we stuff a string 
into a box, deep down inside the computer. To tell the 
computer to put JOHN into box A$, we use a LET statement , 
without a line number, like this : 

We type: LET A!f=}oHN11 

It prints: > .:._ 

The MPF-II has put the string JOHN into box A$. 
Note how we ~old the computer to do this. 

> LET A$ 
Let's find out what is in box A$. To do this, we 

will tell the MPF-II t9 print what i~ 1in A$ . 
' '\ 

We type: pg I NT A$ 
It prints: .:TOH N 

>-
To tell the computer to - print the . string that is 

in A$ , we type : 

> PRINT A$ 
The names A$, B$, C$, and so on, which identify 

boxes, are called variables. Since these boxes can 
hold strings, these variables are called string variables. 

A$ is a string variable, 
B$ is a string variable, 
C$ is a string variable, 

and so on. 

Later, you will learn about numeric variables, which 
can store only numbers. We will use numeric variables 
when we want to do arithmetic with numbers. 

- 94 -



A$, 8$, C$, ••• , Z$ are string variables. The string 
in box A$ is called the value of A$; the string in box 8$ 
is the value of 8$; the string in box C$ is the value of 
C$; and so on. 

We use the LET statement to tell the computer to 
"put a string into a box" or, more technically ; "assign 
a string to a string variable ." 

We type: 

We type: 

LET C$ = 

PRINT C$ 

It prints: qREE.N 

''li-REEN'' ~Put GrREEN mto box C$ 
----- displ~ !he contents of 

box C$ 

IMPORTANT NOTICE! The word LET is optional ; it can 
be omitted . 

Instead of : LET C$ = "qRE.EN // 

We can type: C$ = ''~REEN '' 

A box can hold one string at a time. When the 
computer puts a string in a box, it first erases the 
previous contents of the box . 

La5+ s+nnq e rqSes 

+he Previous cori+en-+s 

Remember, a variable can have only one value at a 
time. When we assign a value to a variable, the computer 
automatically erases any precious value of that variable. 

Now try this program . First, type NEW to erase any 
old program in the MPF-II's memory. Then, enter the 
following program. 

- 95 -



10 HOME 

30 P!<lNT A$; ~ 
20 A.$'=<:roHNln:'' 
40 60 ro 30 ~ 

Don't for9et 

t:he. 5et'l1icolon 

RUN the program. The screen should fill with 
JOHN's name. Let's compare the following two programs . 

OLD PQO{:r/2AM NEW PROC,l2AM 

IOHOME .~ 10 HOM E 
20 Pl2.1 NT "YoHN';~20 A$= //70H~ 11 

~o qoTo 2() . ;>o PR (NT A$ > 

4Q ·qOTO -30 

In t he old program, we include JOHN' s name as a 
string in the PRINT statement. In the new program, we 
put the string in the box A$, then tell the MPF-II 
to print what is in A$. 

Draw arrows to show the order in wh ich the computer 
does the statements in the new program. 

l2UN 
+ 
lO HOME • 20 • 30 • 40 

Pl2lNT A$ 

ero To :3::> 

TH IS is DoNE ONCE 

TH IS i S !>ONE ONCE 

.__ Ai<OUN[> AND AQouND AND Al2oUND 
UNTIL Pl<E SS £5 jCON<..ROL c) 

- 96 -



Numeric Variables 

You already know about string variables. Now 
let ' s talk about numeric variables. Numeric variables 
are names of boxes that can hold only numbers . Any 
letter of the alphabet can be a numeric variable. 

A string variable always ends with a dollar sign 
($) . A numeric variable never ends with a dollar sign . 
String variables may have any string as a value. Numeric 
variables may have only numbers as values . And values 
of numeric variables must be typed without quotation 
marks , as you will see later . 

We can use the LET statement to instruct the computer 
to "put a number in a box ." To say it more technically , 
we are assigning a numerical value to a variable . 

We type : LET A= '7 -j)UT 7 ;n+o l:JO'.X A 

We type : p R (NT A - py-;n-t- -the cont-el"i-S o-f bo'X A 

It prints : 7 

In this program the variable is A and the value 
assigned to it by the LET statement is 7 . 

Complete the following : 

(a) We type : LET X 23 (b) We type : LET z -1 
PRINT x PRINT z 

It prints : It prints : 

(c) We type : LET A 1 (d) We type : LET D 7 
LET A 2 LET w D 
PRINT A PRINT w 

It prints : It prints : 

- 97 -



As you read through this book, you will see less 
and less of LET . If you read other books and magazines, 
however , you may occasionally encounter it . In your 
programs, we encourage you not to use LET . 

6•8 Input 

Input Statements 

Now we will tell you how to put strings in boxes 
the easy way -- by using a new statement called the 
INPUT statem-ent . 

We stored the above program in the MPF- II, then 
typed RUN . Here is what happened . 

Tfle computer 
proni"ea q qaew 

hlllri:: cincl -me 
CU\"SOI" 

?-~ 
· ~ 

questicm mil 

The MPF-II is executing the INPUT statement. The 
statement 

20 INPUT A$ 

tells the MPF-II to: 

(a) type a question mark; 
(b) turn on the cursor; 
(c) wait for s omeone to type a string. When 

you type a string and press the RETURN 
key, the MPF-II puts the string into box 
A$ and goes on to the next statement in 
line number sequence . 

- 98 -



Let's cooperate with our ever-patient computer and 
type in a string . To keep things familiar, we will type 
JOHN's name and then press the RETURN key. 

The following program will help you learn more 
about the INPUT statement . You can use it to experiment! 

NEW 
(0 HOME 
2D lNPUT N$ 
-;to PR (NT IV$ 
qo ~ 70 20 

Th;s pro911l111 simply prints out (once) 

whatei.er value you type for N$ 

Draw arrows to show the order in which statements 
are done by the computer . 

- 99 -



T2UN 
(0 HoME 
20 tNPUT NS 
30 P12l NT Ni> 
(/.() q010 20 

0 

In following this program , the 'MPF-II will always 
return to the INPUT statement , print a question mark, 
turn on the cursor , and wait for the next value of N$ . 

We stored the program in the MPF, then typed RUN 
and pressed the RETURN key . Here is what happened . 

ihe compv~r. pl"il'\~Gf r=--· - · 
c,. qve~+ior\ ,rri~~ 
~he\ -tile C~r1;oy-

We then typed the string "MR. SHIH" (including the 
quotation marks) . 

F ,, 
H-

l lU~SoY- f 

Then we pressed the RETURN key . 

The computey 
f:>Yin't"ed 

-tt.•s 
C\n4 -{'tli5 

?hMR, SHIH'' 

MR, SH:tH 

') ... 

The computer printed the string that we typed, 
enclosed in quotation marks , following the question 
mark. We continued entering strings in response to 
question marks . When we finished experimenting, 
press CONTROL C to stop the computer . 

- 100 -



Enhanced INPUT 

The INPUT statement , as we have known it, tells 
the computer to put a question mark on the screen, then 
wait for the user to answer. Wouldn't it be nice if. , 
instead of printing just a question mark, the computer 
would put some informative words on the screen, so 
that the user knows what the computer wants? The 
following program has an "enhanced" INPUT statement 
that is more informative. 

IOHOMf;: 
20 ( NPUT I/ WHAT NAME 

,, 
J Nf 

~ PR(NT N$ 
40 <:tom 3o 

Let's examine the ~enhanced" INPUT statement. 
The statement: 

20 'NpUr,, WHAT lS Yo UR NAM t- ~ . N$ 

tells the MPF-II to: 

(a) print WHAT IS YOUR NAME on the screen; 
(b) print a question mark; 
(c) turn on the cursor ; and 
(d) wait for someone to type in a string and 

press the RETURN key. 

Look at the statement carefully. It consists ofr 

(a) a Line number, 
(b) the word INPUT, 
(c) quotation marks, 
(d) a string , 
(e) quotation marks, 
(f) a semicolon, 
(g) a string variable 

- 101 -



One more time : 

<a.> <b> <C> <d> <f> 

! 
10 

i 
INPUT 

i 
u MICRO-PROFESSOR. 

! )} i 
The question mark is always an automatic part of 

an INPUT statement . When an INPUT statement includes 
a string , the question mark is printed at the right 
end of the string . we type RUN and press RETURN . 

The (ompuier prm+s WHAT lS '(o~ NAMs ? -

dlso~ J 

If you tfpe your name and press the RETURN key , the 
computer will print it "everywhere " on the screen . If 
you wish. to include spaces in front of your name , 
remember to use quotation marks . For example : 

'JOHN''-

Now , when JOHN presses ENTER , his name will appear 
everywhere on the screen , but always preceded by t wo 
spaces . 

-1Cl 2 -



Input Numbered Variables 

We can also use the INPUT statement to assign 
a value to a numeric variable. 

WE.W 
JO HOM6 

J.O IJJPOi A 
i30 PR.WT A 
l/<J PRWT 
ro s,oro :i.o 

A ;s a 
numeric 
v{).ria.ble 

We entered the above program and ran it. Here is 
what happened on the screen. 

? 258 
J.S8 

._~~~~•·We typed 258 with no quotation marks . 
It printed 258, the value of A. 

? -6 We typed -6 with no quotation marks . 
-6 It printed -6, the value of A. 

? p.f5 .......... •·We typed 12.95 with no quotation marks. 
/2.fS It printed 12.95, the value of A. 

? ''73" 
?~El>O 

?-

.., _______ We. typed 73 with quotation marks. 
It rejected our "73 " 
and is waiting for our next try. 

When we enter a number that is to be stored as 
the value of a numeric variable, we should not enclose 
it in quotation marks. 

However, if we should enter a number as the value 
of a string variable, it is OK to enclose it in quota
tion marks. Remember though, you can't do arithmetic 
with strings. 

Below is a program to compute the distance traveled 
in one turn of a wheel of diameter D. 

- 103 -



RUN 
WHEEL 
62 . 80 

WHEEL 
81. 64 

WHEEL 
84 . 78 

WHEEL 

NEW 
10 HOME 
20 INPUT "wHEEL l>IAMETER'' ; !> 
30 f>Rr.NT 3 . lt/-'ltI> 
Lf-0 PR.INT 
5o 6-DTO 20 

DI AMETER? 20 We typed the wheel d i ameter. 
It printed the distance traveled. 

DI AMETER? 26 We t y ped the whee l diameter. 
It printed the distance trave l ed. 

DIAMETF,R? 27 We typed the wheel diameter . 
It printed the distance traveled . 

DIAMETER? It is waiting for more . 

What happens when the computer executes l ine 40 
in the above program? The compu ter prints an empty 
line o n the screen. This separates each example from 
the previous e xample . 

What the computer wants us to type is c l early 
identified by the string WHEEL DIAMETER i n the INPUT 
statement . We can use the PRINT sta t emen t to ident i fy 
the answer that t h e computer prints. Change line 39 
to the following . 

3¢ PR/NT 1':D!STAA/CG /Al o,ve TUIW 1~'1 3.J4*Y 

Did you make t h e c hange? Now li s t the program. 

LIST ( Yup, there ii.is 
co HOME ,, D 
20 ((\)pUT''Wt-tEEl .Dr AMcTER ; . ,, ~~~. 
30 -PRrNT''pcSyAN CE (NON~ TURN <5; S.l<+*D • a> 
401>R.lNT ~ 
!;;0 qo TO X> 

- 104 -



Let's RUN it. 

RVAI 
wHE&. .1>/AHEiTl!:R? ~ 
1>1STAi!C6 /JI 0,(16 TVR/V /s 62. -~P 

WHE&4 1>/A-HeT6R?.;,.6 
1>/STAA!Ce t!V o.A/6 7-URAI is a/. 6 P 

wHeG(J 1>/Af{"ETEI<? .J..7 
1>/STAN'ce I JJ 01./E. TURN IS ?ft. ?f 

w H eGZ 'J>/A/'1tZTc.R ? 

Apparently, the statement 30 PRINT "DISTANCE IN 
ONE TURN IS" 3.14*D tells th, MPF-I I to : 

(a) print the string : DISTANCE IN ONE TURN IS 
(b) compute and print the value of 3.14*D 

6 • 9 For······Next Loops 
In this section, you will explore the power of the 

FOR-NEXT loop. 

The FOR-NEXT loop takes over with automat ic 
counting for all your repeatable tasks" You decide 
where to start and where to stop -- it does the rest. 

After completing this section , you will be able to: 

1. use the FOR-NEXT loop as . a time delay; 
2. perform mathematical feats with the FOR-NEXT loop. 
3. use the FOR-NEXT loop for repeatable parts of a 

program (other than time delays and mathemat ical 
feats). 

We will describe more features of the FOR-NEXT 
loop in chapter 6. 

The following program will cause John's na me to 
blink on, off, on, off, on •••• , and so on , unt il someone 
presses the CONTROL C key . Try it. 

- HJ5 -



Type NEW, enter this program and RUN it . 

100 HOME 
110 PRINT "JOHN" 
120 FOR I=l TO 500 
130 NEXT I 
140 HOME 
150 FOR I=l TO 500 
160 NEXT I 
170 GOTO lf/J0 

.::roHN 

Clear the screen 
Print the word JOHN 

--Press CONTROL C to stop the computer . 
--Change line 110 to: 110 PRINT" 
--RUN it again. Your name will blink- on; off, on, 

off , on , off, ••• •• 

FOR??? NEXT??? What do they_mean? In response 
to popular demand, we will explain what is happening in 
lines 120 and 130, and again in lines 150 and 160 . 

120 FOl2. I=! 10~ 
/3o NExr I 

Fa<··NE XT LCY:f 

- lf/J6 -



The above FOR-NEXT loop simply tells the computer 
to count from 1 to 500 . 

As the computer counts from l to 50 0, each counting 
number is put , momentarily , into box I . 

--First the computer puts l into box I • 
- -Then the computer erases 1 and puts 2 into bo x I • 
--Then the computer erases 2 and puts 3 into bo x I. 
--Then the computer erases 3 and puts 4 into box I. 
- -Then the computer erases 4 and puts 5 into box I • 

--And so on . Eventually , the computer puts 500 into 
bo x I (Of course , it first erased 499 . ) . 

This all happens ver y quickly , in less than one second! 

Lines 150 and 16 0 do the same thing . Both FOR-NEXT loops 
are simply time delays . The computer is count ~ng silently 
to i tself while we see JOHN on the screen or we see a 
completely blank screen . We see JOHN for a little while , 
then we see a blank screen for a little while , then 
we see JOHN for a little while , then we see a blank 
screen for a little while , then ••• and so it goes . 

- 107 -



(a) How can we change lines 120 and 150 so that 
JOHN's name blinks more rapidly? 

Use a number less than 500 . For example, change 
line 120 to 120 FOR I = 1 TO 200 and line 150 to 150 
FOR I = I TO 200 . Now the MPF-II will count from 1 
to 200, which takes less time than counting 1 to 500 . 

(b) How can we change lines 120 and 150 so that 
JOHN's name blinks less rapidly? 

Use a number larger than 500 . For example, change 
line 120 to 120 for I = 1 TO 1000 and line 150 to 150 
FOR I = 1 TO 1000 . Now the MPF-II will count from 1 to 
1000 , which takes more time than counting from 1 to 500 . 

1 ~o FtJR. r:::. / ro fDI> 
. . 

Let ' s make it easier to change the name . 

100 HOME 
110 IWPUT "wHIJT 

1,;.o HOHE 

IS YOUR NAME'';;./$ 

!t/AHG IS ON 
HPF-ll 
to S-oo 

130 PP.INT //.$ 
1¢.o FoR I = 1 To .too 
l~O Jv'eXT I 

!60 Hof1t; 
/10 FOR l = 1 To .Soo 
/~o !V&XT I 

/'i'O G,OTO /d.O 

wh; le. 
Ccu,.,,ts 

JVAf1Ci Is o FF (Sc>-ee?i 1.s 
while MPF-Il c/e;:o'r>) 
Cou.'11is to bn 

- 108 -



(a) Suppose we change line 140 to : 140 FOR I = 
1 TO 1000 . Will the name be ON for a shorter 
time or a longer time? ______ _ 

Longer . It takes the computer about twice as long 
to count to 1 , 000 as it took to count to 500 . 

(b) Suppose we change line 170 to: 170 FOR I = 
1 TO 250 . Will the name be OFF for a shorter 
time or a longer time?~~~---

Shorter . It takes the computer about half as long 
to count to 250 as it took to count to 500 . 

Ah! F0'2···NE'XT and time delo.y! 

Follow the arrows to see how the program works. 

RUN • (00 • l 10 

• 120 -. 
130 • 140 
150 ... 
160 

• ("'}0 

rSo 
• rQO 

HOME 
l NPUT ., WHAT i$ '(t>VR NAME II; N $ 

HOME 

pQINI N$ 

foR I = I To ~ 
f'JE)(T I 

HOME 

~R I~ lo 9=XJ 
l'JE')(T 1. 

G()TO l20 

- 109 -

FOR. and NEXT 
o/wo/S work 

together 



A FOR-NEXT Loop begins with a FOR statement and 
ends with a NEXT statement. 

--A numeric variable must follow the word FOR : 

l40 t=bQ I =I TO '5dJ 

--The same numeric variable follows the word NEXT: 

150 NEXT r 

- 11 0 -



Here is another way to say it: 

f4o FOR J: = I TO ~ 

150 NEXT Z 

. Sllrl1e nurne.yic 

vo.rla.ble 

Let ' s not overwork the variable I. Any numeric 
variable may be used . --These are OK FOR-NEXT loops : 

20 ~C< ~ = ( 103 

30 NEXf le::. 

73 R)(2 A= l· TO <O 

fSQ NEXTA 

--But these FOR- NEXT loops are not OK : 

(a) 5o FOR X = l 10 coo 
00 tJE~T Y: 

(b) I <o FOf2 2$=1 
I 2D NEXr Jr$ 

f!!jJ NOT ol'. I 

What is wrong with (a)?~~~--~~~~~~~-

The variable following NEXT is different from the 
variable following FOR . These must be the same variable . 

What is wrong with (b)?~~~~~~~~~~~~ 

Z$ is a string variable . We can use only numeric 
variables in FOR and NEXT statements . 

The following program features multiple statement 
per line . 

- lll-



(00 f-iO('llE ,, 11 

110 PRINT JOHN 
f20 FOR 1 == I TO 5::o : NEXT I 
130 CLS 
140 FOf2 I -::: I TO 5co = NE)(f I 
ISO qoID l(O 

In the above program , line 120 contains two state
ments. Line 140 also contains two statements . In a 
lin~ that contains two statements , what symbol , or 
character , is used between the statements?~~---~~-

A colon ( : ) 

We usually put a space on each side of the colon. 
However , this is not necessary. We could have typed 
line 120 , as follows: 

120 FOf2 I = I TO 500 NEXT I 

In fact , we can leave out all spaces and do it 
like this : 

C•~ 
~ -

/20 £=0Q I = I TO !=DO: NEXT I il 
The MPF-II will understand perfectly well, but 

it is hard for people to read! So, use spaces to make 
programs easier for humans to read . Here is another 
example, using multiple statements per line . 

- 102 :--



JOO HOHG: IA/PUT "wHAT IS YOUR A/llHG ''; J./$ 
J /0 HOHG : PRIAIT J.1.$ 
J .:l.O F-oR 1 = 1 To soo : JvC.XT I 
/30 Hot1e: FOi< l :: 1 TO soo :A/&XT I 

/¢:0 G,oTO 110 

Follow the arrows . 

RUN 
• lOTJ .. 

110 

• /~O • /50 

HOM6: IJJPUT"wJ-IAT /5 youR NAf-f&"/.A/tf 

HOM& : PRINT ).If 

FOR I"' I To .s-oo : Al6X7 1 

HoME: FoR I == I To .S-oo : Jv'BXT I 

/~ B,OTo !/O ~ = ~ 
The arrows from line 140 to line 110 show you 

that multiple statements in a line are done from left 
to right. In line 110 , the HOME statement is done 
first , then the PRINT statement. In line 130 , the 
HOME statem~nt is done first, then the FOR-NEXT l oop. 

There is much about FOR-NEXT loops that we haven 't 
told you . So, here we go. 

A FOR-NEXT loop begins with a FOR statement and 
ends with a NEXT statement . A FOR-NEXT loop ma y also 
have one or more sta tements between the FOR state;~ent 

and the NEXT statement . 

ro HcME 
2..0 ~C =l TO!;; 

30 PPCNT~C =~ 
40 NEXT C 

- 113 -

-this FDR-N 
LOOP }1as three 
state rnerrt.s 



In the above FOR-NEXT loop, what statement is 
between the FOR statement and the NEXT statement? 

ANS 30 PR.INT "c:::: ,, c 

We could have written the above program like this: 

/ o HOME 

20 FoR. c=J To s = PRrf\fT "c="c~AfEXT c 

In the above FOR-NEXT loop (line 20), what statment 
is between the FOR statement and the NEXT statement? 

ANS I 

What do you think will happen if we enter the program 
and RUN it? Here is what happen e d after we typed RUN. 

Just who.t you mi9kt 
expect, -the Mi>F - :u: 
ccunted to 5 , using 
box c 

~$ 
c ::/ 
< :.2 
C•d 
( =4 
c ·s 

READY 
> .. 

Now, you are to be the computer. Show what will 
appear on the screen if we enter and RUN the following 
program. 

- 114 -



The pYoqYq m< our-.s) 
10 HOME 

2D FOQN = IT0 3 
~ PR INT N 

T he r<un ( You rs ) 

40 N E>'T N 

·50 PQ{NT "qo ! I/ 
( -

ANS : 

It is Ok. with us if you omitted -these. 

A FOR-NEXT loop can consist b~ three th i ngs . 
---A FOR statement 
- - -A NEXT statement _ 
--- Statements between the FOR statement and 

the NEXT statement . 
Of course, as you already know, the last item is 
optional . Ho w does the FOR-NEXT l oop work? Follow 
the arrows . 

{ZUN M0! • 10 HOME • '2D FOR N = I TD :3 • 30 PR INT 1\.1 • 40 NEXT N • 9:) P'21NT "Go!" ~o4~ 
Let's Look at the FDR. stt.ttenient 

This is the last value N 
FOR N 1 TO 3 -- -- will have (the l imit of N) . I 

This is the FOR-NEXT 
l o op control variable . 

--.....___ 
This i s the first 
value N will have . 

- llS -



In line 40 , N is increased by one , and the c o mputer 
compares the inc r eased value of N to the upper limit for 
N indicated in the FOR statement {N < = 3 means " N 
less than or equal to 3" ) . 

When N goes past 3 , the computer stops executing 
the loop and continues on with the rest of the program 
past the FOR-NEXT loop . We call this 3 the limit of N, 
or the limit of the FOR variable . 

Each time the computer comes to a NEXT N statement, 
it increases the value of N by one , and checks the new 
value against the limit for N. In this case , the limit 
is 3 , because the FOR statment reads : FOR N = 1 TO 3 . 
When the value of N is greater than 3 , the computer 
continues the statement following the NEXT statement , 
if there is one . If not , the computer has finished 
executing the program and stopped . 

It ' s math time : You may find the ne x t few programs 
interesting . 

The FOR statement defines a sequence of values 
for its variable . " Sequence" is just a fancy math 
word . It means that the values come one after another . 

Here is a table showing 
it uses , and the sequence of 
assumes , one after another . 
from left to right . 

a FOR statement , the variable 
values which the variable 
Read the sequence of values 

SequeN:e of vc?tl~es ~ Sit.ttemertt 
FORI=IW5 
fOl2 (c: :: 3 TO 5 
FOR A ~ o 10 3 

FoR N == I -ro I 

l ,2.,3,4-,5 

------- 3,4,S 
0.1. ::i. .3 

The following program will compute the sum of the 
positive integers from 1 to N. Here is our program . 

- 116 -



In 
lh 

lh 
In 

10 HOME 

20 I NPUT''(\l ==-'' j(\) 

;o 5 = 0 

40 FOR.. I = l TD N 
g:J S=S-t.I 
&:> NEXT I 
/0 PRINT" THf: 5UM IS" ,,i 5 
9J 6-o TO 2D 

The variable S (for sum) is used i n lines 30 , 50, 
and 70 . Line 30 occur s before the FOR-NEXT loop . It 
sets the value of S to zero. Line 50 is inside the 
FOR-NEXT loop . It is executed for I = l , I=2, I=3 , and 
so on , until I=N. Each time , a new value of S is 
computed . 

Suppose the INPUT value of N is 3, then the 
sequence of value for I wi ll be 1,2,3. So , S will 
become : 

livie 30 S" = 0 

Line so S" ==- S"-tI ==-Oi-(=- 1 

Line 50 5 = S-d =!+2=3 !; nq of +he fO<. -NEXT l...oop 

Li vie 50 5 :::: S-t-L =3 -r3 :::6 -tfils V2li 1.Ae IS PY' ntE>cf I:'.»' 
Llh: 70 

Let's RUN the p rog r am. He r e i s a possi b l e RUN . 

- 117 -



N= ?3 
THE SUM I5 6 
N=?4 
THE SUM LS (O 
N=?7 
THE SUM :r:S" 28 
N .::: ? AND <;;o ON 

6•10 Advanced Editing Techniques 

In chapter 2 we looked at ways you could correct 
errors in a line you are typing before you press the 
RETURN key. Let's quickly review those simple editing 
techniques. 

The <-- key backspaces the cursor and erases 
characters it passes over . Characters are erased from 
the program line even though they still appear on 
the display screen. 

The --> key moves ~he cursor forward, copying over 
(retyping) characters it passes over. 

~ 
CU~SOR FDi<WARt> 
AND RETYptNq 

The CONTROL X command cance ls the line you' r e 
currently typing. The HOMr: c onmand c lears the d L ; play 
screen and leaves the cursor i n the uppe r le f t c o rner. 

- 118 -



~~ ~ONTRol X j 
~ CANCELS 
=:::==---- --..... c. u R RENT LI N'E 

(HOME j 
~ 
CLE AO THE SCREEN 

We will now discover new ways to edit program 
lines . These new methods are particularly useful 
when you want to make changes to previous lines 
(i . e ., those with line numbers). 

Deleting Program lines 

To delete an entire line , type its line number 
followed immediately by a RETURN . When you list 
the program , you will see that the line and line 
number are no longer part of the program . Here is 
an example : 

NEW 
IOO HOME 
1 l 0 FOR N:::: I TO 10 
120 PRINT N, SQRCN) 
130 N = N-t I 

140 NE-x TN 

(50 ENP 

100 HOME 

1(0 fO~ N =I lD (0 

\20 PRINT N, SQR(N) 

140 NEX\ N 

LOST 
l.30 a111J 

/So 

You can use the command DEL to delete a block of 
program lines . For example: 

- 119 -



I' .. , 
1: ' . ..J 

, :Delete hne 114 
L I ST ~ "---"\..__ ./ 
\00 HoME __ . A 
f SO EN.D ···.... (.?) 

The command DEL 110 , 140 deletes all program lines 
starting at line number 110 and ending with line number 
140 . Even though line 110 does not exist , all lines 
between 110 and 140 are deleted . 

Adding Program lines 

You can type in new program lines in any order, at 
any time. Their line numbers will determine their 
positions in the program . The MPF-II will automatically 
merge them into any other program lines currently in 
memory . Try adding lines 120 and 110 back into the 
example above . 

Moving the Cursor 

To move the cursor around on the sc~een , you can 
use the following four keys : --> <-- 1' ~. Figure -4 
illustrates how the four possible key sequences affect 
cu'rsor movement . 

Now press--> , <--,1',~to move the cursor around on 
the display screen . 

Changing Characters 

Replacing one character with the other is simplicity 
itself . Merely position the cursor on the offending 
character and type the replacement right over it. For 
example , with the cursor as shown : 

100 PRINT " ESTIMATED TIME OF ARRIVAL" 

You can type the word DEPARTURE and get this : 

100 PRINT "ESTIMATED TIME OF DEPARTURE " 

Press RETURN to effect the change . 

Deleting Characters 

You can effectively delete individual characters 
by typing over them with blank spaces. Remember that 
in BASIC extra blank spaces do not affect anything 
unless they are inside of quotation marks. 

- 120 -



6 • 11 Remarks 
Remark statements have line numbers, like any other 

statement. A remark statement's line number can be 
used like that of any other statement's, 

If the first three characters of a BASIC statement 
are REM, then the computer ignores the statement entirely, 
So why include such a statement? The answer is that 
remarks make your program easier to read, 

R.EM the computer ignores the stcltement eniire!J' 

If you write a short program with five or ten 
statements, you will probably have little trouble 
remembering what the program does --- unless you leave 
it around for six months and then try to use it again. 
If you write a longer program with 100 or 200 statements, 
then you are quite likely to forget something very 
important about the program the very next time you use 
it. After you have written dozens of programs, you will 
stand no chance of remembering each program in detail. 
The solution to this problem is to document your program 
by including remarks that describe what is going on, 

Good programmers use plenty of remarks in all of 
their programs, In all of this chapter's program 
examples we will include remarks that describe what 
is going on, simply to get you into the habit of doing 
the same thing yourself, 

Qo 
/00 

12E.M 
LET 

- 121 -

\/AR :tAB LE X 
,-------,...~ 

v 



6 • 12 Plotting and Developing in Color 
MPF-II has the function of plotting and developing 

in color. But , of course, if you want it to be developed 
in color, the screen or TV set you use must be a color one. 

REM iqrrores the statement entire}! 

These are some of the instructions that are used 
when writing plotting or color programs. 

{ __ H_o_M_e_, _co_k_o._'R~, _R_~_oT __ J 
Let's explain them with some example programs: 

1. Home 

HOME is the instruction which calls prompt and cursor 
back home the starting point, and at the same time, 
clears the screen. After we press PRINT HOME and RETURN, 
the screen will be cleared . After you examine the following 
programs you will understand. 

10 HOH.6 

a.o PR llv'T "HR SHIH'' 
30 ~OTO /o 

- 122 -



Because it returns from line 10 to line 30, MR. SHIH, 
which appears on the screen , flashes. Let us remind you 
that if you want to stop performing this program, you 
have to press CONTROL C or RESET, 

Try the following example : The new program on 
the left shows little difference from the previous 
one and yet the results of its performances are q uite 
different . 

{O HOME. 

~o PRIJJT "11R. SH /H '' 
30 (;,OTO J.o 

/0 HoHG 

J.O PR JJJT "HR. SHIH 11 

30 6iOT0 /O 

The program on the right hand side is the original 
one, and line 30 is GOTO 10; the program on the left 
hand side is the new one and line 30 is GOTO 20. Be
cause the line 30 of the original program is GOTO 10, 
MR. SHIH which is just printed is cleared out. The 
result of the. printing and clearing makes the screen 
flash . But the line 30 of the left hand side program 
is GOTO 20 which indicates the program to keep on 
printing. In order to give you a good understanding 
of the way to use HOME, let's combine HOME and FOR •••• 
NEXT. After examining the following program, put 
it in the computer and let it run. 

- 123 -



/ o /-10~6 ,, 
).o PRWT"MR.SHIH 
3 o FOi< .I "' l To soo 
4-o A/E.XT I so )-(OH~ 
.5$ FOR l= l To S"oo 
b 0 A;EXT I.. 
10 ~OTO /0 

~) 
-t c~n } 

Sfatemen ·frrte -to 
prolong the r~sult 
process the Oo o • 

Now, you know that FOR •••••• NEXT can be used to 
prolong the duration. Take the above example for 
example. If you want to change the time duration, 
you only have to change the number of FOR ••••• NEXT. 

/3o FOR .1:: 1 70 SO</ 

I.SS FO.R z "'l ro .Soo 

2. Color 

In MPF-II, there is a color instruction. The 
instruction COLOR directs the computer to ~erform 
color functions. (If your TV set or screen is black
and-white, this instruction will be useless.) 

co LOR 
f or performin9 co/.oY" 

in screen 

- 124 -



• o Blaic.I< 
I G,1-een 

~ 'Purple 
• 3 White 

'- Green 
S 0;..(}./1f3e 

' Blue 
'I White 

s P().h,ple 
9 GT.i-ee?T 

/0 P(.J/l.f/e 
,, white 

12. 

13 CJ1-a.'>11~ 

14 Bl(/e 
Is wh 1'te 

When using. a microcomputer for color graphics, only in rare 
occasions a user needs to use more than 10 colors. 
Thus, the MPF-II is so designed that a maximum of six 
colors can be used for color graphics. The numbers given 
in the chart below is used to identify different colors. 

But the color instruction should be used with · 
PLOT instructions . Let 's proceed. 

3. Plot 

Using the MPF-II for plotting means the assignment 
of horizontal and vertical coordinates and then placing 
a dot at the coordinates . The MPF-II divides the screen 
up into 40 lines (vertical coordinate) and 40 columns 
(horizontal coordinate). Coordinates are numbered from 0 
to 39 . Plot must be followed by two arguments separated 
by a comma . For example : 

JPLDT 

hor•Jonta.I ver!:ic.a/ 
cool"clitillte eoord;n4te 

,o,o=::=::::=r====:::::::::::::::=::::::::=::::;~~ 
2 
3 

<j. 

5 
{, 

- 125 -



The left number shows its horizontal coordinate; 
the right number shows its vertical coordinate . When 
performing PLOT 5,20, as shown in the picture, there 
will be a coordinate dot which appears on the screen. 

All right! Now let ' s put together the three 
instructions: HOME, COLOR and PLOT. 

10 HOH6 
~o S.R ~ 

Where 
.30 cot.PR=~ 

40 PLOT 6 ,ao 
.so pi,oT ao,39 

In the following two programs, we can draw a hori
zontal line to the left hand side program; a vertical 
line to the right hand side program. 

/0 
.lO 
30 
4o 
.S-o 
60 
'20 

HOHE. 
G,R 
colo,R ""3 
FOR l=O TO ~9 
P4oT~, I 
J/6XT 'I 

10 HOH6 
d.O GrR 
Bo COLDR=-1 ~ 
¢.o FDR .z~~ TO 39 

.S-o P"oT I , .;i.o 
60 JveXT I 

- 126 -

-.._,/ 



There are still two instructions which can be used 
when the MPF-II draws a line. They are : HLIN and VLI N. 
H is the abbreviation of horizontal; V vertical; and LIN 
line. 

Now , let's have the followfng example. 

4. HLIN and VLIN 

a. The results of the two programs are the same, 
Please compare them. 

10 HOH~ 
JO Grl<. 
3a COL.OR=-1'/-
ft.o i=OR 1"0 TtJ .3f 
~ pUJT z,~o 
{,o >16-XT l 

Jo 1-{0M/5 

:JlJ 'i R 
Bo COiJlJR =I~ 
¢o H/..JIJ.I 0, sf AT ozo 

HLIN 0,39 AT 20 tells the MPF-II to draw a hori
zontal line from 0 to 39 at vertical coordinate 20 . 

b. The results of the following two programs are 
also the same. They are all used to draw ver
tical lines. Please compare them. 

- 127 -



/0 HOME. 
20 ~'R. 30 C.OLOR = l'f 40 rOR :t = 0 TO iq $0 pl.OT :20 I l 60 /'(EXT I 

/O HOME 
20 G-R 3 O C.OLD'R. = I 'l-q.o vnN o, ~q AT 10 

- 128 -



6 • 13 Handling String 
1. String 

The computer's major function is to handle data . 
The two classes of data are numeral and character . We 
have discussed numeral data . Now let ' s proceed to talk 
about alphabetical data handling . 

We have to combine a series of letters (characters) 
together to make them meaningful . This combining process 
is called stringing, or more soundly we refer to combined 
characters as a string . 

When using BASIC and many other computers , the string 
needs to be set off with quotes . For example : 

l 
JPRINT"MR. 

i===J d SH I H.. the Strings nee to be quoted 

Mr . SHIH in the quotation marks is a string. As with 
a numerical variable, a string can be assigned with to a 
variable. But we must add an "$" after each string variable. 

A 
number String 

For example, if we· key in the following program: 

10 A$ = "MICRO PROFESSOR" 
20 PRINT A$ 

- 129 -



When computer runs tl~e program, it will print: 

MICRO PROFESSOR t- This IS the strin3 Tfl ihe 
9votat1ort m().rk. 

In this example, MICRO PROFESSOR is put in the A$ 
location in memory. 

2.LEN 

How many characters are there in a string? You will 
need a method of computing the length of a string. So in 
the BASIC language, th~re is an instruction LEN to solve 
this problem. LEN is an abbreviation for length . 

]PRINT LENC"YES") 
3 .----------The /en!ih of string iS 3 

JA$=="MPF-2" 

]PRINT LEN<A$) 
5,.,:t--------

Try the following program: 

10 
20 
30 

A~ = . "MPF- I I II 1 
PR I NT LEN (Mi> +- • Computer will print. out. 6 . 

PRINT LEN ( "MPF-1 I") +--Computer will print out G. 

- 130 -



In line 10, MPF-II is put in. A$. 

In line 20, the length of A$ is printed out (it is 
6 in this example) • 

In line 30 , the length of MPF-II is also 6. 

Note the differences between line 20 and line 30. 

3. LEFTS, RIGHTS, and MIDS 

Suppose we only want to use some parts in a string, 
we can use these instructions: 

a. LEFT$ 

For example : 

JA$= "HOW ARE YOU" 

Suppose we only want to print the front three 
characters in A$ , we can put in : 

J_i:'_~INT LEF"f.~ <A_~. 3> 

The computer will print : 

LEFT$(A$, . .3) 

~ 
The instruction LEFT$(A$, 3) tells the computer to 

print three characters on the left side in string A$. 
Don ' t forget that the re is a • $ " after LEFT. 

All right! Let ' s run the following program: 

5 HOME ~--------------cleo.r the sc.reeri 
10, A$ . "" ''HOW ARc You 11 

20 FOR I "" 1 TO LEN (A$).----- ~rforrrt 1 .fl-ol'fl 
30 PRINT LEFT$ (A$. I> i. to the Jen9th 
40 NEXT I . t of A$ 

) pl'"lnt the left 
Is alphabets 

- 131 -



The following is the result of the execution. Study 
the results and the explanation be low: 

H 
HO 
HOW 
How 
HOW A 
HOW AR 
HOW ARE 
HOW ARE 
HOW ARE Y 
HOW ARE YO 
HOW ARE YOU 

a. There are altogether eleven characters in the string 
"HOW ARE YOU", including the space . 

b . First, print the first character "H" on the left 
side . 

c. Second , print the second character "O" on the 
left side . 

d . Third, print the third character "W" on the left 
side. 

Print all the eleven characters. 

b . RIGHT$ 

RIGHT$ (A$, 3) tells the compute·r to print the three 
characters on the right in string A$. Don't forget that 
there is a "$" after RIGHT . The following program , only 
differs fr o m the previous program line 30. 

- 132 -



.5 HOME 
10 A$ = "How ARE you 
20 FDR ~ = 1 TO LEN <AS> 
30 PRINT RIGHT$ CA$,!) 
40 NEXT I 

~l-IT$(A$,3) 
fl' 

I Print the right most 

The following is the result of the execution . 

J R UAJ 
u 
OU 
you 

you 
E. you 
Re you 
ARE. you 

ARE '(OU 
W Al<.G YOU 
ow A RE. '(OU 

HOu./ ARG Yot.J 

- 133 -

3 character 



Explanation : 

a . There are altogether eleven characters in the string 
"HOW ARE YOU", includirig the space . 

b . First, print the first character "U" on the right side . 
c. Secondly , print the second character "O" on the right 

side of "U". 

Finally print all the eleven characters . 

c . MID$ 

MID is the abbreviation of middle. MID$ means that 
we print out some characters in the middle part . For ex
ample : MID$ (A$3 , 5) tells the computer to print out 
five c .. haracters in serial st~rting at the third character . 

JPRINT MID$C"}·f0Wii,2,2) 

Press ·l~J, the computer will print out, two characters. 

OW ~ "Pr1ntin!J 
Let ' s try the follpwing progr~m and see its result: 

5 HOME 
10 A$ == II HOW Aire '(DI} II 

20 FOR I = I TO LEN CA$) 
30 PRINT MID$ (A$,S,I> 
4b NEXf I 1 f 
JRUN 

- 134 -

q. +-- 7his sfotement 
;s the same 
with 

''/=OR. I ::: 1 TD i' 



5 
10 
20 
30 
40 
50 
60 

LEN< A$)-'I-

All right! Let ' s try the following example and 
after this , it will be the end of this section . 

PROGRAM RESULT 

HOME 
A$. = "MICRO PROFESSOR " JRUN 

PRINT A$ MICRO PROFESSOR 
PRINT LEN (A$} 15 
PRINT LEFT$ <A$, 3 ) MIC 
PRINT RIGHT$ (A$~3} • .... SOR 
PRINT MID$ (A$' 3. 6) CRO PR 

- 135 -



6 • 14 Random 

In BASIC language, there is a RND function . RND 
is the abbreviation of random . In BASIC language, RND 
means applying RND. 

1.RND 

a . In MPF-II , RND(l) means that the computer chooses 
for you a random number where 0 < number < 1. Put 
the following program in the computer and run it. 

5 
10 
20 
30 

RND Cl) 

HOME 
FOR I 0 1 TO 10 
PRINT RND ( 1), 
NEXT ·1 ~~~~~~~~-..:~ 

~~~ 
~~

1J) .
/the numher iS

(betweeri ~and 1

The following is the result of running the program .
Please note that if you keep on running for several
times, the results will be different. You can test
whether these numbers are in the range of 0 _i number
< 1.

JRUN
. 131137465
. 846447204
. 591965711
.419217095
.368373372

.80924873

.841536558
-c26800113
.878831482
.123235316

- 136 -

b . If you want a number where number is 0 < number
< 10 , you can have the number by multipling by 10 .
That is, change line 20 .

J20 PRINT RNDC1>,

J20 PRINT 10*RND(1),

IO* RNDC1J
£NLAR(iE. 10. TIME.5

The following is the result of the change . €iET 711.E !'(UMBER.

5 HOME
10 FOR I ~ 1 TO 10
20 PRINT 10 * RND (1'>,
30 NEXT I

2,eTWEEN I 0 ANJ> 0.

The following are the results of a sample execution .
You've known that the result of each e xecution will not
be the same . You can execute the program again to see
whether the results are in the r eange of 0 s_ number < 10 .

JRUN
2.80111176
1 . 1562207<jl
5.73253785
4.27020051
1.23590262

8.36328912
13. 15110127
8.89939655
• 226<;>42065
9.8134051

Will the r esult of 6 * RND(l) be in the range of 0 ~
number < 10? Try the following p r ogram :

5
10
20
30

HOME
FCJR I = 1 TO 10
PRINT 6 * RND (1)_

NEXT I '
L enla.r9e six times

3et the
random number

- 137 -

2.INT

As a matter of fact, we often want to generate
random integers. When casting dice, we want an integer
from 1 to 6 and sometimes we want to get an integer in
the range from 1 to 10.

a . INT is the abbreviation of integer.

For example :

PRINT INT (1.896)
PRINT INT (3.254)
PRINT INT (0.999)

---> 1
---> 3
---> 0

All right! Let ' s try the following program.

5 HOME
10 FDR I m 1 TO 10
20 PRINT INT (10 *
30 N~XT I

RND < 1)) ,

The following is one of the results. Of course,
the result of each execution will not to be the same,
but the answer is _always between 0 and 9.

- 138 -

JRUN
9
4
3
5

7
6
8

9
9
3

b. If you want to get a number from 0 to 10, please
try the following program:

5 HOME
10 FOR I = 1 TO 10
20 PRINT INT <10 * RND (1)) +

1 ~
30 NEXT I

~~L' .. -

increment b
':,Yl.

The results of the following executions are always
between 1 and 10 .

JRUN
2
9
8
7

7
1
5

4
6
9

The joining together of RND and INT is ve ry usef ul,
you should make good use of it.

- 139 -

RND(J
INT< >

6 • 15 Am1y DIM
We can regard variables as the memory for storing

data, but a variable can only store one special data.
An array is the variable that can store many data , but
this variable should be additionally marked. When using
the array, you have to use DIM instruction first .

DIM is the abbreviation of dimension. The size of
an error is indicated by a subscript. A subscript is the
number associated with a particular character. For ex
ample, in A(2). "2" is the subscript of A. Let's look
at the following picture and then you will be able to
understand array , DIM and subscript.

DIK ...
declare the
va.ria.ble a.s
a~ a.no/

A (5)

•·t Vari able

Marks
(from o to5

contalnin!J
6 elements)

Mark it f ron1 ~

The instruction DIM A(5) indicates that the variable A
i~ not an ordinary variable but an array . The array con
sists of 6 memory boxes , A(0) , A(l) , A(2), A(3), A(4),
A(5) . In general, a microcomputer starts numbering from
0. So, DIM B(l5) tells B is an array, and there are
16 memor y boxes(location) , the subscript is f~om 0 to 15.
There are altogether 16 subscripts ones . Distinguish the
following ordinary variables from arrays .

B
c (4?)

- 14 0 -

All right! Let ' s try a simple program to see if
you can understand it.

5
10
20
30
40
50

HOME Dec.lo.re A as art arm)' irl.
D I M A (1 2) the range 6l TO 12
FOR I c::r 0 TO 10' STEP 2 (c.onta1nirt9 13 mi:u-ks)

Au:> "" 3 * I p t the result of 3~I irtto
PRINT "A<"I")="•A(I} ,~ u AC1)

NEXT I Print the contain. of ACI)

The following are the results of the execution. Do you
understand the results?

JRUN
A (0) =O
A<6)::i18

A(2)=6
A=24

A<4>=12
A(10)=30

The following is another program and its result.
Are the results meaningful?

5 HOME
10 DIM A< 12>
20 FOR I = 0 TO 12
30 A (I) = I *

..,
40 NEXT I
50 FOR I = 0 TO 12
60 PRINT A <I>'
70 NEXT I

- 141 -

JRUN
0 2 4
6 8 10
12 14 16
18 20 22

_24

In BASIC language , there are two-dimensional
arrays and three-dimensional arrays. They are shown ·
below.

We will discuss DIM later , This is the end of
Chapter 6. Starting from the next chapter, there
will be a detailed and systematic introduction to
DIMs.

- 142 -

Next cho.pter
instructioYIS

related
f.o systen\

COMMANDS 'RELATING TO
THE FLOW OF CONTROL

- 1 4 3 -

- ~ --
~ ---- -- - - - ---- - ------ - --- - - ----- --

7 • 1 lnsbuction Analysis Related to System

Ever y compute r needs some instructions to tell the
computer what to do . If we analyze instructions system
atically , we may generally divide them into three groups :

1 . Instructions related to execution : For e xample , to tell
computer to RUN , to STOP , or to erase a program
(NEW) etc .

RUN NEW STDP····etc.

2 . Instructions related to editing and formatting : Editing
r efers to the process by which we put the program into
the computer through keyboard . In editing , perhaps we
want to omit some unnecessary statements , then we may
use i nstruction DEL . DEL means to delete , or eliminate ,
this is one of the editing instructions . Sometimes , we
have to clear the screen before we write another program ,
then we may use instruction HOME . Of course , there are
many other instructions , such as LIST etc ., which will
be discussed later in this chapter .

VEL HOME l..ts.,- ·~

- 145 . -

3. Instructio~s related to the communications with devices:
For example, to tell computer to print data or output
through the printer etc. PRTON and PRTOFF are such kind
of instructions.

- 146 -

T!ZTe>N , PRTaFF
PR:/C-Opy

7 • 2 lns'bllctions Related to Execution

Seven instructional groups are introduced to you
in this section:

1. LOAD and SAVE

These two instruct ions are useful only when the computer
is equipped with a tape recorder.

Cassette commands into cassette tapes . For commands
are used when storing data or program on cassette tape
or when loading program from cassette recorder onto a
microcomputer .

a . LOADT

. b . LOADA

c. SAVET

d . SAVEA

Load a file whose filename is ABC
from cassette to the MPF-II •

Load programs from cassette tape of
Apple II cassette format onto the MPF-II .

Store .the file whose filename is ABC
from the MPF-II to cassette tape .

Store program or data on cassette
tape of Apple II format .

SAVET

~
- 147 -

I / SAVET

2. NEW

Suppose you want to clear out completely all the
BASIC programs and variables in the computer , you have to
use NEW.

3.RUN

a. RUN means to run programs, but in MPF-II , you may
start from. any line number while you are running
programs.

5 HOME
10 FDR I = 1 TO 10
20 PRINT I;
30 NEXT I
40 FOR I ~ 1 TO 10 STEP 2
50 PRINT . I,
60 NEXT I FROM LINE NUMBER.

l/.O TO RUN ONL y
P-----~----------5-=. -EXE.CUTE. 7=RDM JRUN 40

lf.O TO 60, PR.V'(T
7 9 our I, 3, 5 , 7. 9

I "'

- 1 48 -

b . If the line number you gave to start execution
(RUN) does not exist in the program, the computer
will tell you that you are wron; ~na that there is no
such a line number (?UNDEF'D STATEMENT ERROR).
The svmbol ? means that the computer does not under
stand: UNDEF'D STATEMENT = undefined statement. In
the above example, if you run 45, and there is no
line number 45 in the above program, the computer
will tell you th_at you are wrong.

JRUN 45

7UNOEF"D STATEMENT ERROR

4. STOP, END and CONT

a. We have known that both STOP and END can interrupt
the program which is under execution. But, STOP
is not necessarily placed at _the end, there can be
several STOPs in one program, if necessary. When
the computer execute a STOP, it will display the
signal BREAK IN XX. Let's take a look at the next
example, in this program, there i s a STOP in line
number 40, so there is t~e signal BREAK IN 40.

1 (I FDR I =
20 PRINT I.

' 30 NEXT I
40 STOP

JRLJN
12345678910
BREA!< IN 40

1 TO 10

- 149 -

b . Suppose program is interrupted
can go on executing with CONT .
at i on of continue . Let ' s take
ing program .

10 FOR I = 1 TO 2
20 PR INT I;

by a STOP command , we
CONT is the abbrevi

a look at the follo w-

30 NE XT I
STOP HERE 40 STOP • 50 FOR I • 1 TO 5

60 PRINT IJ
10 NE XT I

While first executing the program , we run until
statement 40 . The computer stops and prints out
BREAK IN 40 , because there is a STOP .

J RUN
12
BREAK IN 40 E>-(---- STOP AT LINE 40

When we press CONT , t he program will go on ex
ecuting statement 50-70 .

JCONT~ USINq 11 CONT 1
' _, NOT "RUN"

12345

c . If a program uses END , the compute r will not give
any signal .

- 150 -

10 FOR I = 1 TO 10
20 F'RINT I;
30 NEXT I
40 END

JRUN
12345678"i' 1 (I

But , after END we can also use CONT to go on, please
try the following example:

10 FO~I = 1 TO 10
20 F'RINT I . ,
3(1 NEXT I
40 END
50 FOR I = 1 TO 10
60 PRINT r,
70 NEXT I

JRUN
1234567891(1
JCONT
1 ? 3
4 5 6
7 8 9
1 (I

S. CONTROL C and RESET

a . The action of CONTROL C and STOP is the same ,
but CONTROL C is entered by the operator to
stop the program execution at any point . For
instance , when we are performing the following
program , the computer will go on printing MR .
SHIH . If we want to stop it, we may press
CONTROL C , but the computer will also print
out BREAK .

- 15 1 -

10 'PRINT II MR. SHlH ,,
2.0 ~OTO 10

JRUN
MR· SHIH
MR· SHIH
t1R·SliIH
M"R. · SHIH
MR· SH.II-I

BREAK 11'1 10 'BRE-AK

b. When we press RESET, we can also interrupt the
execution of the program. But the program
will not disappear, and there will not be
the signal BREAK .

c. Suppose we use CONTROL C to interrupt the pro
gram, we may use CONT to go on. While we use
RESET, we have to run from the beginning.

CONTROL C -to ;nterr-urt the J>Yo9ra111, CONT to go on.
rf_ you use control C to

d~ ~ interrupt the pro9r-a.m
.··· CONTROL C

/}

'RESET iS
use to i nl:err·upt,

'., ha.ve to start o.gairt.

RESET to ; nte.,..rupt , 'RUN to execul:e o.9a• t1 ·

6. TRACE and NOTRACE

a. If you want to follow the process of execution of
a program, you may use TRACE. Before you run, you
first press TRACE and RETURN. Consequently, when
the program is executing~ the computer will show
you the line number of each statement as it is
executed. Here is an example:

- 152 -

10 FD~ I • 1 TO 2
'.20 PRINT IJ
30 NEXT ~I

JTRACE ~(;....__~~~~~
FIRST TYPE TRAC.E

J RUN (THEN TYPE "R.UN
#10 #20 1#30 #20 2#30

Llt NO. !.N01~~E N!NJ'~~JI UNE NO.
/0 20 1 30 N0.20 2. 30

b. The main function of TRACE is to help a programmer
debug, TRACE functions as an aid which helps correct
any errors in a computer program.

A/JP.relp ~ +o
L<JJ.i>ersta.tid -the.
execul: iol'\
-p1-oced<-< re .

c. NOTRACE is just contrary to TRACE. When you don't
want to use TRACE, you may press NOTRACE, the
activity of TRACE will be ended then.

d. Once machine has been put in the TRACE mode, only
NOTRACE can end the activity of TRACE, while NEW
and RESET cannot.

NOTRACE. TO clo<;;E rHE T,eACG commah.d.

- 153. -

7. POKE and PEEK

a. POKE and PEEK are the two instructions which re
quire more background to use than other BASIC
statements. Suppose you want to use these two
instructions efficiently, you have to understand
the memory assignments of RAM and ROM in computer,
therefore, we suggest that you comprehend the
hardware structure of microcomputer first before
you use POKE or PEEK.

b. POKE means to put data directly into the computer's
memory; mind you, you can only poke data into RAM,
but not ROM, because the data in ROM cannot be
changed. When you poke, you have to indicate two
things:

1. What to POKE.

2. The address in RAM at which to poke the value.

potc.e 15000, S6 .. .
,t\J:>l>l<.E:~S :PAT A

(deci"'-o.I) (deci l>'\0.1)

POKE 15000,56 means to put 56 at address 15000.
Here, in · order to make ii easy for us to use the
computer, both 56 and 15000 are decimal numbers.
But the decimal numbers will be changed into bi
nary numbers in computer in order to store the
data.

c. The data of microcomputer is stored in a byte
(8 bits), so the data you put into must be a
number between 0 and 255. If you try to POKE
a number outside the range 0 to 255, the computer
will tell you:

ILLEGAL QUANTITY ERROR . Here is an example:

- 154 -

10 Pm~E 15000.259
~ ------ data. exceed 25S

JRUN

?ILLEGAL QUANTITY ERROR IN 10_ __ , ____ . ~ '--y--J

d. The address of POKE must be a RAM address, the
maximum address of the MPF-II is 65535. If you
go beyond this number, the computer will also
tell you: ILLEGAL QUANTITY ERROR, but this time
address is wrong.

o.dd ress exceed 65535

JRUN

?ILLEGAL QUANTITY ERROF~ IN 10+-

e. Suppose you want to access the data at a particular
address directly, you may use t he instruction PEEK,
and you only have to give the computer the address.
For example,

10 A == PEa: < 120> ~(--- Put the do.ta. of address 120
into vc:tri11b/e A

20 PRINT A 'lllliE~------ fRzNT out. A

- 155 -

10 FOR 1 = 0 TO 10
20 A = PEEK <I>+---
30 F'RINT A.
40 NEXT I

J f\l.JN 176
"76
2~.~~5

2551
J>afo. Stored dat<l stored
in. addrass Ill ir1 address 'I

212
~m

2~rn
76

1
:Data irt
address 10

r~l~ } Result

data irt
()c/dress 5

Now, let's try the combined function of PEEK and POKE.
Try this:

1 o POKE 15000 ~ 56 +-- Poke 56 to the aclclress I Sooo
2~> A •= PEEi•: (15000)f-- Move , the data. in. 15 ooo to
30 PR I NT A va.Yiable A

p,..;nt Value of A
Jl~UN

56 Result

1C> ~: :: (l

20 FOR I = 15000 TO 15005
30 POl<E I , K
40 ~: •= K + 1

50 NEXT I ~---------'
60 ~: c: 0 4-----------
70 FOR I = 15000 TO 15005
80 A<K> = PEEK (1)
90 I< = ~: + 1
t 00 l\JEXT I <:-------._J
110 FOR I = 0 TO 5 ~-----
1 '.:'!O PR I NT II A (II I") c: II ; A (I) '
130 NEXT I ~~-----....J

- 156 -

Poke the data. ISi ~s -to
the address 15000 - /.5005

PEEk i:he data in address
15000 -1.5005 -t::o the
arrcry Ack)

Pr-int out the result.

7 • 3 lnsbuctions Related to Editing and Fonnat

Nine instrT::tional gro :1ps are introduced to 'f'J'J in
th i 3 S:·?G t iori:

1. LIST

LIST ai explained earlier means to list all part~ of
a program. But ~ ~PF-II may also list part of a program.
For instance, suppose we want to list part of a program .
We may use :

5 DIM A<:W)
10 FOR I = 1 TO 20
2(> A (I> -- I -* 5 + 8

\

30 NEXT I
40 FOR I == 1 TO 20
!':10 F'f~ I l\lT A(!)'
60 NE:XT I

:n .. rnr 2(»-40 <----- . Print out from /;ne r{o, 20 to LfO

20 t'.'\ (I > ""' I * 5 + 8 J
30 NEXT I
40 FOR I ~ 1 TO 20 .

onjy 20 --- 40

- 157 -

2.DEL

DEL is the abbreviation of delete. DEL means to remove
or eliminat~, e.g. to remove a record from a master file,
Suppose you want to remove line number 30, you may use:

10 FO~ I =I TO 20
20 PRfNT A-(l:)

· (J>.ELETE. LINE 30)

Suppose you want to remove line number, 50 to 80, you may use:

3.REM

:DEL .So • ..
STARTI/{q

UNE.

REM is the abbreviation of remark. When the computer finds
a statement REM, it will ingore it and not perform it. REM is
needed to let others read easily the program or for documentation
(reference) purposes. When a program is complicated, REM becomes
rather important.

10
20
30
40
50
60
70
80
90
10C>

m::M PROGF~AM 1 +-- means -!:his is p,..09ram !
DIM AC20>
REM ASSIGN A<I>~

A (I) = 5 * I + 2 .J:\ssijrt the
FDF~ I "" J, TO 20 ~

NE x T I f valve of A(I)

m::M PRINT (~ (I) f--p,..;rrt out
r=rm I = 1 TO 20 .4CI.)
PFUNT A<I>,

NEXT I

- 158 -

REM iS
onjy for
comrnerttS

4. TAB, SPC and POC

a. The TAB command is used to set tne cursor horizontally.
TAB can be used to start the printing of data at any
required column . TAB is usually associated with PRINT.

IN NEXT .EXAMPLE, PR.IN'T OUT I>ATA 5 AT 10th '!>DSITlot{

PRIAJI TAB(IO) •
' .. 5

10 READ A,B J;
20 PFHl\IT TAB (10>1A"

30 DAH\ . 24,234

rnuN
24 234

TAFJ <. ~?())I B

1:

10

2-h. ...
ll'lpUT 2.'f
FR0/'1 TH.E
!Oth POSITLCN
II{ A J..IKE.

'Priflt A from the.
toi:h positior\

7>,,.;rrt B
frum -rhe
position.

23'+ • TI:fE 20th
"f'OSITlON

lN A ut<s

2.0th

b . SPC is the abbreviation of space. SPC (20) means to move
the cursor over 20 spaces horizontally. Let's study the
following example and compare the differences between SPC
and TAB.

- 159 -

10 PRINT "AAAA"; TAB (15) ~ "AAAAA
A"

20 PRINT "BBBB"; SPC (15); "BBBBB
811 . t 15 B.lanks

The 15 F>oSit/on
JRUN ~
AAAA AAAAAA
BBBBL .JBBBBBB

p- 15 Blo.nl<s ~

~8 (JS>

c~~m
~

SP~ (15''

c. POS is the abbreviation of position. POS reports the
position of the cursor . Usually, we have to add brackets
behind POS, and the qumber in the brackets makes no
difference, for examHle , POS (0) and. POS (15) bear the
same meani~g. Let's 'try the following example, we may
understand better the implication of POS (0).

1CI PRINT "AA?'"; POS (0) ~
20 PRINT "BBBB" R P0!3 (12)~

JRUN
AAA:3 ~·--- Position 3
BEIBB4 (Position 4

oom
11'<>5 co>"'" posc•o) ;s -lhe some ~

mean less of -l::his number

- 160 -

Now , let ' s apply the combined function of TAB, SPC and
POS. Try the following two programs .

] 10 PFUNT

:120

JF~UN

10

20

J f~UN
Af~A

Bl3r::1

PRINT

PFHNT
PD!3

Pf·U NT
P08

TAB~23>;P08(0)

8PC (23 >.A F'OS <O)

~
from

22 t23 f rorri

"A(~A"J TAB(1 0) ~ II AAAA II ;

(0)
"BEtB"; 8PC(10); "BBBB";
(0)

J;
fron1 13th positiort

AAAA13
BBBB17

23th position

23th posit.; 011

1h;>1.k O.boui ,-f;J

t_ from -the 17th position

5. HOME, NEW and CLEAR

a. HOME

Instruction HOME tells the computer to clear the screen
and to remove the cursor to the beginning of the screen.
Remember , although s~reen is cleared , the program within
the memory is still there .

b. NEW

When you press NEW , the screen is not cleared , but the
program within the memory disappears . The actions of
HOM E are just contrary to the actions of NEW .

c. CLEAR

CLEAR can clea r out some var iables or array in the computer .

- 161 -

6. FRE(-)

This instruction tells you that how many memory
addresses there are to be used , it uses byte as unit . It
is to be used with PRINT , the usage :

PRINT

7. INVERSE and NORMAL

-r-Jow Y'V\Ot~
m e >'>'\Ol'.Y

o.dd resses
/e f't?

When you press INVERSE , the characters on the screen
and the background will reverse colors . For example if
a character is w~ite with blue background, it will t~rn into
blue character with white background . NORMAL is to be used
to put the screen into original condition .

1NV~Rse

8 . SPEED

We may assume the speed at which the screen displays
the characters , when SPEED=0 , it is the lowest speed and
when SPEED=255 , the highest speed . An attempt to use a mumber
la~ger than 255 will result in the error : ILLEGAL QUANTITY
ERROR .

JSPEED=-300

? ILLEGAL QUANTITY ERROR f-- Somei-hin.9 wron_9, its
i lle3 o. / vo. / ue.

- 162 -

Now , try the following proram and note the change of
display rates.

10 SPEED~• 1 Slow
20 FOR I 11111 1 TD 100
30 PRINT

I ' 40 NEXT I
50 SPE;ED•" 255 fast
60 FOR I "" 1 TD 100
70 PFHNT I p
ElO NEXT I

9. CONTROL X

CONTROL X tells MPF-II to omit the statement on t h e
correct line. There will be the si g n ",. at the end.

J10 FOR I~l TO 10\

t Symbol after con-l:rol

- 163 -

7 • 4 Conb'ol Instructions of Printer

In MPF-II, there are three instructions to control
the printer: PRTON, PRTOFF and HC, Control - P.

1 . PRTON is the abbreviation of PRINT ON. It can deliver
the data shown in the screen to the printer to be printed out .
But it can not print out data with pictures.

2 . PRTOFF is the abbreviation of PRINT OFF . It can clear
out the activity of PRTON.

3. To print out a hard copy of what is on the video
display , press the H and C keys at the same time or press
the Control and P keys simultaneously .

- 16 4 -

---11 8

VARIABLE, OPERATION
AND STRING

- 165 -

In computer programs , we can use a variable to re
present the address of a memory . The function of each
variable is the same with that of the memory in a compute r.

In computer, variables can be divided into several
categories :

1 . Value variables , such as A, B.

2 . String variables , such as A$, 8$.

3 . Array variables , such as A(lQJ) , A(3 , 5) , A(4 , 5 , 8) .

Computer operators can be divided into three cate
gories :

1 . Numeric operators , such as + , -~ *, / .

2 . Comparative operators , such as >, <.

3 . Logic operators, such as NOT , AND , OR .

- 167 -

8 • 1 Value Variable and its Operation
In MPF-II, variables are divided into two groups :

Integer : We have to add "%" after integer variables.

Real Number : MPF-II assumes a real number if the variable is
not specially assigned .

1. Integer:

In MPF-II, each integer in computer memory occupies
two bytes ; that is, 16 bits. Integers are limited values
between -32767 and 32767 . If we want to change a real
number into an integer, we can specify an integer on the
left side of an equal sign. Try the follo wing program ,
and then you will be able to understand how to convert
a real number into an integer .

1 (I FOR I c: 1 TO
20 A = RND (1)

30 Al. :;::: A
40 PRINT A~Af..
50 NEXT I

JRUN
6.83882197
1.61870576
1.106289
5.67606013
4.31100663
4.70451467

RfMGH 13EO-r2. THf
!v'IAR.lc "96"

*

6
1
1

6

5
4
4

6 +

- 168 -

1

. I

The following program points out clearly that A and
A% are two different variables -- the former is a real
variable, the later is an integer variable, and both can
coexist .

10 FOR I = 1 TO 15
20 A ::: I I 3 Reo.I
30 A/. ::I A
40 Pf~ INT A~A/.

Cha.n9e to 1nte3er

50 NEXT I

JRUN J:
7,-,, 7. ~ ~?. ~~ "?," ~~ ~

• ,_, •.J ._. ,_, •.J •.J ·.J ,_, ._. 0
.6(;,6666667 (I

1 1
1.33333333 1
1.66666667 1
2 2
2. ~5333~3~53~~ 2
2.66666667 2
3 3
3.33333333 3
3.66666667 3
4 4
4. 33333334 4
4.66666667 4
tS ~

When applying integers, please don't use You
can not write the number 32000 as 32 ,00 0.

2. Real number:

In MPF-II, the range of real numbers is between
+9.99999999E+37, and the effective number of digits is
nine . Therefore , at most we can ha ve nine digits.

- 169 -

In printing a number, if you want to predict its
format, you.can follow the following rules:

a. Suppose it is a negative number, the negative sign
will always be printed out. For example:

JPRINT

t1584

Print nega.t ive si911.

b. Suppose the absolute value falls between 0 and 99999999,
it will be printed out as an integer. For example:

JPRINT 111111111*9
9~999r7999

c. Suppose the absolute value of the number is equal to
or is more than 0.01 and besides less than 99999999.2,
it will be printed out in fixed point representation
and without exponents. For example:

JPRINT O. 01 ..,. _____ _ > o. 01
• 01

JPRINT 999999999. 199r-- < q.qc,qqqcrqq, 2
999999999

- 170 -

Zo.o/ 4'JD
.C:.. <'1'19199999.2 .f'txElJ

poi,:ct repfese1rttJtp0

d. Suppose ~he limitation of the number is not included
in items band c, it will be printed in scien-
tific representation.

'FDR fX/iMPlE :

JPRINT 111111112*9
+09

t o.t most 8 ze t L[__ expMent
Note. . positive or ne.go.tive s;gns

exponent

JPRINT 999999999.21
1E+09

If the real number is printed out in scientific re
presentation, before the decimal point, there must be an
non-zero number, and after the decimal point there should
be 8 places at most. E stands for exponent which is
followed by either a negative or a positive sign and two
places for exponents. Any leading zeroes are not printed.
Trailing zeroes are also not printed. If all digits
after a decimal point are all zeros, then the decimal
point together with those zeros are all omitted.

O. ot>Z o. 004-60

• ~
·()02 ·0046

- 171 -

When an exponent is present , the negative and positive
signs will be printed . A "+" is printed when the exponent
is a positive in~eger , and a "-" is printed while the e x
ponent · is negative ; print the exponents of two digits (th e
first digits is always 0 , because the effe~tiv~ number of
digits is nine .) We can now make us e of the chart below ,
to study scientific representations :

general notation

1 000000000 4-(--~> 1 E +0 9
.000000001 (~ lE-0 9
- 123456789 (•) - 1234 5 6 789E+ 08
-.001234567 89 () - 1. 23456789E-03

3. The operation of M PF-11

REMEMBER. TWO

l<LNDS OF
REPR..E.SENTATlON
METl-101>5

MPF- II operators can .be divided into three groups :

a . Numerical Operators : shown below.

+, - , ¥,/, , ,

b. Relative Ope rators: shown below.

<, >, .> < >, > ,<

-) 72 -

< LESS THAN
> qRE.AT£R THAN

EQUAL
< > NOT EQUAL
> = 6-RE.ATf R Tl14N OR EQUAL

< . LESS THAN OR EQUAL

These operation symbols are used to compare the re
lationship of two numbers . In MPF-II, if the comparison
is true , the computer wi ll re turn a l; if not , it will return
a 0.

Pay close attention to the following program and its
results.

I 0 PR/A/T s) t/- I
J.O PRl)J7 4- --=-s - ~1 I
30 PRJA/T !:J. == 3 t .,..--------+ I
4.o P-RtA!T 3 "';~;~--------+ o
/>-O PR/I.IT .9-8:::;. I I
oo PRWT '8- ~ > lj. ------ 0
'JO pRWi /.J. > = Jk- ti- 0
~" PIWIT Pt< > 4.2 "" 8 ___ __,, 0
10 PRIVT (>fl.< ~~{L.f-2----- o
IUD PR IVT 3 t/- > I :J~ Jl 0

Yes

II
Ta--ve

- 173 -

c. Logic Operators

In MPF-II, there are three logic operators

AND, OR, NOT

If you want to get a 1 from an. AND operation, the number
on each side of the AND must be a ·1. This is shown below.

1 AND 1 = 1

1 AND 0 = 0

0 AND 1 = 0 0
0 AND ·O = 0

smart cmd
/oveI,y

If you want to get a 1 from an OR operation, either one or
both of the numbers on each side of the OR must be a 1. This
is shown below .

1

1

0

0

OR

OR

OR

OR

1 = 1

0 = 1

l = l

0=0

L:1
~

smart or
/ovey

In a NOT operation , you get a 1 from a 0, and get a 0 from a 1.
This is shown below .

NOT 1 = o

NOT 0 = 1

Here are some examples:

JPRINT C5>4> AND (3)2)

1

- 174 -

Because both 5 > 4 and 3 > 2 are true, the result will be 1.

JPRINT <3<2> DR (1(0)
0

Because 3<2 and 1<0, are false, the result will be 0.

JPRINT NOT<~'D4>
0

Because it is true that 5 > 4, but operated on by NOT, the
result is 0.

The following program demonstrates logic operations.

JFWN
10 PRINT NOT ((3 + 4) > :::JI 4) 0
20 PRINT (9 = 8) OR (4 * 6 > 3 * 4) 1
'.!:O PHI NT (9) (]) ()ND rn > 3) 1
40 PRINT (9 * 2 } 3 * 5) AND (2 * 3 > 54 * 2) 0
50 PRINT NOT (3 t:ll 2) 1
60 PRINT (2 cc 3) OR (21 = 7 * 3) 1

70 Pf~INT 12 > om 35 - 4 0
80 PRINT 34 < > 42 cm 8 0
90 PRINT 54 < :m 34 + 2 0
100 PRINT 34 * 12 > 1234 0

- 175 -

8 • 2 String
A "$" ~ust be added to string variables. The string

instructions that are used by MPF-II are shown below.

VAL(A$) LEN(A$)

CHR$(X)

STR$(X)

ASC(A$) LE FT $ (A $, X)

RIGHT$ (A$; X) MID$(A$,X,Y) +

We have learned the following string operators in chapter 5.

If you don't remember , please review these operations .

LEN (A$) Lf.FT$(A$,X)

RI~HT $(A$.. X) MIJ> $ CAef>,x, Y)

There are five remaining string operators that we have
not learned yet. They will now be introduced one by one .

STR$ CX), VAL c A$) C.HR$(X.) ASClA$) I

1. STR S(X) and "+"
STR is the abbreviation of string. STR$ indicates that

we should convert the value of X in the brackets, which must
be a number, into a string.

STR$ ex>
INVERSE THE

VALUE of X To

a. STR.IN~

- 1 76 -

In the following programs, you can separate the seven-digit
telephone number into two parts by using a "-" fdr fhe separa
tion. For example:

'7014733

3219742

1627535

chan9es to

changes to

che;tn9es to

70/-4733

32/- 974-2

762- 7535

10 INPUT "TEL l\IUMDEH II' A
20 [1$ "" ElTR$ (A) t------ Chanse· the nvmber to a str;~

t------ Get. the left. most th1ee ch~ractel'3
t------. frnM str;ng B.$

30 C$:::I LEFT$ (8$~ 3)

40 0$ c: RIGHT$ (8$.4)(

l6et the right most foUr chwacters 50 PRINT C$
60 GOTO 1 (I

muN
TEL NUMBER
321-9742
TEL NUMBER
701 - 4733
TEL NUMBER
762--7535
TEL NUMBER
708-2273
TEL NUMBER
381-0653
TEL NUMBER

BREA!< IN 10

+
... _ ..

+ 0$

t 'L----- frorn string t!,$

--------...J CofYlb7ne two wit.h ''-" Sb-lnjss

3219742

7014733

7627535

7082273

3810653

- 177 -

2. VAL(AS)

VAL is the abbreviation of va lue . The function of
VAL(A$) i s the reverse of STR$(A). Try the following pro
gram and then you will see how VAL$ works.

10 A$ = "53"
20 B$ = "12"
30 PRINT VAL CA$ + 8$)

JRUN
5312 .. <~---

1 (I (\111 IC II 21 11

20 B$ 1111 "12"
30 X •~. VAL <M1)
40 Y om Vl.\l. CB$)
50 Z ~ VAL <A$ + D~)
lJO Pl{ I I~)·)(• V" 1.
100 ENI)

R_VtN
21 12

10 A$ = 111211
20 B$ = 11 13 11

30 x = VAL (A$) + VAL
40 y = VAL CA$) * VAL
50 z = VAL (A$) - VAL
60 PRINT X,Y,Z

Convert the cor11bined
~ strin.9 Tnto t:he number

JZ34$

(B$) AJd the value c.orivetted ftor11 the stti~s
(B$) Mvl~;ple. ihe volue co>T~ f- the sbl~s i

(B $) Svbshact the value convene..! f rom -f:lte sl:J';'.'JS

- 178 -

JRLJN
25 156

iS
- 1

lJ {r
(j.2.+13) (/.2. x I~) (12-13)

3. What is ASCII? (It stands fol'. Ame d can Standa l'.d Code
fol'. Infol'.mation Intel'.change)

a. We have known that the compute!'. deals only with
binal'.y digits . We call this binal'.y digit a binal'.y code .

b . In othe!'. wol'.ds, the cha!'.ac te!'.S (such as A, B, C, • •••),
digits (121 ,1, 2 , •• ••) , signs(+,-,*,/) used by com
putel'.s al'.e all l'.epl'.esented by binal'.y codes .

c. If we don't have a standal'.d binal'.y code , it would be
vel'.y inconvenient. But now we have al!'.eady had i t
standal'. i zed, and the mo s t popula!'. one is the Ame l'. ican
Standal'.d Code fol'. Inf ol'. mation Intel'. c hange (ASCII).

AmericM Standard Code for- Information lnierchQJt!je

ASCII

d . Th~ A in t~e ASC II is l'.epl'.esented by 121 1 121121121121121 1 b ina l'.y
~h ich 65 in ~ec imal system. The L in the ASCII is
is 12111211211 10121 b in a l'.~ ~hi c h is 78 in decimal system.
Eac h cha!'.~c ~el'. , digit, and sign ca n all be l'.epl'.es e nted
by a s~ec i f ic ASC II code and i n ol'.del'. t o be easil
l'.ecogn ized.each has an equivalent decimal numbe l'.. y
The following table lists the al phabetic decimal
ASCI~ codes . Be ca use a by te is equal to 8 bi ts
and _is equal to 256, the digi t s l'.epl'.esented by
decimal ASCII codes al'.e between 121 and 255 .

- 179 -

CHFIACTER

A
B
c
D
E
F
G
H
I
J
K
L
M
1\1'
ll
p
Q

R
s
T
u
v
w
x
y
z
(

DECIMAL ASCII

65
66
67
68
69
70
71
72
73
74
75
76
Tl
'78
79
80
81
82
83
84
85
86
87
88
r:l9
90
91

- 180 -

----/
/ H iS 72 '

ASC11 c.ode t:he 0
/S o1oofoO

4.ASC {AS)

a . In BASIC language , there are two instructions to
handle ASCII and string conversions . One of them
is the i nstruction to change a string into an
ASCiI code . The instruction is ASC which is the
abbreviation of ASCII . For example:

PR.rtJT
bS

("L1") ASC r-

The computer prints 65 . From the above example , we
realize that what is printed by the computer is not the
real ASCII code represented by l's and 0 ' s , but the
ASCII code represented by the decimal system .

PRINT
65<

ASC C ''A B")
t I on!Y l>rint the f;rst

cho.rncter

In the brackets , there a r e two characters , A ar B ,
b u t the c o mpute r only prin ts 6 5 . From the abov e exa~ i e ,
we r ea li ze that the ASC ins truct ion only changes the
fi rs t c haracter in a st r ing into decimal ASC II c odes .

b . The brackets after ASC can also be used with other
string operations. See the following example :

The results of the two programs are the same . The
t wo sta tements o f the first prog ram line s 20 , 30 ar e e q ual
t o those of the sec ond program li ne 20.

- 181 -

·10 AS • "MICRO"
20 B~ • MIO$ (A$,3,1)
30 PRINT 8$"=" ASC (8$)

10 A$ = "MICRO"
20 PRINT MIDS <A$,3,1)"=" ASC

(MIDS (A$,3,1))
30 END

In the examples above, because A$ assigns the string
MICRO, we get the third character from MID$ (A$, 3, 1),
the result of the printing is 67 which is the decimal
ASCII code of C.

c. Here is another example for your understanding:

10 A$ == "MICRO"
20 8 = LEN <A$)
30 FOR I == 1 TD B
40 PRINT MID$ (A$,I,1), ASC (MIDS

<AS, I, 1))
50 l'JEXT I

You will certainly realize the answers that are printed.

- 182 -

:JRLIN
CHA MJCI I
M 77
I 73
c 67
R 82
0 79

5.CHR S(X)

a . CHR is the abbreviation for character. CHR$
which is used to change decimal ASCII code into character
or sign is ASC's. For example:

PRINT CHR$C,65)

A

(~.HR$ CX)
CHN·<t:iE ASCII Co1>E

TO A c"HARACT£R
o"R. ITS syf1BoJ.., ·

b. To build a table of decimal values and their ASCII
equivalents, you can run the following program . This
program starts with the decimal value 32, before 32
there are some display control codes which might in
fluence the computer operation . Line 32 is empty,
because decimal.32 is a space in ASCII codes.

JLIST

10 HOME
'.20 FOR I = 32 T'J 1!;
30 PR I NT I ; II ". CHR~li (I) '
40 FOR K = l TO 500: NEXT K
:'::!O NE=.:XT I

- 183 -

The following diagram is a part of the result shown on the
screen.

JRUN
-.. ') ._,.,_ 3::i; 34 II

:~o ti 36 Ill 3·1 'X.
38 8< :39 40
41) 42 * 43 +
44 45 46
47 I 48 0 49 1
50 ,..,

"'" 51 3 52 4
53 5 54 6 55 7
56 8 57 9 58
59 60 < 61 ...
62 > 6:3 7 64 @

65 A 66 B 67 c
68 D 69 E 70 F
71 G 72 H 73 I
74 J 75 ~~ 76 L
77 M 78 N 79 0
80 p 81 Q 82 R
83 s 84 T 85 u
86 v 87 w 88 x
89 y 90 z 91 [

92 \ 9-:-:] 94 ,..,
......

95

139

- 184 -

8 • 3 Array

1. Array variable

The variables used in sect i on 1 are called simple
variables , because each variable can only represents a
digit or a string . But in mathematics , we often need a
variable to represent a series of digits . Similarly , in
a class , we have so many names , so we often need a variable
to represent a series of strings .

Array variables ~an be divided into three groups:
a . Integer array variables , such as A%(8 , 5) , B%(2 , 4) .
b . Real number array variables , such as .A(9 , 5) , D(S , 9) .
c . String arra y va r iables , such as A$(10 , 5) , C$(6 , 8) .

2 . DIM

When g1v1ng the array a name , we need to include the
size of an array . DIM is t he abbreviation for dimension .
There are one-dimensional , two dimensional and multi
dimensional arrays .

DIM

a . The follow i ng diagram i s a one- dimensional a rray .

- 185 -

~
d >wien..s •'O>'\a l

"'r-""°'y

b . The following diagram is a two-dimensional array . In
DIM A(7 , 3) 7 indicates the number of rows ; 3 indicates
the number of columns .

7
])I M A C7,3)

t t

c . The following diagram is a three-dimensional array .
In DIM A(7 , 3 , 6) , 7 indicates row ; 3 column ; 6 tier .

d . The following diagram is a four-dimensional array .

- 186 -

I I

3. One-dimensional Arrays

a. DIM A(20) is a one-dimens ional array

DlM AC2o)

It shows that the name of the array is A and there
are altogether 21 variables, from A(0) to A(20). The method
of accessing these 21 variables is the same as accessing
the common variables. Any dimension variable can be accessed.
For example:

• • • • A(4) • • • •

This statement means after we add 32 to the number
in variable A(6), we put the result into A(5). 5 and 6 are
called subscripts. Subscripts are used to·access a specific
variable (element) in an array.

b~ In the following program, we can return all the digits
in the array to zero.

10
" 2(1 •

30
40
50
60
70

DIM A<12)1------------~~~---,
FOR I = 1 Tl,) 12 ~turrt i:he value of

A <I) = 'Q 4(:....---- "I'' to be "Q

NEXT I
FOR I = 1 TO 12 .-(----
PRINT .A< I>, } Pt-int ACI)

NEXT I ~(~----------~-
muN
0 ()

0
0
0

0
0
0
0

0
0
(I

- 187 -

c. In the f ol lowing program, we can take some numbers and
sequentially put them into the array. Look at the result:

d.

:JHUM
Al.< 1> i::::85
A/.(3)c60
A'l.<5>=42
A'Y.<7>=37
A'Y.(9)=29
A'Y.<11>=12

?'I. (2) t<•05
A'l.(4)=27
A/.(6)=88
A'Y.(8)=13
Al. <10 > =84
A'Y. < 12> =82

The following program, rea ds 8 numbe rs
and then prints them out,

10 OIM A (8·)
20 FOR I = 1 TO 8
30 READ A <I>
40 NEXT I
45 FOR I == 1 TO 8
50 PRINT "A<"I">="A<I>,
60 NEXT I

in an a rray

70 DATA 12,13,43,21,56,78,9, 102

JRUN
A<1>==12
A<4>=21
A(7)=9

A<2>=13
A<5> =56
A =102

A(3)=43
A<6>=78

e, The following program, demonstrates how to use one
dimen~ ional dig it variabl es and string va r i ables .

- 188 -

. C"
..J DIM A$(~) , N q_)

10 V$ = "DOLLARS"
FOR I = 1 TO 3
READ A$ CI> , NC I)
NEXT I

20
30
40
50 HOME
55 FOR I = 1 TO 3
60 Pf<INT A$CI>" H/\8 11 N<I> 11 "Vt
70 NEXT I
00 DATA BHIH,250~LIN,123,HUE,40

(I

JRUN
SHIH HAS 250 DOLLARS
LIN HAS 123 DOLLARS
HUE HAS 400 DOLLARS

4. Two-dimensional A1Tays

The following example demonstrates how to use a two-
dimensional array:

10 DIM AC3,3)
20 FOR I = 1 TO 3
30 FOR J = 1 TO 3
40 ACI,J> = I * J
50 NEXT J
60 NEXT I
70 FOR I = 1 TO 3
75 FOR J = 1 TO 3
80 PR I NT II A (II I II' II J '·')=II A (I' J) ; II

".
' 90 ULXT J

Joo PRINT
110 NEXT 1

- 189 -

$

Jf~UN

A<l,1>;.1
A<2, 1> =2
A <3, 1> =3

A<1,2> =2
A<2,2> =4
A<:~. 2) =6

\ '·

5. Three-dimensional Arrays

A<l,3> =3
A<2,3>=6
A< 3 ,3) =9

The fo l l owing p r og ram demo nstra t es how to us e a t h ree
di mens i o na l arrays .

1 (I DIM A<3,3,3)
20 FOR I = 1 TO 3
30 FOR J = 1 TO 3
40 FOR K c:: 1 TO 3
50 A<I,,J,1<:> = I * ,) * K
60 NEXT I<: NEXT J : NEXT I
70 FOH l .. , 1 TO ::~

(N IOI< ,) 1t11: 1 TO ::s
9(1 FUR v = l HJ ~

100 PRINT "A("IN, 11 .J", "K") ="A(I,J
'I(); II II •

' 11 (l NEXT
'

120 PRI NT
130 NEXT J: NEXT I

Tyy it now, and f;n.d t he t-esul-1:

- 190 -

t{E.XT c.HAPTER

rNpur , ourpuT

AND p/ottln:J

INPUT AND OUTPUT
INSTRUCTION

- 191 -

9 • 1 INPUT and OUTPUT Instructions

The following instruction groups are described in
this chapter.

1. IN'PUT A, INPUT A$ INPUT "XY"; A

2. REAJ> · · · · -<Z>ATA · · · · · · RE.STORE

3. GET
4. PR.INT "X= ''; X

S. X>EF FNA<X>= X * X+ 2 * X +3

Most of these ins tructions have been used in the
previous chap t ers, the following instructions are those
we have not described before .

G£ TA$ ' RESTORE , T>EF FNA (X)

- 193 -

1. INPUT instruction

In general, input instructions can be classified
into four groups:

a. Accept as input a simple number variables for
instance:

1 Cl INPUT A
20 FOR I 1 TO A
30 S = S + I
40 NEXT I
50 PRINT "SUM=";S
60 END

>RUM
?10000
SUM=50005000

What we get from this program is the sum of 1 up to
the input variable A. In this example, we entered
10000, the sum is 50005000.

b. Accept as input a string variabl, for example:

A$
A$ P,.-;nt the sfr;ng

10
20
30
40
50
60

INPUT
PRINT
PRINT
PRINT
PRINT
PRINT

LEN <A$> , Covnt the Ieng-Ch of the string

JRUN

LEFT$ <A$, 2 > - h;nt the left most 2 character
RIGHT$ <A$, 3 > of string
M 10$ <A$, 4, 3) -,,,.1)..;rrt the r;ght most ~/~~~~rr

~f rint 3 cho.racters from the 4th
one

?MI CRCJ Pf~OFESSOR

MICRO PFmFESSCJR
15
MI
t:Jtm
rm

- 194 -

The string is input first and is then used in the program.
In this example , we fir s t entered "MICRO PROFESSOR"
and then computed the length , the first two characters,
the last three characters , and the fourth, fifth and
sixth characters in MI CRO PROFESSOR.

c . Request and accept a number variable, for example :

10 INPUT "ENTER TWO NUMBERS
,B

20 PRINT A"+ " B"="A·
30 PRINT A" - "B"="A
40 PRINT A"/"B" = "A
50 PFUNT A"*"B"="A

JRUN
ENTER TWO NUMBERS
123+343=466
123-343'-=-220
123/343~.358600583

1 ~~::n :H ~;,:;::i 4 2189

+ B
B

I B

* B

123,343

II; A

In.this pro~ram, we first put A and Bin and then printed
out their sum, difference, product and quoti e nt .

d . Request and accept number variables and string var i ab l es ,
for e xample:

10

20

1 NPUT "ENTER Ymm Nt\ME t\ND AG
E II; N!fi. A

PRINT "MR. "N$" YOU ARE "A" Y
EARS OLD"

30 GOTO 10

Jlc;:UN
ENTER YOUR NAME AND AGE SHIH,43
Ml~. SH I H YCllJ 1~f~E 4 3 YEAf~S CJL D
ENTER YOUR NAME AND AGE LIN.41
MR. LIN YOU ARE 41 YEARS OLD
ENTER YOUR NAME AND AGE

- 195 -

input ihe siring,
then -!:he r1vrnber

2. READ·· ... ·DATA AND RESTORE

We have used READ and DATA before , now we will combine
them with RESTORE.

a. When you perform READ • •••• DATA, there must be enough
data, otherwise, the computer inform you of insufficient
data.

10 liOMl::
20 m::rm A
30 PFUNT A~

40 C1DTO 20
50 DATA 33,44,5,66,7,88,99,80,9

999

JRUN
33
66
99

44
7
80

5
88
9999

?OUT OF DATA ERRdR IN 20 ~---- · do.ta. error

b. If not all the data is used, the computer will ignore
the extra data . For example:

10 HOME
20 FOR I = 1 TO 3
2~; F~EAD A. [14' f;
]0 PRINT A, Ee, C
40 NEXT I
50 D~TA 12,13,24,35,46,12,2E+05

,0,123,987,999,567 . . 1' t t
JRUN
12

200000

,.,.._ much !
,oo

-t ' 1hrow L •

13
46
0

- 196 -

24
12
123

redundant data.

c. The following example is the reads string data the
string variable name must use the symbol $.

HOME 10
20
25
30
40
50

FDR I = 1 TO 3
READ A$, 8$, C$ <; Rea.d $l:Yi~S

3.

PRINT A$,B$,C$
NEXT I
Df~H\ RE{~D, DATA, FOR , NEXT , I~
SHIH,LIN~PRINT,HOME

JRUN
FOR READ DATA

NEXT I SHIH

LIN PRINT. HOME

RESTORE

RESTORE can return the data pointer to the first
valu• in the data statement, thus the same data can
be manipulated again. In the following example, when
the computer first reads A (line number 30), it
references line 70 to read data (the data pointer has
advanced to 22). But at line number 50, the pointer
returns back to 11. Therefore the four reads all
access the same va lue 11, and we have not used 22, 33
and 44 .

10 HOME
20 FOR I = 1 TO 4
30 READ A
40 PRINT A· II II • • •
50 RESTORE
60 NEXT I
70 DATA 11,22,33,44

muN
11 11 11 11 ~<---

- 197 -

RESTORE

all access ihe same.
vo./ue 11

In the following program, we may use RESTORE twice
on the same ~ata, one is weighted computation, another
unweighted computation. Study the explanation in the
diagram.

10 REM USE THE RESHJF~E 8TATEMEN
T TD REfW DAT/~ ..,_ _______ _

20 RE?m G 1 , G2, 83, Otl4! L.~---------
Comments of the Ptf>jtll#I

40 DATA 65, 713, 98, 87~.,_ _______ .,

50 DATA 0.1,0.2,0.3,0.4
60 READ W1,W2,W3,W4
70 A = Wl * G1 + W2 * G2 + W3 *--G

3 + W4 * G4
80 PRINT "WEIGHTED AVERAGE::::";A

'10 RE!3TDRE --------------'
100 REM F~E--READ -----------1
110 READ S1,S2,S3,S4
1 ~~o A == < s 1 + 82 + 83 + 84 > I 4 ~ unwe~hi:ed oper-atJort.
130 PR I NT "LJl'JWE I OH TED AVERl~GE=";

A
140 END

JRUN
WEIGHTED AVERAGE="86. 3 "-------- ' result of wei9ht.ed

opercit/ort
U!'JWE I GHTED AVERAGE:::82 result of unweljhted Q ~~ion

- 198 -

4 . GET instruction

a . A GET instruction inputs the result of a key press
(only one key) on the keyboard. When you press
a key, the screen does not display the pressed
key and you don't have to press RETURN .

b. The program below accepts one letter and in
structs the computer to print the letter .

1 (I HOME
20 PRINT "YOU PRESSED "
30 GET A$

40 PRINT A$
50 GOTO 20

JRUN
YOU PRESSED M
YOU PRESSED I
YOU PRESSED c
YOU PRESSED R
YOU PRESSED 0
YOU PRESSED

GET ~~s .~/<.EniR..tJ
~

- 199 -

c. Here is another example of using GET.

1 (l
15
20
30
40
50
6(1

80

HOME
PRINT "YOU PRESSED
GET B$
PRINT B$

...
•

REM IF ENTRY IS A~ E. END PRO~RAM
IF B$ = II E II THEN 80 4f------~
GOTO 15 j GET "E '' t:he11 st.op
PR IN:r II END" -Eo(-----------0.

d. GET can also be used to get value only and then
to compute. Here is an example:

5 HOME
10 PRINT "GET A NUMBER DIGIT "

20 GET N
IF N "' 0 THEN 60

30
40
60

PfUNT N" *.:.':i*B'~"N * 5 * 8
GIJHI 10
PR.INT "END"

JRUN
GET A NUMBER DIGIT
GET A NUMBER DIGIT
GET'A NUMBER DIGIT
FIET A NllMDEI< DIClIT

- 200 -

5. PRINT

We have used PRINT before in various places. Now
we would like to give you a general review by way of a
practical example :

10 I NPLJT II TWO ·l\JUMBERS II ; A' B
NT 2A) PR I.

40 PRI
50 PRI

NT
NT

60 PRI NT

70 PR! NT

A;B
A,B

TAB< 10>; A, TAB(

SPC< lO>;A, SPC<

11 A'~ 11 ; I~, "B="; B

:JRUN
TWD NUl"I
12:3:4567
123

BEf~S 12:3,4567
~

4567 ~
123 4567 ~

1 ''~ ,,;._~

A=123 8=4567 ~

6. DEF FN

20);8

20>;B

4567~

a . DEF FN is the acronyms of define and function The
instruction DEF FN enables you to define a fu~ction
and then to use the function . Try the following
program :

10 PR I NT II x II. II FNA (x) II

20 DEF FN A<Xl ·= X * X + ~ * X +
1

30 FOR X = 0 TO 5
40 ~RINT X, FN A<X>
50 NEXT X

J~~UN

x FNA<X>
0 1
1 5
2 11
3 19
4 29
5 41

- 20.1 -

the mathemo.tlc .

fvnctior1.

b . In the above program: i. Assign the function to be
X2 + 3X + 1.
ii. Enter a ·va lue for X.
iii. use the value in the function
iv. Print out the results .

c . The following program is the extension of the above
program . The argument in line number 60 FNA (I) is
I , it has the same effect as the X in FNA (X).

5 PRINT II x II. II FNA (x) "
1 l) DEF FN ACX> - x * x + 3 * x +

1
20 FOH x ~~ 1 TO ,,,.

;;J

30 f'f<I NT x~ FN A< X >
40 NEXT x
50 PRINT
60 PH INT 11 I", 11 FNA<I> "
70 FDR I ::::i 1 TO 3
80 PRINT I • FN A< I> + 8
90 NEXT I

JRUN
x FNA<X>
1 5

- .., 11
<
~· 19
4 29
5 41

I FNA <I>
1 13
2 19
-::-·-· 27

- 202 -

d . The following program uses several functions,
namely DEF FNA and RND .

1 o Pl~ I NT 11 X 11 • 11 I NT< FNA < X > > " (Prmt out: the title
·20 DEF FN A< X > == RND < 1 > * X~ Define functiort"x''
30 FOR I == 0 TO 12 STEP J
40 Al. c:: FN A < I > Get 1nte3er
50 PRINT I,A'l.
60 NEXT I

J f~LJl\j
x
0

6
9
12

INT<FNA(X))
0
0
1
6
6

- 203 -

9 • 2 Plotting

MPF-II possesses the capability of plotting. Its
plotting instructions can be divided into low and high
resolution categories .

1. Low-resolution Plotting Instructions

Low-resolution refers to pictures plotted with less
details . The low-resolution capability of MPF-II
consists of 1920 blocks ; that is , the screen is
divided into 1920 blocks . Horizontal coordinates are
0 to 39 , and vertical coordinates are 0 to 47.

0
0

Low

?11

4o><.4-8=1<po ({~Loe I:::)

6 Colot'S (l
')
'-._/

In low-resolution mode , we may assign r, different
colors , refer to chapter 5 and the next section.

2. High-resolution Plotting Instructions

High-resolution refers to pictures plotted with greater
details . The high-resolution capability of MPF-II consists
of 53760 dots; that is , the screen is composed of 53760
dots ; that is, the screen is composed of 53760 dots .

In low-resolution , we use a block mode , while in
high-resolution , we use a dot mode . In high-resolution,
we can only · assign six colors .

{Q/

- 204 -

9 • 3 Low-resolution lnsbuctions

The low-resolution instructions of MPF-II are given
below. Among these instructions, only SCRN (X,Y) has
not been mentioned before, so this section will focus on
SCRN (X,Y) and combine the other instructions.

r
COLOR = X PLOT X,Y

HLIN Xl,X2 AT Y

VLIN Yl,Y2 AT X

SCRN(X,Y)

1. Review of low-resolution instructions

Try the following programs and see if you can
understand the results; if not , please review chapter 5.

10 GR :
20 FOR x
30 FOR y
40 IF y
50 PLOT
55 GOTO
60 PLOT
70 NEXT
80 NEXT

COLOR= 13 (Assi.9n -!:he co/or-
= 0
= (I

·,,
·' 19

x' x
70
X,Y
y

x

TO 39
TO 39 - x
THEN 60

J>o you
understand?-'

])raw the 9mphic

Dr-a.w -the ~rarhic.
u

If you don'-t
review c.ho.pte.r- 6

- 205 -

10 GF~ = cm ... ur<"" 1 ::~ (Assi9n the color
20 FOR x == (I TU :5c;>
30 FOR y ::::i ' (I TO 39 ·- x
35 IF x > 19 THEN 60
40 IF y > 1 CJ THEN 60
50 PLOT ~ox: , 55 GOTO DrtHv the 9n~phics
60 PLOT X,Y
70 NEXT y
80 NEXT x

2. SCRN is the abbrevia~ion of sc~een. SCRN (12,24)
means that the computer prints out an assigned color
at location (12,24) on the screen.

10 r.m : CULOF~'"' 1041:!(~---- Assi9n the color
20 PLOT :.;~5, 25
30 PRlNT SCRN < 25, 25 > (; n ·nt out -the color- one

SCRN c2s, 25)

47

- 206 -

P"• (2.S , 15)

r
p h h. t ov:t" -the
Co/ or of (.is-, :is-)

OY\ He scr-eel't

5 HOME
10 Gr~
20 COLOR= INT C RND Cll * 16 + 1)
30 FLOT 1 ~·~, 34
40 PH I NT UCF~N < 12, ~!.'!) e-----50 END

JF~UN
9~~~~~~~~~~--...J

10 REM DRf)W A D l AGONAL LI NE ~ 20 GR
30 COLOR= INT C RND Cll * 16 + 1l
40 FDR Y = 0 TO 39 50 PLOT Y,Y
60 NEXT Y
70 PRINT SCRNC Y,Yl

JHLJN
15

]) RAW A DlAtrONAL LINE
If}

- 207 -

9 • 4 High-resolution Instruction

The high-resolution instructions of MPF-II are
the following :

1.HCOLOR

HCOLOR assigns colors in the high resolution mode ;
that is, we may use HCOLOR to assign the color while
plotting in the high-resolution mode. HCOLOR can use a
value of from 0 to 7 in selecting a color. Such as:

Jt:'s

For example, wh e n HCO LOR= 1 , we assign the green co l or.

- 208 -

2 . HPLOT

HPLOT is the
same meaning with

plotting of high-resolution , it bears
PLOT , but has more coordinate dots .

0 27q 81>

0 ~ /

~pLOT6~
1YlO!-e coor-dina.fe Jot> ® @) ~

0

PLOT
~

//.7

a. For example : This program can plot four dots around
the edge as shown in the picture .

1 (l Hem
20 HOME
30 HCOLClR== 5
40 HP LOT 279,0
50 HP LOT 1, 0 .

60 HPLCIT 1, 159 (l.l
70 HPLOT 279,159

b. In the following program , we can form a horizontal
line by means of dots (vertical axis is 0).

the

0 ----~279

10 HGR
20 HOME
30 HCOLOR= 5
40 FOR I = 0 TO 279
50 HPLDT I,O
60 NEXT I

- 209 -

------~ - --------

c. In the next program we may form a vertical line by
means of dots (horizontal axis is li:l).

10 HGR
20 HOME
30 HCOLDR= 5
40 FOR I • 0 ·ro 191
50 HPLUT 1,I
60 NEXT I

IC!/

0
0

Verti co. I I il'le

d. In the next program, we may plot a rectangle around
the screen.

1 (l
20
30
40
50
60
70
80
90
100
110
120
130

HGR : COLOR= 3
FOR I = 0 TO 279 ~ <1>Dmw o. /me.
HPLOT I , 0 __J
NEXT I
FOR I c:: 0 TO 191 =-:(:.)])raw o. /me
HPLCIT 279, I ~
NEXT I
FOR I = 279 TO 0 STEP
HPLOT 1,191--------

NEXT I
FDR I = 191 TO 0 STEP - 11

------------' <4> Dl'l:IW GI. /me. HPLOT O , I -
NEXT I

- 210 -

e. If a value goes beyond the assigned value, the
computer will print out a warning of errors.

10 GR : COLOR• 3
20 HOME
30 FOR I :::.:. 0 TD 300 ~(-----.
40 HPLOT I , 0 4!!•'"'---------
50 NEXT I

excess 279

JRUN

?ILLEGAL QUANTITY ERROR IN 40+.- ;llego./ Vt>.lue.
]

f . Try the following two programs by yourself .

10 Hm:;: : HCOLOf:;:i:::: 5
20 HOME
30 FOR I ""' 0 TD 279
40 FOR J = 0 TD 191
50 HPLOT I,J
60 NEXT J: NEXT I

10 HGF~

20 HOME
30 HCDLm~= 5 think o.hout.
40 FCJR I = 0 TO 191
45 FOR 'J = 0 TO 279
50 HPLOT J' I
55 NEXT J
60 NEXT ·I

- 211 -

zt

3. HPLOT X1, Y2 To X2, Y2

In the previous examples, we have already known how to
use HPLOT . Now let's try some examples .

Example 1:

10 J-1 t;r fZ
10 HCOLOR

30 J-1 Pl OT .5, 10 70 .;i79
)

IS"O

(.0' o) <.*9,D}

(/) (1,)

10 H<FrR
t • ;).o Jfc.oJ..oR.==3

30 HPl.OT 0,0 TO .J.!;9, @ ... (J)_J

0 To .).S9 / IS9 To 0, lSl.'/9,/.$9)
/.S-9 TO 0 / 0

- 212 -

In this program, we may plot a frame.

Hem.
HCCJUJR= 3
FOR I = 0
HPLOT I,I

TIJ . 60 STEP 10.,_ __
TO 259 - I,I

10
20
30.
40
50

NEXT I ~----------------.J

10
20
30
40

50

HUH
llCCll.Ul<1" 3
FCIF< I ~~ _ g
HPLIJT I• I

- I, 159
NEXT I

10 llUH
20 HCOLORo: 3

TO 80 STEP 10
TO 259 - I~I TO 259
-I . ~~--

30 FOR I = 0 TO 60 STEP 10
40 HPLOT I,I TD 259 - I,I TD 259

- I,159 - I TO I,159 - I TD
I, I

50 NEXT I

- 213 -

10 HOF<
20 HCCJL.OR= 3
31~1 FOR I ::: 0 TO 150 STEP 5 ~<---
40 HPLCJT I,I TO 259 - I,I TO 259

- I,159 - I TO I,159 - I TO
I , I

~:iO NEXT I

NEXT cHA'PTER

Loo-p cind o.rt9

- 214 -

---11 10
_I _____ ________,,_____ __

LOOP AND ARRAY

- 215 -

In this chapter, we will learn the instruction about
loop control.

Those instructions we have known are as follows:

GOTO, IF······THEN, FOR···· ·· NEXT,

GO SUB··· ··· RETURN, POP, ON···---GOTO,

ONERR···· · ·GOTO , ~
_______ J~

ON····· · GOSUB,

RESUME

There are still some new instruction to learn:

ON---···GOTO, GOSUB···· ·- RETURN,

ON·-····GOSUB, ONERR--····GOTO,

RESUME

- 217 -

10 • 1 ON···· .. GOTO

1 . Comparison between ON ••••• GOTO, IF ••••• THEN and IF •••
••••• GOTO

a. The following program computes the number of times
the numbers 1 to 6 appear when a die is rolled 600
times.

10 FOR I m: 1 TO 600
20 BX ... RND (1) * 6 + 1
30 IF BX = 1 THEN A< 1> = A< 1)

1
40 IF BX = 2 THEN AC2) = AC2>

1
~o IF BX = 3 THEN AC3) = AC3)

1
60. IF BX = 4 THEN A<4> = A <4>

1
70 IF B'Y. = 5 THEN AC5) = AC5)

1
80 IF B'Y. = 6 THEN A<6> = A<6>

1
90 NEXT I
100 FOR I = 1 TO 6
110 PRINT "AC"I">=";l~<I> J 120 NEXT

JRUN
A< 1> =87
A<2>=96
A<3>=102
A (4) ... 91
AC5)1:11127
A <6> •~97

I

- 218 -

~

+

+

+

+

+

+

b . The following program performs the same actions
as the above one, but it uses IF ••• GOTO .

10 FOR I = 1 TO 600
20 B'l. = RND (1) * 6 + 1
30 IF B'l. = 1 GOTO 100~---
40 IF B'l. = 2 GOTO 110
50 IF B'l. = 3 GOTO 120
60 IF B'l. = 4 GOTO 130-~-
70 IF B'l. • :3 GOTO 140 ---~-.:l
80 A<6> = A<6> + 1
90 GOTO 200
1 00 A < 1> = A <1 > + 1 :
110 A<2> = A<2> + 1:
120 A<3> = A(3) + 1:
130 A(4) = A(4) + 1:
140 A<5> = A(5) + 1:
200 NEXT I

GOTO
GOTO
GOTO
GOTO
GOTO

210 FOR I = 1 TO 6 J
220 PR I NT II A (" I II) =II A (I) i)

230 NEXT I rrint

JRUN
A< 1> =87
A<2>=96
A<3>=102
A< 4 > c::i91
A<Ei>,.,,127
A< 6 > "''77

- 219 -

the

decide

Store

result

c. As a matter of fact, we can also compute the same
quanity ON • •••• GOTO. Try the following program:

10 FOR I = 1 TO 600
20 BY. = RND <1> * 6 + 1
30 ON BY. GOTO 100,110,120,130,14a~

o, 150 ~
100 A<1> = A<1> + 1 ; GOTO 200
110 A(2) = A<2> + 11 GOTO 200
120 A<3> = A(3) + 1; GOTO 200
130 A<4> = A(4) + 1& GOTO 200
140 A<5> = A<5> + 11 GOTO 200
150 A<6> = A<6> + 1
200 NEXT I
210 FOR I = 1 TO 6 J
220 PRINT "A<"I">="A<I>
2~30 NEXT I

muN
A (1) =96
AC2>=108
AC3>=91
A<4>=102
A<.5>=99
AC6>=104

-,

ON· ···
GO TO

IF 50 TO

oN ·· .. . Go TO

oh f I 1n confused

2. IF ••••• THEN, IF ••••• THEN •• • •• GOTO and IF • • ••• GOTO

In fact, in MPF-II, the usage of If ••••• THEN, IF •
••••• THEN •••• GOTO and IF ••••• GOTO are all the
same. For example:

- 220 -

0
10 FOR I = 1 TO 10
20 A/. = RND (1) * 20 + 1
30 IF A/. > = 10 THEN 50
35 PRINT A/."(10" ,

~<-- Tl"\EN --
40 GOTO 60
50 PRINT Al.">=10",
60 NEXT I

JRUN
19>=10
1<10
19>=10
2<10

10 FOR
20 A/. =

I

30 IF A/.
35 PRINT
40 GOTO
50 PRINT
60 NEXT

JRUN
9(10
17>,,,10
14>=10
16>=10

c: 1
RND

>

TO
(1)

6<10
18>= 10
8 < 10

10

* 20 +
= 10 THEN

Al."<10",
60

Al." >.,10" ,
I

18>-=10
11>c10
13>=10

10 FOR I = 1 TO 10

1
GOTO

20 A/. = RND <1> * 20 + 1

11>=10
20>=10
19>=10

50 ~ TtiEN GO TO

4<10
11>=10
6<10

30 IF A/. > = 10 GOTO 50 ~ GO TO
35 PRINT A/."(10" ,
40 GOTO 60
50 PRINT AX")a10",
60 NEXT I

:JRUN
12)-co 10
7< 10
13>=10
17>=10

17>=10
3<10
17>=10

- 221 -

14>=10
10>=10
10>=10

10 • 2 GOSUB and RETURN
1.GOSUB

A pair of useful instructions in BASIC are GOSUB

In some programs, there are tasks we have to per
form repeatedly, under such circumstances, GOSUB and
RETURN are the most suitable instructions. In order to
avoid writing some similar smaller programs over and
over again in various places, we may treat those smaller
programs as subroutines. GOSUB is the acronym of GO and
SUBROUTINE

2.RETURN

GO SUBROUTINE
~ I

GOSUB

After the computer goes to a subroutine (GOSUB) ,
it has to come back to its original place to go on
completing the unfinished program . Therefore, in a
program with GOSUB's we have to use RETURN .

- 222 -

3. Examples and explanation

This program can be divided into two parts:
a main program and a subroutine . Line numbers 10-70
are the main program; line numbers 100-140 are
the subroutine. The instruction GOSUB is in the main
program, while RETURN is in the subroutine .

• c
ma.irt progmrrt -lioSUB sub-progrom-RE.ruRN

10 X •• 51Y 111 1
20 GCJ!3l..JB 100
30 x I.II 71 v Ill 3
40 GOSUB 100
50
60
70
100
110
120
130
140
150

X = 4:Y = 5
GOSUB 100
END

REM SUBROUTINE
FOR I 11:11 1 . TO X
PRINT Y1
NEXT I
PRINT
RETURN~-----"

JRUN
11111
3333333
5555

GOSUB ln mo.in pro~rurn

RETURN in

Now, let's examine the execution of this program:

a . In line number 10, assign X=S , Y=l .
b. Line number 20 GOSUB to the beginning of the

subroutine in line number 100 .
c . Execute subroutine, after execution , return to line

number 30 a~d assign X=7 , Y=3 .
d. Line number 40 GOSUB to 100 .
e. Again at line 50 assign new values to X and Y and

GOSUB to 100 at line 60 , line 70 end of program .

- 223 -

10 x == 5:Y z;: 1
20 GO SUB 100 100 REM SUBROUTINE
30 x == 7:Y = 3 110 FOR I = 1 TO
40 GOSUB 100 120 PRINT Y•

' 50 x = 4:Y = 5 130 NEXT I
60 GOSUB 100 140 PRINT
70 END 150 RETURN

4.Examples

a. The following program uses a subroutine to
activate a horse with orange legs , a white head
and a blue trunk.

5 HOME
20 GR

x

30 REM FIRST HORSE CENTER _.:J The f;rst positiort to
40 X = 121 Y = 35 ... d a. horse
60 GOSUB 1000 mw
70 REM SECOND HORSE CENTER] The second position.
80 X = 331Y = 2 ~ -
100 GO SUB 1000
200 END
1000 REM PUT A HORSE ANYWHERE 0

N THE SCREEN
])YO.IA/ horse 1010 COLOR= 7 a.

1020 PLOT X,Y - 1
1030 HLIN X,X + 2 AT Y
1040 COLOR= 7
10~0 PLOT X,Y + 1
1060 PLOT X + 2,Y + 2
1070 COLOR= 15
1080 ·PLOT X - 1,Y - 1
1090 RETURN

- 224 -

b . When you are executing the above program drawing
a horse , you might make some mistakes. This is
because the beginning position assigned is too
close to the edge of the screen , thus the
coordinate values go beyond the limit of the
screen . In order to check out such a mistake in
the subroutine , we may add the following statement
in the subroutine :

J1012 IF X<l THEN X=l

J1014 IF X>37 THEN X=37

J1016 IF Y<l THEN Y=l

J1018 IF Y>38 THEN Y=38

After the addition , the total program turns out
to be :

5 HOME
20 GR
30
40
60
65

REM FIRST HORSE CENTER~
X = 12:Y = 35 .,..,. _____ _

GOSUB 1000

F;rst posiiiort to drow
Gt horse

FOR K = 1 TO 500:
REM SECOND HORSE

NEXT K -+
70 CENTER]
80 x "" 33: y "" 2 '4-•---------
85 FOR K = 1 TO 5001 NEXT K -+
100 GOSUB 1000
200. END

delo.y
Second pos1tiort

de lo.y i~rrte

1000 REM PUT A HORSE ANYWHERE 0
N THE SCREEN

1010 COLOR= 7
1012
1014
1016
1018
1020 ·
1030
1040

IF X < 1 THEN X = 1 :J
IF X > 37 THEN X m 37
IF Y < 1 THEN Y = 1
IF Y > 38 THEN Y = 38
PLOT X,Y 1
HLIN X,X + 2 AT Y
COLOR= 7

1050 PLOT X,Y + 1
~~160

·070
!080
1090

PLOT X + 2,Y + 2
COLOR= 15
PLIJT X - 1,Y - 1
RETUHN

- 225 -

Druw o..
}wr.se

225

a. In this program, line numbers 65, 85 are added
to delay ·the movement of the horse.

b. Line numbers 1012-16 are to prevent the errors
in plotting.

5. Subroutine within a, subroutine

Sometimes it is desirable to have a subroutine within
a subroutine. Try the following:

20 DIM AC100) ·
30 Gbsus 2000 ma.in program

10 REM MAIN PROGRAM~

-40 PRINT "END"
50 END
2000 REM FIRST LEVEL SUBROUTINE- Subprog ra.rn

A<I> = 5 * I
GOSUB 3000 . .
NEXT I

2010
2020
2030
2040
2050
3000

FOR I= 1 TO~:;;;i

RETURN
REM NEXTED SUBROUTINE ..__--Seconda~

3010 B (I) = A < I) * 2 + 1
3020 PRINT "A("I">=";A<I>, ''B<"I"

)="B<I>
3030 RETURN

- 226 -

subp rogrn.lf'l

Please study the program and wr•t:e down the
result.

R u.tJ ~
f ThiS iS a. "\
\ nested program)

\~

- 227 -

10 • 3 ON-GOSUB
1. ON-GOTO and ON-GOSUB

ON ••••• GOTO bears a resemblance to ON • •••.• GOSUB•
BUT ON ••••• GOTO jumps to a cerfain line number , while
ON ••••• GOSUB jumps to subroutine . Remember, ON •••••
• • GOSUB has to be used wt.th RETURN. Now try this:

ON······GOTO

10 FOR I =·1 TO 100
20 Bl. ~ RNO (1) * 3 + 1 +--
30 ON Bi. GOTO 100,200,300
100 A <1 > = A< 1> + 1 :1J
110 GOTO 400
200 A<2> = A<2> + 1
210 GOTO 400
300 A<3> = A<3> + 1
400 NEXT I
410 FOR I ... 1 TO 3 I B
420 PRINT "A<"I">=1';A<I>
430 NEXT I

T!Y to run./
eve~tlme yoJll .9et
different result, please

rno.ke o.. >-ecord for il .

NO· ····GOTO~

~

- 228 -

.-~ - -~------------------- -

10 FOR I ::a 1 TO 3_
20 Bi. = RND (1) * 3 + 1
30 ON Bi. GOSUB 1t..2r.3~
40 NEXT I
50 PRINT
60 FOR I = ~1 TO 3
70 PR~NT 11 A(11 I 11 >= 11 ;A<I>
80 NEXT I
90 END
100 PRINT Bi.; L_

~

110 A (1) = A< 1> + 1
120 RETURN
200 PRINT Bi.; .L

~

210 A<2> == A (2) t 1
220 RETURN
300 PRINT Bi.; ~

310 A<3> = A<3> + 1
320 RETURN
400 NEXT I

JRUN
312332311221223321232221223123
A< 1 > =7
A<2>=14
AC3)=9

ON_·····GOSUB

In the above program , we assign I=l , 2 o r 3 by means
of RND . If I=l , then GOSUB will be 100 ; I=2 , GOSUB 200 ;
I=3 , GOSUB 300 . We e xecute them one by one up to 30 times ,
then we print out the statistical figures of 1 , 2 , 3 , etc .

- 229 -

10 • 4 ONEER· ·····GOTO and RESUME

1. ONEER· · .. · ·GOTO

If there is a mistake occurs during the computer
execution; the computer will interrupt the execution
of pr6gram and print out error message. For example :

10
20
30
40

HOME
FOR I '= 0 TO 10
PRINT 1~5 I I
NEXT I

When the computer starts to run, it will stop
immediately, because I=0 and the computer is not
able to execute 5/0.

JRUN
0
?DIVISION BY ZERO ERROR IN 30

In BASIC language, the instruction ONERR ••••• GOTO
is the combination of ON , ERROR and GOTO. When there
is · a mistake occurs, ONERR . ~ ••• GOTO can prevent
the execution of the program from being interrupted ,
because this instruction will produce an unconditional
GOTO to jump to the assigned line number.

ONtERROR ,,
ONE RR

- 230 -

10 HOME
20 ONERR BOTO 100
30 INPUT "ENTER NUMBE1 "IX
40 Y = 1 I X
50 PRINT 11 X= 11 ;X, 11 Y= 11 ;Y
60 GOTO 30
100 PRINT "DON'T INPUT ZERO
110 GOTO 20

JRUN
56. ENTER NUMBER

X=56
ENTER NUMBER
X=12
ENTER
DON'T
ENTER

Y=.0178571429
12

Y=.0833333333
NUMBER 0
INPUT ZERO
NUMBER ON ERR

If error--' go ,to

10 HOME
20 ONERR GOTO 100
30 INPLJT "ENTER NUMBER II; x
40 PRINT X; SPC< 5) SQR <X>
50 GOTO 30
100 PRINT "IMAGINARY ROOT

(- X>
110 GOTO 30

JRUN
ENTER NUMBER 56
56 7.48331478
ENTER NUMBER -7

II

II

GOTO

SQR

- 1 IMAGINARY ROOT 2.64575131
ENTER NUMBER - 5
-5 IMAGINARY ROOT 2.23606798

- 231 -

If er.ror. 90 to loo

If error., 90 to 100

II
- _____ _______. 1-------

MATHEMATICAL FUNCTIONS

- 2 33 -

In programming, we have to make use of mathematical
operations from time to time. In ~ ~ddition to basic
operations such as, +, -, *~ / , f more advanced
operations called functions are needed .

In BASIC language, functions are generally divided
into arithmetical functions and string functions. We
have studied string functions in chapter 7. in this
chapter w~ will discuss specifically the functions which
have been supplied in the MPF-II .BASIC language .

We have used the functions INT(X), RND(l) and SQR(X),
now we will discuss the others .

MPF-II BASIC conta»ns the following function:

I. SI Al (X.): 1

.2. COS (X) :'

3. TAAi {X):

4: AT.A/ (X) :

.$. I AJT (X) :

6. IV.IP (I) :

7 R.JJJ> (</J):

8. A.Alp () ..
9. SGN (X) :

to. /JBS 0<),

S; ne fundi on.
cosine fund iort

ta.ngent func.tiort
actan&ent function
.. · · · · · ln-l:eger

. ra.ndom function

randon'\ function

randorn function
Sigr'l function
o.bsolute function

//. S~R (X):. · Square root function.
/,;i.. 6Xp (X): €XJ>onerttlat.ioYl function

13 . .Lio(;, O<): logrlthm function ~
..__" __________ . ~

- 235 -

11 • 1 Trigonometric Functions

SIN(X) , COS(X) and TAN(X) are rather important
trigonometric functions . This section explains only
the usage of these three functions .

1. Sine function SIN(X)

In the BASIC language used by MPF-II, the operation of
trigonometric function is based on the unit radian. Thus
the argument in the brackets must be a radian not a degree ,
because 360" is equal to 6 . 28 radians, each radian is equal
to 57 . 324804 degrees .

Each radian j 5 equo. / to S7. 321./-SO'f degrees

~1Nc1so)

SIN (3.14)

- 236 -

Now, try the following program, this program is
meant to get the SIN(X). From 0" to 360", we first use
line number 30 to get the number of degrees in a radian,
and then convert the degress to radians, (I/R of line
number 50). A convers ion in made for every 15 degree.

10 PRINT "DEG"; TAB (Bl; "RADIANS -Print the cil/e
";TAB(24>;"SIN<X>"

20 PRINT
------the degree of each rod<o.ri 30 R = 360 I 6.28

40 FOR I = 0 TO 360 STEP 15
50 y = SIN (I I R> +------Convert to ra.d•an
60 PRINT I; TAB< 8>;I IR; TAB<

24>;Y
70 NEXT I

JRUN
DEG Rl\DIANS

0 0
15 .261666667
30 .523333333
45 .785
60 1.04666667
75 1.30833333
90 1.57
105 1.83166667
120 2.09333333
135 2.355
150 2.61666667
165 2.87833334
180 3.14
195 3.40166667
210 3. 663333:~3
225 3.925
240 4. 18666667
,.,i:..:.-c•
.L. ... :J ... J 4. 4L~83T3::n
270 4.71
285 4. <J7166667
300 5.23333333
315 5.495
330 5.75666667
345 6. 0193:5333
360 6. ~~8

SIN<X>

0
• 25E3690844
• 4'79770103
.706825181
.86575983'9
.96575386
.999999683
.966165865
.13665558
.707950909
. 501148958
.260228956
1.59265337E-03
-.257152076
-.498389979
-.705697661
- .B64961682
- . <J65339405
-.999997146
- . <J66575419
- .867349563
-.709074841
-. 502526~343
-.261766407
- 3. 1 EJ~:i3027E·-03

- 237 -

"RADIANS
1

7<.ad;am

SlN<X>
t

Sine vo.lue

0

f2

2. Cosine function COS(X)

The fo llow i ng program i s c o mp u tes the c os ine o f
X, i t with t h e above program.

10 PRINT "DEG"; TAB (8); "RADIANS
"; TAB(24>;"cos<X>"

20 PRINT
30 R ~ 360 I 6.28
40 FOR I = 0 TO 360 STEP 15
50 Y = COS <I I R>
60 PRINT I; TAB< B>;I IR; TAB<

24); y
70 NEXT I

:JRUN
DEG RADIANS cos (x)

0 0 1
15 .261666667 .965960169
30 .523333333 .1366158094
45 .785 .707388269
60 1.04666667 .500459689
75 1.30833333 .259459981
9~) 1.57 7.96326206E-04
1·05 1.83166667 -.257921541
120 2.09333333 -.4990802
135 2.355 -.706261645
150 2.61666667 :....865361035
165 2.87833334 -.965546939
18 0 3.14 -.999998732
195 3.40166667 -.966370948
210 3.66333333 ·-.866952956
225 3.925 -.708513099
240 4.18666667 -.501837909
255 4.44833333 -.260997763
270 4.71 -2.38897806E-03
2B5 4.97166667 .25638 2449
300 5.23333333 .497699443
315 5.495 .70513323
330 5.75666667 .864561781
345 6.01833333 .96513126
360 6.28 • 999'194927

- 238 -

3. Tanaent function TAN(X)

The following program to compute the tangent o f
x . The program is very similar to programs for sine
and cosine.

1.0 PRINT "DEG"; TAB< Bl i "Rl~DI?\NS
"J TAB< 24) "TAN<X>"

20 PRINT
30 R • 360 I 6.28
40 FOR I P 0 TO 360 STEP 15
50 Y • TAN CI I R>
60 PRINT I; TAB< 8>;1 IR; TAB<

24l;Y
70 NEXT I

JRUN
DEG RADIANS TAN<Xl

0 0 0
15 .261666667 .267806947
30 . 523333333 .5769964
45 .785 . 99920399
60 1.04666667 1.72992922
75 1.30833333 3.72216884
90 1.57 1255.76523
105 1.83166667 -3 . 74596809
120 2 . 09333333 -1.73630571
135 2 . 355 -1 • 0023'J 184
150 2 . 61666667 --. 57t7121243
165 2.87B33334 - • 269514~557
180 3. 14 -1. 5926553'tE·-03
195 3.40166667 .266100793
210 3.66333333 . 574875459
225 3.925 . 996026273 ·
240 4.18666667 1 • "72::.\58777 '.
'"')c.-C'.
""'-•J .. :J 4.44833333 :3. 6'1865009
270 4 . 71 418 . 58.7575
285 4 . 97166667 - 3. 77005:501
:~oo 5. 2:~333;:_~33 ·-1. 7 42717'::i7
315 5. 4 'J5 -1.00558988
330 5.75666667 -.581250008
345 6.01833333 -.271223634
360 6.28 -3.1B531BB6E-03

- 239 -

11 • 2 The Plotting of Functions

1. Simple diagram

The MPF-II is able to calculate values of numbers as
well as to plot some diagrams of functions . In plotting
trigonometric functions we have to revolve the coordinate
axis 90" clockwise , because the . number of characters is
limited in the screen and the printer . We have known
that value of the sine ranges between + 1 and - 1 . The
screen of MPF-II has only 40 characters for each line ,
so we have to use 20 as the medium point. Try the
following program . The key point of this program lies
in line numbers 70 and 80.

50 FOR I ~ 0 TO 360 STEP 10
60 y = SIN CI I 57.29578>
70 KX = Y * 19 + 20
130 PFUNT TAB< KX >;"*"
90 NEXT I

wor-k

Rotate 90° degree 0 rt

the sc.reen.

In line number 70 , Y is the sine value, and its
value is between - 1 and + l ; after Y is multiplied
by 19 , its value falls between - l~ and + 19, and then
we add 20 to it, the value of K% will fall between
1 and 39 , and which matches the size of the screen.
Line 80 prints out the symbol " * " at TAB (K%) ,
therefore we will have the following diagram.

- 240 -

70 K ~ = . Y * 19 + 2 o
~·

enla.t;9e / q times

(bet ween - I q and t I q)

gnxph lcs Is on the
next page

- 241 -

20

I

I I
I

* I

:Jf~UN

*
I

I * * I

*
I

I I * * I
I *I
I * * I

*
I

I
I

I *
I *

I I * * I
*

I

I
*

I

I
I

*
I

J*
I
I
I *

*
I
I

* I

* I I *
I * I*
* * * * * * *

* * * *

- 242 -

2. Sine function diagram

After we revise the above program, we may have
the following diagram, compare the differences
between this and the ?revious sine plot them.

10 FOR I cm 0 TO 39 j increment l
20 PRINT II II • the X coordinate . ~

30 NEXT. I
40 PRINT
50 FOR I = 0 TO 360 STEP 1 (I

60 y = SIN < I I 57.29578)
70 Kl. = y * 19 + 20
80 IF 1<% > 20 THEN 120

90 PRINT TAB< t<t. > a II *II ; TAB< 20)
/------------- ----+-'Print"~{'; then ; II 0 II ~ ,\ e //

100 GOTO 130
120 PRINT TAB< 20>;"."; TAB< I</. ,i'r;nt ''.";then,,

) ; 11 *ti -~-"-:----------------+-
130 NEXT I

JRUN

······························ ·· · · ······~
*·

*
* * *

*

* *

*

* *
* *

* * * *

*
*

*

- 243 -

* *

* *

*

*

* * *

*II

3. Cosine function diagram

Compare this program with the abov e one .

10 FOR : I = 0 TO 39

20 PRINT ". ";
30 NEXT I

40 PRINT
50 FOR I c 0 TO 360 STEP 10

60 Y ~2 COS CI I 57.295781

70 KX m Y * 19 + 20

BO IF KX > 20 THEN 120

90 PRINT TAB< KXI;"*"* TAB< 201
; II • II ~------------ fr;nt "* ''; then

100 GOTO 130

1•. lj

120 PRINT TAB< 201;"."; TAB< KX

I;"* " ~-----:---------- hint
130 NEXT I

•\ lj ..
• .> t hen "*''

JRUN

······ ·· · ··· · ··

* * * *

*
*·

* * *
* * * *

*
* * * * *

* *·
*

*

~ *
* *

......

- 244 -

1J .·3 Other Functions

1. Random Function

There ~re three kinds of random functions in MPF-II:
RND(l), RND(0) and RND(-1). RND(l) will return a
decimal number between 0 and 1.
Try the following progiam:

5 PRINT "RN0(1)"
FOR I = 1 TO 3
PRINT RND (1)~
NEXT I
PRINT
PRINT "RND ((I)

Print
+.- RfJD <1)

1 (>

20
30
40
45·
50
60 '
70
80.
85
90
100
110

FDR I = .1 HJ 3 'Print
PRI~T. RND (Cl), ~ RNI>. (0)
NEXT I
PRINT
PRINT "RND <-2>" J>r;nt
FDR I = 1 TD 3 +--- RND (-1)

PRINT RND C - I>,
NEXT I

JRUN
RND (1>
.235586735 .186784665

RND<O> Same
.37278107~

.37278107 .37278107

.37278107
HND(-2)
2.99196472E-08 2.99205567E-08.
4. 4f3217179E-08

From the above number we observe that:

a. RND(l) will return a number between 0 and 0,999999999 ·
b. RND(0) will repeat the previous numb!r the RND .

has generated.
c . Each RND(-X) gets a different number, · but the .value

is quite small,

- 245 -

2. Absolute function

In mathematics, there must be a methord of computing
absolute value. For instance:

10 FOR I = ~ 10 TO 10 STEP 5
20 PRINT i1ABS(11 I")= 11 ABS (I)

30 NEXT I

JRUN
ABS(-10)=10
ABS(-5)=5
ABS (0) =O
ABSC5)=5
ABS C 10) =10

3. Anti-trigonometric function

There is only one anti-trigonometric function -
ANT(X) -- in MPF-II. Try this:

10 FD~ I = - 10 TO 10 ~TEP ~
2Ci PRINT "ATN<"I")=" ATN CI>
30 NEXT I

JRUN
ATNC-10>=-1.47112768
ATNC-5>=-1~37340077 '
ATNCO)=O
ATN<5>=1.37340077
ATNC10>~1.47112768

- 246 -

4. Sign function SGN(X)

The following program is an e Kample of SGN(X) ,
if the value of X is negative, the computer prints out
-1; if the value is zero , it prints out 0; if the value
is positive , it prints out 1.

10 FDR I = ·- 10 TO 10 STEP 5
:20 PR I NT II SGN (II I II) Cl" ; SGN (I)
30 NEXT I

JRUN
SGN(-10) 0 - 1
SGN<-5):::1-1
SGJ\1(0)=0
SGNC5)C11 1
SGNC10) = 1

5. Exponential function

The use of mathematics in areas such as engineering
and physics require using natural e xponents which has
e as its radix. If e to x is equal to Y, then we ma y
use the following formula to compute Y: e x = Y

But in BASIC language , we can express it by Y=EXP(X),
try thi s:

10 FOR I = 1 TO 5
20 PRINT "EXPC"l")="; EXP Cl)
30 NEXT I

JRUN
EXP<1>=2.71828183
EXP <2) ""'7. 3890561
EXP<3>=20 .0855369

. EXP<4> ~54. 5981501

EXP(5)=148 .413159

- 247 -

6. Lo1arlthm function LOG(X)

LOG(X) is logarithm function which has 10 as its
radix. In computing logarithms, X must be larger
than 0 , Try the following program:

10 FOR I = 1 TO 5
20 PR I NT II LOG (II I II) Cl II LOG (I)
30 NEXT I

Jf~UN

LOG (1> ==O
LOG<2>=.693147181
LOG(3)=1.09861229
LOG<4>=1.38629436
LOG(5)=1 . 60943791

- 248 -

Published by
Micro-Professor Publishing Corporation
977 MIN SHENE.ROAD,
TAIPEI, TAIWAN, R.O.C.
TEL:(02)7691225
TLX: "19162 MULTllC'', "23756 MULTllC"
Printed in Taipei
US$10.00
copyright 1982, in Taiwan, Republic of China
by Micro-Professor Publishing Corporation
Assigned Republic of China Copyright N0:2678

I
I
I
I
I
I
I
I
I
I
I
I
I
I

	20160512211816607-acr-mpii-0-1
	20160512211816607-acr-mpii-0-2
	20160512211816607-acr-mpii-0-3
	20160512211816607-acr-mpii-0-4
	20160512211816607-acr-mpii-0-5
	20160512211816607-acr-mpii-0-6
	20160512211816607-acr-mpii-0-7
	20160512211816607-acr-mpii-0-8
	20160512211816607-acr-mpii-0-9
	20160512211816607-acr-mpii-0-10
	20160512211816607-acr-mpii-0-11
	20160512211816607-acr-mpii-0-12
	20160512211816607-acr-mpii-0-13
	20160512211816607-acr-mpii-0-14
	mpii-3.pdf
	20160512211832798-acr-mpii-3-1
	20160512211832798-acr-mpii-3-2
	20160512211832798-acr-mpii-3-3
	20160512211832798-acr-mpii-3-4
	20160512211832798-acr-mpii-3-5
	20160512211832798-acr-mpii-3-6
	20160512211832798-acr-mpii-3-7
	20160512211832798-acr-mpii-3-8
	20160512211832798-acr-mpii-3-9
	20160512211832798-acr-mpii-3-10
	20160512211832798-acr-mpii-3-11
	20160512211832798-acr-mpii-3-12

	mpii-15-85-ocr600.pdf
	20160512211845132-acr-mpii-15-1
	20160512211845132-acr-mpii-15-2
	20160512211845132-acr-mpii-15-3
	20160512211845132-acr-mpii-15-4
	20160512211845132-acr-mpii-15-5
	20160512211845132-acr-mpii-15-6
	20160512211845132-acr-mpii-15-7
	20160512211845132-acr-mpii-15-8
	mpii-23.pdf
	20160512211902800-acr-mpii-23-1
	20160512211902800-acr-mpii-23-2
	20160512211902800-acr-mpii-23-3
	20160512211902800-acr-mpii-23-4
	20160512211902800-acr-mpii-23-5
	20160512211902800-acr-mpii-23-6
	20160512211902800-acr-mpii-23-7
	20160512211902800-acr-mpii-23-8
	20160512211902800-acr-mpii-23-9
	20160512211902800-acr-mpii-23-10
	20160512211902800-acr-mpii-23-11
	20160512211902800-acr-mpii-23-12
	20160512211902800-acr-mpii-23-13
	20160512211902800-acr-mpii-23-14

	mpii-37.pdf
	20160512211924068-acr-mpii-37-1
	20160512211924068-acr-mpii-37-2
	20160512211924068-acr-mpii-37-3
	20160512211924068-acr-mpii-37-4
	20160512211924068-acr-mpii-37-5
	20160512211924068-acr-mpii-37-6
	20160512211924068-acr-mpii-37-7
	20160512211924068-acr-mpii-37-8
	20160512211924068-acr-mpii-37-9
	20160512211924068-acr-mpii-37-10
	20160512211924068-acr-mpii-37-11
	20160512211924068-acr-mpii-37-12
	20160512211924068-acr-mpii-37-13
	20160512211924068-acr-mpii-37-14
	20160512211924068-acr-mpii-37-15
	20160512211924068-acr-mpii-37-16
	20160512211924068-acr-mpii-37-17
	20160512211924068-acr-mpii-37-18

	mpii-55.pdf
	20160512211946278-acr-mpfii-55-1
	20160512211946278-acr-mpfii-55-2
	20160512211946278-acr-mpfii-55-3
	20160512211946278-acr-mpfii-55-4
	20160512211946278-acr-mpfii-55-5
	20160512211946278-acr-mpfii-55-6
	20160512211946278-acr-mpfii-55-7
	20160512211946278-acr-mpfii-55-8
	20160512211946278-acr-mpfii-55-9
	20160512211946278-acr-mpfii-55-10
	20160512211946278-acr-mpfii-55-11
	20160512211946278-acr-mpfii-55-12
	20160512211946278-acr-mpfii-55-13
	20160512211946278-acr-mpfii-55-14
	20160512211946278-acr-mpfii-55-15
	20160512211946278-acr-mpfii-55-16

	mpii-71.pdf
	20160512212004400-acr-mpii-71-1
	20160512212004400-acr-mpii-71-2
	20160512212004400-acr-mpii-71-3
	20160512212004400-acr-mpii-71-4
	20160512212004400-acr-mpii-71-5
	20160512212004400-acr-mpii-71-6
	20160512212004400-acr-mpii-71-7
	20160512212004400-acr-mpii-71-8
	20160512212004400-acr-mpii-71-9
	20160512212004400-acr-mpii-71-10
	20160512212004400-acr-mpii-71-11
	20160512212004400-acr-mpii-71-12
	20160512212004400-acr-mpii-71-13
	20160512212004400-acr-mpii-71-14

	mpii-85.pdf
	20160512212024180-acr-mpii-85-1
	20160512212024180-acr-mpii-85-2
	20160512212024180-acr-mpii-85-3
	20160512212024180-acr-mpii-85-4
	20160512212024180-acr-mpii-85-5
	20160512212024180-acr-mpii-85-6
	20160512212024180-acr-mpii-85-7
	20160512212024180-acr-mpii-85-8
	20160512212024180-acr-mpii-85-9
	20160512212024180-acr-mpii-85-10
	20160512212024180-acr-mpii-85-11
	20160512212024180-acr-mpii-85-12
	20160512212024180-acr-mpii-85-13
	20160512212024180-acr-mpii-85-14

	mpii-99-179-ocr600.pdf
	20160512212040735-acr-mpii-99-1
	20160512212040735-acr-mpii-99-2
	20160512212040735-acr-mpii-99-3
	20160512212040735-acr-mpii-99-4
	20160512212040735-acr-mpii-99-5
	20160512212040735-acr-mpii-99-6
	20160512212040735-acr-mpii-99-7
	20160512212040735-acr-mpii-99-8
	20160512212040735-acr-mpii-99-9
	20160512212040735-acr-mpii-99-10
	20160512212040735-acr-mpii-99-11
	20160512212040735-acr-mpii-99-12
	mpii-111.pdf
	20160512212102003-acr-mpfii-111-1
	20160512212102003-acr-mpfii-111-2
	20160512212102003-acr-mpfii-111-3
	20160512212102003-acr-mpfii-111-4
	20160512212102003-acr-mpfii-111-5
	20160512212102003-acr-mpfii-111-6
	20160512212102003-acr-mpfii-111-7
	20160512212102003-acr-mpfii-111-8
	20160512212102003-acr-mpfii-111-9
	20160512212102003-acr-mpfii-111-10
	20160512212102003-acr-mpfii-111-11
	20160512212102003-acr-mpfii-111-12
	20160512212102003-acr-mpfii-111-13
	20160512212102003-acr-mpfii-111-14
	20160512212102003-acr-mpfii-111-15
	20160512212102003-acr-mpfii-111-16
	20160512212102003-acr-mpfii-111-17
	20160512212102003-acr-mpfii-111-18

	mpii-129.pdf
	20160512212121894-acr-mpii-129-1
	20160512212121894-acr-mpii-129-2
	20160512212121894-acr-mpii-129-3
	20160512212121894-acr-mpii-129-4
	20160512212121894-acr-mpii-129-5
	20160512212121894-acr-mpii-129-6
	20160512212121894-acr-mpii-129-7
	20160512212121894-acr-mpii-129-8
	20160512212121894-acr-mpii-129-9
	20160512212121894-acr-mpii-129-10
	20160512212121894-acr-mpii-129-11
	20160512212121894-acr-mpii-129-12
	20160512212121894-acr-mpii-129-13
	20160512212121894-acr-mpii-129-14
	20160512212121894-acr-mpii-129-15
	20160512212121894-acr-mpii-129-16

	mpii-145.pdf
	20160512212148520-acr-mpii-145-1
	20160512212148520-acr-mpii-145-2
	20160512212148520-acr-mpii-145-3
	20160512212148520-acr-mpii-145-4
	20160512212148520-acr-mpii-145-5
	20160512212148520-acr-mpii-145-6
	20160512212148520-acr-mpii-145-7
	20160512212148520-acr-mpii-145-8
	20160512212148520-acr-mpii-145-9
	20160512212148520-acr-mpii-145-10
	20160512212148520-acr-mpii-145-11
	20160512212148520-acr-mpii-145-12
	20160512212148520-acr-mpii-145-13
	20160512212148520-acr-mpii-145-14
	20160512212148520-acr-mpii-145-15
	20160512212148520-acr-mpii-145-16
	20160512212148520-acr-mpii-145-17
	20160512212148520-acr-mpii-145-18
	20160512212148520-acr-mpii-145-19
	20160512212148520-acr-mpii-145-20
	20160512212148520-acr-mpii-145-21
	20160512212148520-acr-mpii-145-22
	20160512212148520-acr-mpii-145-23
	20160512212148520-acr-mpii-145-24

	mpii-169.pdf
	20160512212204166-acr-mpfii-169-1
	20160512212204166-acr-mpfii-169-2
	20160512212204166-acr-mpfii-169-3
	20160512212204166-acr-mpfii-169-4
	20160512212204166-acr-mpfii-169-5
	20160512212204166-acr-mpfii-169-6
	20160512212204166-acr-mpfii-169-7
	20160512212204166-acr-mpfii-169-8
	20160512212204166-acr-mpfii-169-9
	20160512212204166-acr-mpfii-169-10

	mpii-179.pdf
	20160512212227516-acr-mpfii-179-1
	20160512212227516-acr-mpfii-179-2
	20160512212227516-acr-mpfii-179-3
	20160512212227516-acr-mpfii-179-4
	20160512212227516-acr-mpfii-179-5
	20160512212227516-acr-mpfii-179-6
	20160512212227516-acr-mpfii-179-7
	20160512212227516-acr-mpfii-179-8
	20160512212227516-acr-mpfii-179-9
	20160512212227516-acr-mpfii-179-10
	20160512212227516-acr-mpfii-179-11
	20160512212227516-acr-mpfii-179-12
	20160512212227516-acr-mpfii-179-13
	20160512212227516-acr-mpfii-179-14
	20160512212227516-acr-mpfii-179-15
	20160512212227516-acr-mpfii-179-16
	20160512212227516-acr-mpfii-179-17
	20160512212227516-acr-mpfii-179-18
	20160512212227516-acr-mpfii-179-19
	20160512212227516-acr-mpfii-179-20

	mpii-199-213-ocr600.pdf
	20160512212303720-acr-mpii-199-1
	20160512212303720-acr-mpii-199-2
	20160512212303720-acr-mpii-199-3
	20160512212303720-acr-mpii-199-4
	20160512212303720-acr-mpii-199-5
	20160512212303720-acr-mpii-199-6
	20160512212303720-acr-mpii-199-7
	20160512212303720-acr-mpii-199-8
	20160512212303720-acr-mpii-199-9
	20160512212303720-acr-mpii-199-10
	20160512212303720-acr-mpii-199-11
	20160512212303720-acr-mpii-199-12
	20160512212303720-acr-mpii-199-13
	20160512212303720-acr-mpii-199-14
	mpii-213.pdf
	20160512212337325-acr-mpf-213-1
	20160512212337325-acr-mpf-213-2
	20160512212337325-acr-mpf-213-3
	20160512212337325-acr-mpf-213-4

	mpii-219-233-ocr600.pdf
	20160512212534072-acr-mpf-219-1
	20160512212534072-acr-mpf-219-2
	20160512212534072-acr-mpf-219-3
	20160512212534072-acr-mpf-219-4
	mpii-223.pdf
	20160512212555727-acr-mpii-223-1
	20160512212555727-acr-mpii-223-2
	20160512212555727-acr-mpii-223-3
	20160512212555727-acr-mpii-223-4
	20160512212555727-acr-mpii-223-5
	20160512212555727-acr-mpii-223-6
	20160512212555727-acr-mpii-223-7
	20160512212555727-acr-mpii-223-8
	20160512212555727-acr-mpii-223-9
	20160512212555727-acr-mpii-223-10

	mpii-233.pdf
	20160512212618950-acr-mpii-233-1
	20160512212618950-acr-mpii-233-2
	20160512212618950-acr-mpii-233-3
	20160512212618950-acr-mpii-233-4
	20160512212618950-acr-mpii-233-5
	20160512212618950-acr-mpii-233-6
	20160512212618950-acr-mpii-233-7
	20160512212618950-acr-mpii-233-8
	20160512212618950-acr-mpii-233-9
	20160512212618950-acr-mpii-233-10
	20160512212618950-acr-mpii-233-11
	20160512212618950-acr-mpii-233-12
	20160512212618950-acr-mpii-233-13
	20160512212618950-acr-mpii-233-14
	20160512212618950-acr-mpii-233-15
	20160512212618950-acr-mpii-233-16
	20160512212618950-acr-mpii-233-17
	20160512212618950-acr-mpii-233-18
	20160512212618950-acr-mpii-233-19
	20160512212618950-acr-mpii-233-20

