From the publishers of
THE RAINBOW,® The Color Computer Monthly Magazine

By Dale L. Puckett and Peter Dibble

Falsoft, Inc.
Prospect, Kentucky

THE COMPLETE RAINBOW GUIDE TO OS-9

Editor: Courtney Noe
Editorial Assistant: Tamara Solley
Illustrations and Cover Design by Jerry McKiernan

The Rainbow Bookshelf™ books are published by Falsoft, Inc., Lawrence C.
Falk, President.

Copyright® 1985 by Falsoft, Inc., The Falsoft Building, 9529 U.S. Highway 42,
P.O. Box 385, Prospect, Kentucky 40059

The authors have exercised due care in the preparation of this book and the
programs contained in it. Neither the authors, the publisher nor Microware
make any warranties either express or implied with regard to the information
and programs contained in this book. In no event shall the authors or publisher
be liable for incidental or consequential damages arising out of the furnishing,
performance, or use of any information and/or programs.

THE COMPLETE RAINBOW GUIDE TO 0OS-9 is intended for the private
use and pleasure of individual purchasers ofthis publication and reproduction
byany meansis prohibited, withtheexception that the program listingsmaybe
entered, stored and executed in a computer system.

TRS-80 Color Computer is a ® trademark of the Tandy Corporation. 0S-9
and BASIC09 are © trademarks of Microware and Motorola. UNIX is a ®
trademark of Bell Laboratories, Inc. The Rainbow® and The Rainbow
Bookshelf™ are trademarks of Falsoft, Inc.

The OS-9devicedriversin thisbook have been reproduced with the written
permission of Microware Systems Corporation.

First published in 1985.

ISBN: 0-932471-00-5
Library of Congress Catalog Card Number: 85-70113

Printed in the United States of America
12345678910

table of contents

INTRODUCTION

Foreword Xi
Preface Xiii

PART I—THE BIG PICTURE

CHAPTER 1 THE HISTORICAL CONNECTION 1
Operating Systems
Unix History
OS-9 History

CHAPTER 2 THE HARDWARE CONNECTION 7

Minimum Requirements
Device Descriptors
Device Drivers

CHAPTER 3 THE MEMORY CONNECTION 13
The Module Concept
Program Memory
Data Memory

CHAPTER 4 THE SOFTWARE CONNECTION

Multi-tasking
Parent Processor
Child Processor
Creating New Processes
The Shell
The Command Line
Executing Commands Sequentially
Executing Commands Concurrently
Executing Groups Of Commands
Executing I-code Programs
The Memory Size Modifier
Multi-terminal
Operating From Another Terminal
The Utility Command Set

CHAPTER S THE FILE CONNECTION
The Directories
Execution Directory
Data Directory
Anonymous Directories
Deleting Directories
Directory Files
Crawling Around A Directory Tree
File Attributes
Owning Your Own Files
Protecting Your Files
Sharing Your Files
Executing Your Files
Using A Pathlist To Find A File
Devices: Files That Aren’t Files
Sequential Files
Random Files
Procedure Files

CHAPTER 6 THE OUTSIDE CONNECTION
Unified Input/Output
Standard Input
Standard Output
Re-Re-direction
To A Printer
To A File
Pipes
Filters

23

37

45

PART Il—HANDS ON

CHAPTER 7 GETTING STARTED 53
The System Disk
The OS9Boot File
The SYS Directory
The CMDS Directory
The DEFS Directory
The Start-up File
Installing The System
Booting The System
Formatting Disks
Backing Up Your System Disk
Backing Up To A Disk With A Different Format

CHAPTER 8 SPECIAL KEYS 63
Keys That Make Life Easy
Generating New Characters

CHAPTER 9 WHAT DO | DO NOW? 69
Backing Up Your Master Disk
Building A File
Listing A File
Using A File
Changing A File

PART IlI—TOURING THE OS-9
COMMAND SET

CHAPTER 10 COMMANDS THAT GIVE YOU
INFORMATION 77

date

display

echo

free

ident

mdir

mfree

printerr

procs

CHAPTER 11 COMMANDS THAT WORK
WITH FILES 89
attr
binex
build
cmp
copy
del
dump
edit
exbin
list
merge
rename

CHAPTER 12 COMMANDS THAT WORK
WITH DIRECTORIES 105
chd
chx
deldir
dir
dsave
makdir
pwd
pxd

CHAPTER 13 COMMANDS NEEDED TO CREATE
AND COPY YOUR SYSTEM 115
backup
cobbler
dcheck
format
load
os9gen
save
verify

CHAPTER 14 COMMANDS THAT ACT ON
THE SYSTEM 129

debug

link

login

setime

sleep

tmode

tsmon

unlink

xmode

Vi

CHAPTER 15 SHELL COMMANDS THAT ARE
RESIDENT IN MEMORY 141
* comment
ex
kill
pP.-p
setpr
t, -t
w
X, -X

CHAPTER 16 USING THE UTILITY COMMAND
SET IN PROCEDURES 145
Managing System Memory
Managing Disk Space
Managing System Performance
Making Changes From Your Start-up File

PART IV—PROGRAMMING

LANGUAGES
CHAPTER 17 THE TOOLKIT CONCEPT 159
Microware’s Toolkit

FHL Utilix

D. B. Johnson Hacker’s Kit

Computerware’s Textools

FHL UniCharger

Alternative System Software
SDISK—A Replacement For CCDisk
HiRes—A 51-column Screen

CHAPTER 18 USING THE OS-9 ASSEMBLER
TO SOLVE SOME

COMMON PROBLEMS 179
CHAPTER 19 HIGH LEVEL LANGUAGES 195
Basic09
C

Pascal

Vii

PART V—-TOWARD THE END OF
THE RAINBOW

CHAPTER 20 MANAGING YOUR MEMORY 233
Reentrant Modules
Fragmentation
Wasteful Use

CHAPTER 21 MANAGING DISK SPACE 237
Pitfalls
Small Files
Fragmented Files
Recovery

CHAPTER 22 BUILDING A NEW DESCRIPTOR 245
Inside A Device Descriptor
What It Does
How It works
A Sample Device Descriptor
Line By Line Description
Listing

CHAPTER 23 ADDING A NEW DEVICE DRIVER 255
Inside A Device Driver
What It Does
How It Works
A Sample Device Driver
Line By Line Description
Listing

CHAPTER 24 STARTING NEW PROCESSES 259
Concept
Clock
States
Communication
Forking
Chaining

CHAPTER 25 UNDERSTANDING A FILE MANAGER 267
Sequential File Managers
What They Do
How They Work
Random File Managers
What They Do
How They Work

viii

CHAPTER 26 UNDERSTANDING AN
10 MANAGER
What They Do
How They Work

CHAPTER 27 STUDYING DISK FORMATS
Their Physical Structure
Standard OS-9
Five-inch
Single-density
Double-density
Eight-inch
Single-density
Double-density
Color Computer OS-9
Five-inch
Single-sided, Double-density
The Logical Information Sector

CHAPTER 28 INTERRUPTS
Polling Table
Examples

PART VI—POT OF GOLD

CHAPTER 29 EXAMINING MODULES CLOSELY
What They Do
How They Work

CHAPTER 30 MEMORY MANAGEMENT

The Theoretical Base

Fixed Partition Memory

Dynamic Allocation
First-fit Allocation
Best-fit Allocation

OS-9 Level One Memory Management
Fragmentation
Dynamic Address Translation
Virtual Memory
System Service Requests

CHAPTER 31 MEMORY MANAGEMENT —
LEVEL TWO
Memory Management System Service Requests

271

275

279

283

299

313

CHAPTER 32 LEVEL TWO MEMORY
MANAGEMENT INTERVALS 319
System-mode Memory Management Service Requests
Cross Memory Services
Dat Image Control
Task Number Control
Address Space Management
Memory Map Management
Miscellaneous Service Requests

THE WORKSHOPS 327
I. The Classic Cookie Program 327

A Daemon
Il. A Notepad 341
I, More 349

Nice

IV. A Null Device 359
V. A Level One ACIA Driver 363
VI. MCIA 371
VIl. An RBF Device Driver 383
APPENDIX 393

Level One and Level Two Memory Maps

INDEXES 405
Commands and Keyword Index 405
General Index 410

FOREWORD

The Complete Rainbow Guide To OS-9 is just that, the most
comprehensive tutorial and reference guide yet published for the
multifaceted OS-9 operating system.

The book restates Falsoft's commitment to a series of books
designed to broaden the base of knowledge about the Color
Computer and, in the process, to help us to realize the vast
potential of this incredible tool.

The credit for this extraordinary guide goes to Dale Puckett
and Peter Dibble, who, as two of the foremost authorities on OS-9,
have taken great pains to ensure that the book is of immediate
value to the average CoCo user. | think you will appreciate their
writing style and will agree that this book is a milestone in the
evolution and utility of the OS-9 system. | also should thank Ken
Kaplan, president of the Microware Systems Corporation, for his
encouragement and assistance in the preparation of the book, as
well as for adapting OS-9 for use with the Color Computer.

You will especially enjoy the many sample programs that the
authors haveincluded to ease the learning process for you. These
programs, you'll be glad to know, are available on The Rainbow
Guide To OS-9 Disks if you want to save yourself hours of time
typing in the listings (see the notice elsewhere in this book).

| hope you enjoy The Complete Rainbow Guide To OS-9 as
much as we delight in making it possible.

Lawrence C. Falk
Publisher

Xi

PREFACE

why we wrote th

s book

/

Since its release on the Radio Shack Color Computer in
October 1983, Microware’s OS-9 Operating System has created a
stir. Power-packed and efficient, OS-9 brought a UNIX-like
environment to an inexpensive microcomputer for the first time.

Oldtimers and hackers revelled in its power. Many beginners
however, found it intolerable.

After answering hundreds of questions in “KISSable OS-9,” a
monthly column published in THE RAINBOW, we discovered a
pattern. People with no computer training or experience were
rushing to their local Radio Shack and buying OS-9. Then, they
rushed home, proudly inserted their new operating system and
went to work.

With little fanfare and without too much difficulty, these
converts learned to build files and listthem to their CoCo’s screen.
Someeven learned how to climb around on OS-9’s directory tree.
Buteventually the honeymoon ended, and a lot of new OS-9 users
discovered thatthey didn’'t have the slightest idea about what to do
with their new operating system.

Experienced users who had learned how to programusing the
Color Computer’s Microsoft BASIC knew what they wanted to do.
But OS-9 proved an alien environment to many. They found
themselves lost in a reference manual that gave experienced
mainframe programmers everything they needed, but left
beginners wondering where to start.

Enter “The Complete Rainbow Guide To OS-9” from THE
RAINBOW. Here, we'll try to lay down a foundation that will let you
build a staple of OS-9 programming skills with ease.

xiii

USING THIS BOOK

We've divided “The Complete Rainbow Guide To OS-9” into
six parts.

Part | presents an overview of OS-9. It gives you “The Big
Picture.” We encourage you to leave your computer off as you
study this section.

In Part Il we hope you will turn your computer on, use our
examples and experiment. This is where you get your “Hands On”
0S-9.

Part |1l takes you on a seven chapter tour of the complete OS-
9 Utility Command Set. Each chapter introduces you to a number
of commands that perform logically related functions.

In Part IV we introduce you to the major programming
languages that run on OS-9 computers. You'll also be introduced
to assembly language programming and the “toolkit” concept
here.

Part V moves you “Toward the End of The Rainbow.” Here
you'll be able to look inside OS-9 and explore its inner workings.
You'll be in hacker heaven.

And finally, in Part VI we'll show you the “Pot of Gold” that lies
atthe end of the rainbow. Here we dig into the internal workings of
OS-9 and list a new device driver that’s worth its weight in gold.
The additional sample modules are a bonus.

CHAPTER DESCRIPTIONS

In Chapter 1, we'll look at OS-9's history. We’'ll also try to
answer a few of your more obvious questions. Whatis an operating
system? Why do | need one? What is UNIX? Who designed it?
What is OS-9? What wili it do for me?

Chapter 2 takes a look at OS-9 Hardware. It describes the
minimum requirements for OS-9 based systems and looks at two
important system parts — Device Descriptors and Device Drivers.
These two software modules and the new hardware are all that you
need to expand an OS-9 system.

In Chapter 3 we show you how OS-9 uses memory. You'll
learn that the system is divided into program modules and data
modules. We also show you how OS-9 manages your computer’s
memory.

Chapter 4 describes OS-9 Software. You'll learn that OS-9 has
four major parts. The “Kernal” manages your computer’'s memory
and your microprocessor’s time. It gives OS-9 the ability to do
more than one thing at a time and let's you use more than one

Xiv

terminal at the same time. Surrounding the Kernal is OS-9’s
“Shell.” It translates your commands into a form your computer
can understand and passes them to the Kernal for action. Just
outside the Shell, OS-9’'s “Utility Command Set” gives you the
tools you need to do many routine jobs. And finally, “Application
Programs” are tools you use each day at work or at play.

We describe OS-9's file system in Chapter 5. Here you'll learn
about execution directories, data directories and anonymous
directories. We'll show you how to list these directories and how to
delete them. “Files” live in directories and in this chapter we’ll
show you how to find them, use them, protect them and share
them. We'lleven convince you that adevice like your printer is also
a file.

Chapter 6 shows you how OS-9 communicates with the out-
sideworld. You'lllearn about standard input, standard output and
find out that you can redirect OS-9’s input and output to files and
other hardware devices. We'll also introduce you to “pipes” and
theconcept offilters. You'lldiscover that you canrun several small
programs at the same time to do one big job.

In Chapter 7 we introduce you to the OS-9 System Disk aswe
introduce you to The OS9Boot File, the SYS, CMDS and DEFS
directories and show you how to use OS-9's “startup” file. After
these introductions, we’ll show you how to “boot” your system,
format new disks, make an exact backup of your original system
disk and how to copy everything on it to another disk with a
different format.

Chapter 8 introduces you to several special keys that will let
you streamline your OS-9 operations and minimize your key-
strokes. We’'ll also show you which keys to strike on your Color
Computer keyboard when you need to generate special charac-
ters like the left and right brackets required by many of the
advanced programming languages that run under OS-9.

In Chapter 9 you’ll be introduced to a few basic operating
system functions. You'll learn how to BUILD files, LIST files, and
how to use them. We'll even show you how to RENAME and
DELete them.

Chapter 10 demonstrates commands that give you informa-
tion. In Chapter 11 you’ll learn about commands that do things to
files. We introduce commands that work with directories in Chap-
ter 12, and show you the commands you need when you want to
create and copy your system in Chapter 13. Chapter 14 deals with
commands that act on the system, and Chapter 13 talks about a
group of special commands that are alwaysin memory waiting for
you to use them.

In Chapter 16 we try to bring everything together as we intro-
duceyoutoprocedure files. We'll show you procedures that will let

XV

you change the boot file on your system disk and change the
stepping rate of your disk drives. We'll even document a few
known bugsin CoCo OS-9, and where possible, give you the fixes.
Finally, we'll show you how to make changesin memory from your
“startup” file.

In Chapter 17 we'llintroduce you to the concept of using small
programming “tools.” You'll learn about several of the “toolkits”
thatare available commercially, and we’ll show you what they can
do for you and how they differ.

Chapter 18 introduces you to assembler language and shows
you how to get started with the OS-9 assembler, ASM.

“High Level Languages” come to center stage in Chapter 19 as
we present a brief overview of BASICO09, C, and Pascal. We'll show
you the difference between interactive languages like BASIC09
and batch oriented languages such as C. There won't be a lot of
discussion here — each language is a book in itself — but we
will present a few programs that show OS-9 programming
languages in action.

Chapter 20 shows you how to manage your memory. You'll
learn how to conserve this precious resource and how to deal with
fragmentation. Along the way, you'll learn what makes OS-9
modules reentrant.

Chapter 21 is to disk space what Chapter 20 is to memory.
We'll teach you to avoid pitfalls like small files and fragmented
files. Then, we'll show you how to recover files if you delete them
by mistake or damage your disk.

Chapter 22 is about device descriptors. You'll learn several
ways to create new device descriptors to modify the characteris-
tics of devices you have oraccommodate new hardware you may
get.

Chapter 23 explains the role of device drivers in the OS-9
system. You'll learn where they fitin and what's involved in writing
yourown.You'llcome away with a list of reasons for tackling the
job. The details of driver writing are left for you to learn from
examples in the Workshop section.

Chapter 24 jumps sideways into the area of processes. Pro-
cesses are the muscles of an OS-9 system. We'll teach you several
ways to use processes and how to control them. Look forinforma-
tion about tuning your system for maximum performance and
usingsignals. This chapterincludes a sample program thatis pure
mischief.

Chapter 25 moves back into the I/0 path. You'll discover how
I/0 managers fitinto the scheme of things. Each of the three main
file managers is discussed, and we speculate about a number of
file managers that aren’t available yet.

XVi

Chapter 26 moves up the I/0 ladder to the executive position.
We'll show you why |IOMan deserves the memory it uses.

Chapter 27 is an overview of the OS-9 disk format. First, you'll
learn why a disk needs to be formatted. You'll also find out about
the low-level structure of an OS-9 disk. We don’t go as low as the
physical structure of the disk, but if you can read something on a
disk from a program, you’ll learn about it in this chapter.

Chapter 28 covers interrupts, the heartbeat of every ‘0S-9
system. We'll teach you what interrupts are, why they’re important
and what OS-9 does about them.

Chapter29 goes very deeply into modules. Some of the mate-
rial in this chapter has been covered earlier in the book, but this
chaptertakesit furtherthan any but the true hacker willwantto go.

Chapter 30 covers memory the way Chapter 29 covers
modules. It starts with an overview of the theory behind memory
management, including a careful explanation of fragmentation.
You'll learn about the way OS-9 handles memory internally. Atthe
end of the chapter, you’ll find a discussion of each system service
request that relates to memory management under OS-9 Level
One.

Chapter 31 continues the subject of memory management.
This chapter homes in on memory management under OS-9 Level
Two.

Chapter 32 will teach Level Two programmers how to use the
DAT. We'll teach you about each system service request that is
involved with Level Two memory management.

The workshop is a selection of programs. Most of these pro-
grams should prove useful, but mainly they are examples. By
referring to the workshop, you can find out how to use shared
memory modules, how to send and receive signals, how to fork a
process, how to write a device driver and lots of other things.

Some of the programs are: a Daemon, four different device
drivers (two directly from Microware), a program that controls
outputto your terminal, and a program that runs other programs at
special priorities.

THE WORKSHOP

MEMORY MAP

These memory maps are pictures that show the way OS-9
control blocks are hooked together. If you need to find the value of
somesystemvariable, you'll find these maps useful. There aretwo
maps; one for Level One, the other for Level Two.

XVii

HOW THIS BOOK WAS CREATED

ABOUT THE AUTHORS

A warning: these maps are for OS-9 version 1.2. They may not
work for any other version.

The manuscript of this book was prepared by the authors
using the DynaStar word processing program. Spelling accuracy
was checked with the DynaSpell spelling checker. Procedures
listed throughout the book were run on a 6809-based GIMIX
microcomputer running the OS-9 Level Two operating system,
andaRadio Shack Color Computerrunning OS-9 Level One. They
were then copied directly into the manuscript.

The authors shipped the manuscript to the publisher on a
standard OS-9 disk.

DalelL.Puckettisa freelance writerand programmer who first
learned about bits, bytes and BASIC when he built his first “televi-
sion typewriter” — a SWTPC CT-1024 — in 1975. When the key-
board didn’tarrive with his kit, he wired a set of nine slide switches
together and put his first message on the screen one byte at a time.

A month later, he built a SWTPC 6800 microprocessor with
12K of memory and has been programming every since. A cassette
storage unit wasn’t available then, so he often left hiscomputeron
for weeks at a time after finishing a long program.

His programs —sold by the Frank Hogg Laboratory — include
DynaSpell, Esther, Help, Lk and Readtest. He also designed and is
co-author of “The Speller,” which runs on the IBM PC and Apple
computers.

Dale is presently a contributing editor to THE RAINBOW and
author of the “KISSable OS-9” column in that magazine. He also
serves as the President of the OS-9 Users Group, an lowa Corpora-
tion with members worldwide. He has served on the InfoWorld
review board and has written for Hot CoCo, '68 Micro Journal and
Micro.

An amateur radio operator, KOHYD, since 1956, he has held a
first class radiotelephone operators license since 1962. He has
worked atseveralradio and television stations in Kansas and New
Jersey.

Dale is a chief warrant officer in the United States Coast
Guard and presently serves with the Pollution Response Branch at
Coast Guard Headquarters in Washington. He lives in Dale City,
VA with his wife Esther and daughter Michele.

Puckett received a Bachelor of Science degree from the Wil-
liam Allen White School of Journalism at the University of Kansas

XViii

in 1966. He also earned a Master of Arts in Management from
Webster College at St. Louis, Mo.

Peter Dibble, born in Waterbury, Connecticut, received the
degree of Bachelor of Science in chemistry from the University of
Connecticut. Subsequent to graduation, he has held jobs as an
application programmer, asystems programmerandtheassistant
director in charge of the University of Rochester Computing Cen-
ter’'suser services department. He is now a graduate student in the
University of Rochester computer science department. He has
been writing a monthly column called “OS-9 User Notes” for ‘68’
Micro Journal since April 1983.

~ACKNOWLEDGEMENTS

We thank Lonnie Falk, our publisher; Courtney Noe, our
editor; Tamara Solley, editorial assistant and typesetter; Jerry
McKiernan, our artist; and the entire staff at THE RAINBOW. Without
their encouragement and support, this book would have never
been published. They demonstrated faith to let us try and the
patience to let it work.

My wife, Esther Puckett, who patiently watched while |
searched for words that wouldn’'t come, and who edited those that
didn’t work, deserves much of the credit for the success of this
book.

Special thanks go totwo OS-9 programmers who contributed
programs published in this book. Tim Harris, a student at the
University of lowa at Ames, is the author of several assembly
language and C filters that appear in Chapters 18 and 19. Bill Ball,
a U.S. Coast Guard public affairs specialist assigned to the
Defense Information School at Fort Benjamin Harrison, Indiana,
contributed a file report utility written in C. Named Frep, it is
presented in Chapter 19.

XiX

PART I: THE BIG PICTURE

CHAPTER 1

the historical connection

“I'willliken him unto a wise man, which built his house upon a
rock: and the rain descended, and the floods came, and the winds
blew, and beat upon that house; and it fell not: for it was founded
upon arock.” (Matthew 7:24-27)

COMMON SENSE PREVAILS

Temptation threatened. We wanted to let you put your fingers
on the keyboard and work with OS-9 immediately. In fact, we
could hardly wait to show off our favorite operating system.

Common sense prevailed, however, and we decided to pres-
ent an expanded introduction first. This approach will give you a
strong foundation upon which you can build a staple of OS-9
programming skills.

Anintroduction to OS-9is anintroduction to one of the most
versatile operating systems available on a microcomputer today.
Butbefore weintroduce youto OS-9, we needtotalk briefly about
operating systems.

In this chapter you'll be introduced to:

Operating Systems
UNIX History
OS-9 History i

OPERATING SYSTEMS TALK TO YOUR HARDWARE

Let's jump right in with the sixty-four dollar question. What is
an operating system?

First, we'll give aformal answer. An operating system controls
the low-level processes within your computer. It gives your appli-

1

cation programs a way to communicate with the hardware. It also
manages your system resources.

Processes are short software routines in action. They get
characters from a keyboard. They put characters in a disk file or
sendthemto a printer. Sometimes, they even make you think they
are doing several things at the same time.

Externally, system resources inciudeterminals, printers, plot-
ters and disk drives, etc. Internally, they include your computer’s
memory and your microprocessor’s time.

Enough formality. An operating system directs the flow of
your data. Like a traffic cop on a busy corner, it insures that the
right data gets to the right place — at the right time.

PEOPLE WERE THE FIRST OPERATING SYSTEMS

In the early days, when computers with far less power than
your lap computer filled large air-conditioned rooms, men and
women stood watch. They threw hundreds of switches to entera
short program. They received reports on slow teletype printers.
They even watched the vacuum tubes and replaced them when
they burned out. They were the operating systems.

Today, as system software developers struggle to keep pace
with the ever increasing demand for microcomputer power on
American desks, operating systems are becoming total
environments.

Keyboards, video displays, floppy disk drives and printers are
child’s play to today’s operating systems. Application programs
now demand graphics, light pens, touch screens and windows.
Users demand mice drawing tablets and other “friendly” tools.

Now that you know what operating systems are supposed to
do, you can compare them to a piece of software you are already
familiar with — MicroSoft's Extended Color BASIC.

Color Disk Extended BASIC is a programming language. It is
called “Disk” Extended BASIC because it contains a few simple
routines thatletyou save programs and data on a floppy disk and
load them back in later.

By contrast, OS-9is an operating system — an environment. It
connects your program to the keyboard you type on. It writes
lettersand numbers onyourvideo screen. It sends listings to your
printer. It saves your programs on floppy disks. It even lets you run
two or more programs at the same time.

0OS-9is, in fact, an extremely efficient implementation of the
UNIXoperating system philosophy. It was designed by Microware
Systems Corporation in Des Moines, lowa. And because it was
coded in 6809 assembly language, it is small and fast.

2

Long ago, about 1969, and far, far away —in asmall, northern
New Jersey hamlet — AT&T designers were forced to deal with
reality. Software development was too expensive.

Managers visited. They saw expensive computers tied up with
only one person doingonejob. Itdidn’t make sense tothem. They
wanted to make more money. They wanted efficiency. UNIX was
born.

Inthosedays, programmers had to use batch-oriented operat-
ing systems. Toget programs or datainto acomputer, they typed it
onto coded punch cards. Several minutes — and many times,
hours — later, they received a printout with their results. The
system was too slow. They needed an interactive system.

Forashortwhilein 1969they used an operating system called
“Multics.” This new program let several programmers work at the
sametime. Itevenletthem use more thanoneprogramatthesame
time.

Multics also was interactive. This meant that when pro-
grammers typed a command, the computer responded almost
immediately. It was a big improvement over the punch cards.

But Multics wasn’t enough. Programmers needed an operat-
ing system that would support coordinated teams working on the
sameproduct. They neededto be able toaccess each others data.
In fact, the name UNIX came from a reference to this unified, team
programming environment.

The first UNIX system was developed by a Bell Laboratories
scientist named Ken Thompson. He wroteitinassembly language
and ran it on a PDP-7 minicomputer.

There was one serious problem with Thompson'’s approach.
Since his operating system was written in assembly language, it
was machine dependent. It could only berun on one model or type
of computer. If you needed torunit on another computer, you had
to code it over againin the assembly language recognized by the
new computer. Again this was too expensive.

Tosolvethis problem, Thompson wrote alanguage that could
betransported to other computers. He named it B. Later, another
Bell programmer, Dennis Ritchie, modified Thompson’'s B and
called the new language C. C is still used today by programmers
writing system utilities and application programs for almost every
computer on the market.

After developing C, Ritchie rewrote UNIX in C. Since C could
3

0S-9 HAS ROOTS IN UNIX

UNIX IS WRITTENINC

be moved to virtually any computer, programmers at Bell Labs
could putUNIX onjustaboutany machine they wanted. In fact, by
1978 they had installed more than 600 UNIX systems at universi-
ties, government facilities and throughout the Bell System. These
machines controlled laboratory experiments, designed machines,
supervised telephone networks and managed business offices.

In 1979, Bell Laboratories introduced a new version of UNIX
and decreased its single-user license fee. Computer manufactur-
ers could then afford to develop UNIX software for their systems,
and small businesses could license UNIX for their personal com-
puters.SystemIIl UNIX wasreleased in 1981. Now, System Vison
the market.

The UNIX operating system contains three major parts: a
kernalthat schedules tasks and manages data storage, a shell that
interprets the commands typed by the user, and an extremely
large set of utility programs that perform hundreds of routine tasks
and system maintenance.

Since it was designed by programmers for programmers, it
contains a wealth of program development tools. With UNIX, you
can do many jobs without a programming language. You simply
place a sequence of system commands in a shellscript.

0S-9 BRINGS UNIX POWER TO THE 6809

UNIX was the answer to a programmers prayer. But, since it
was written in C, it was too big to fit comfortably on most micro-
computers. Yet, many companiessawthe need for UNIX poweron
these small machines.

Why did they perceive a need? Stop for a moment and think
about the work you do with your computer.

How many times have you wanted to use one program while
you wererunning another? How many times have you wished that
your spouse could use the computer to keep your household
records straight while you were programming it from a second
terminal? Have you ever wished you could printa longreportand
compose another at the same time?

Both Microware Systems Corporation and Motorola saw the
need clearly. They joined forces to make it happen for the 6809
microprocessor.

Motorola layed down some tough criteria. They wanted an
operating system that would exercise every ounce of capability in
the 6809. Several 16-bit registers and almost every memory
addressing mode available on a minicomputer made the job
easier.

The company’s ultimate goal was to sell mass-produced

4

“software-on-silcon.” Motorola wanted to distribute their software
products in ROM (Read Only Memory) chips. This meant that they
had to be able to write software in small modules that could be
plugged in anywhere in memory.

The use of an assembler to reassemble the source code, or a
linking loader to link modules together at “run time,” was out of the
question. These techniques create too much of a hassle for the
ultimate consumer. To Microware, all of this meantthe new operat-
ing system had to be written using “position independent”
modules.

The new operating system also had to meet several additional
requirements. All modules had tobereentrant because more than
one user would be running them at the same time. Programmers
had to be able to interrupt a routine while it was running, let
another user execute that same routine, and then have it return to
the original user with all original data intact. It also meant that
programs in the modules could not modify themselves while they
were running.

Because of the tough criteria and effective design, software
developers have been able to transport just about every major
language and all types of system software to OS-9 computers. In
fact, most of these programs run much faster on the 6809. And,
they’'re much shorter. The applications software you need to run
your business is available, too.

YOU’RE IN GOOD COMPANY WITH 0S-9

0OS-9 has put the UNIX philosophy to work on Radio Shack’s
Color Computer and nearly 100 other microcomputers that use
the 6809 microprocessor. In fact, several major American compan-
ies use OS-9 daily.

For example, the Western Electric division of American Tele-
phone and Telegraph — the same AT&T that hopes to make UNIX
a household word — uses a program written in BASICOQ9, running
under the OS-9 operating system on a Gimix microcomputer, in
the final manufacturing stage of every telephone that leaves its
factory in West Virginia.

0OS-9 even helps keep the Space Shuttle flying. NASA uses
four Gimix systems running OS-9 at Cape Canaveral, and one of
them performs the pre-flight fuel tank tests before every launch.

The Ford Motor Company uses microcomputers running OS-9
at their test track in Michigan. And, Eastman Kodak uses a
BASICO09 program during the final assembly of each Kodak disk
camera. They use another OS-9 program to ensure the quality of
the film manufactured for those cameras.

0S-9 FUTURE IS PROMISING

SUMMARY

The demonstrated popularity of OS-9 gives you a good reason
to learn this operating system and become proficient in its opera-
tion. If you learn to operate and program in the OS-9 environment,
you could have a bright future. Additionally, the fact that AT&T
hopes to make UNIX the standard operating system and the fact
that learning OS-9is an inexpensive way to learn UNIX principles
give you other good incentives.

0OS-9 is also a tool you can use to keep your applications
programs compatible with new 6809 hardware. If you write all of
your programs using relocatable code, and use only standard
OS-9 operating system calls, you will almost guarantee that your
software will run on new 6809 computers. This is especially impor-
tant if you are writing software for machines like Tandy's Color
Computer.

Tandy continues to improve and update its hardware. Yet,
company officials know thatitis intheir bestinterest to ensure that
the old software will run on the new hardware. Because of this,
they recently recommended that developers use OS-9. If you are
developing software, even for your own use, it is also in your best
interest to use OS-9.

In this chapter we have reviewed OS-9's historical connection.
You have been introduced to operating systems in general and
Bell Laboratories UNIX operating system in particular. You have
also learned how OS-9 was born.

In Chapter Two we'll look at“The Hardware Connection” and
introduce you to a few OS-9 system requirements.

CHAPTER 2

the hardware connection

Inthe beginning there was a Central Processing Unit. Or, did
algorithms come first? Without leaving time to open that debate,
we move on to take a look at hardware and the part it plays in
computing.

Then, we talk about hardware requirements for OS-9 based
microcomputers and introduce you to device descriptors and
device drivers — two OS-9 software modules that make it easy to
expand your system.

In this chapter you'll learn about:

Central Processing Units
Memory
Data Storage
Input and Output devices
OS-9 Hardware Requirements
OS-9 Device Drivers
OS-9 Device Descriptors

CENTRAL PROCESSING UNITS

A Central ProcessingUnitinacomputeris likethe brain in the
human body. Itinterprets and executes each instructionin acom-
puter program.

In the early days, engineers built CPUs with vacuum tubes.
They were bulky, hot and slow. But, they got the job done. Later,

7

MEMORY

transistors replaced vacuum tubes and the newer models became
smaller, cooler and faster.

The first microprocessor was introduced in 1972. By the end
of that decade small microcomputers had invaded America. Busi-
ness executives found computing power on their desks that
rivaled that of the large mainframe computers of the sixties.

The 6809 microprocessor from Motorola is the CPU that runs
0OS-9. This single integrated circuit — or chip as it is called — can
interpret and execute millions of instructions each second.

DATA STORAGE

The 6809 microprocessor has tremendous power. Yet, it can
only deal with a finite amount of data at any given time. A computer
must be able to remember — or store — the long data sequences
that make up programs if it is to do any useful work. Small inte-
grated circuits handle this chore.

Logically enough, engineers call the integrated circuits that
hold this data memory. These chips store information by remem-
bering whether an electronic pulse was on or off. If a positive
voltage can be measured at a particular point — or address — that
data “bit” is said to be on. A point that measures zero volts is off.

Generally speaking, eight of these bits make up one byte of
data. Eight bits of data can hold 256 different patterns. The pattern
determines the value of the byte. Alas, each byte of data can have
one of 256 different values.

Main memory inside a computer takes one of two forms.
Random Access Memory (RAM) can be read from and written to. It
is used to hold data that changes during the execution of a pro-
gram. Read Only Memory (ROM), can only be read. Engineers use
it to hold programs or data that never change.

Since OS-9is a multi-user system, memory is shared by sev-
eral users. In fact, memory management is one of the main tasks
performed by OS-9.

A microprocessor canonly address a finite amount of memory
at a given time. Because of this, microcomputers need a place to
store information that is not being used at the time.

Smaller microcomputers use floppy disks to store information
on a flat magnetic surface. They save this data by sending mag-
netic pulses to the surface of the disk. Later they read theinforma-
tion back using a magnetic read/write head much like those found
on home tape recorders. Microcomputers use a disk controller to

8

move this head to different positions on the disk, allowing access
to information stored anywhere on its surface.

Hard disks are also used to store data. Because they use a
rigid aluminum plate coated with a magnetic emulsion, they can
hold more data and operate much faster. Theirincreased capacity
and speed is needed for most business applications.

Both floppy and hard disks comein various shapes and sizes.
Drives used on microprocessors range from the older 8-inch mod-
elsto the newer 3%-inch compacts. The standard 5 %-inch drives,
both full and half size, are probably the most common. You can
find them all on OS-9 based microcomputers.

INPUT AND OUTPUT DEVICES

Before a CPU can process any information, it must be entered
into the computer. Keyboards with a standard typewriter layout
are the most common input device today, but engineers have
pushed technology so hard during the past several years that
mice, touch sensitive screens and voice recognition hardware are
rapidly becoming the state of the art.

Most people use aterminal to communicate with their compu-
ter. A terminal has a keyboard that lets them send data to the
computer, a video display screen that lets them see the data it
sends back,andsometype of communications portthatconnects
the two. Some terminals even display graphic images.

When you run OS-9 on the Radio Shack Color Computer, the
Color Computer acts as both your computer and your terminal.
You can also hook a full-sized terminal up to the RS-232 jack on
the rear of the Color Computer.

0S-9 HARDWARE REQUIREMENTS

Some OS-9 computers only use one 4K ROM and 2K of RAM.
In fact, most engineers don’t even call these small machines com-
puters. They call them controllers.

Onthe otherend of the spectrum, others use OS-9 computers
that need a million bytes of memory and a large hard disk. But,
these giant machines pay for themselves. For example, many
schools connect one large OS-9 based computer to a dozen ter-
minals and let 12 students all work at the same time.

If you plan to write all of your programs in assembly language,
you can get by with as little as 24K of RAM. If you use a higher level
language like BASICO09 or C, you'll need at least 40K of memory.

LEVEL | SYSTEMS

ovoo fr/

LEVEL Il SYSTEMS

DEVICE DRIVERS

Because memory spaceis limited, OS-9 Level | is usually only
used on computers designed for one person. Most of these
machines use 4K of ROM and up to 60K of RAM. The ROM is
usually addressed at $F800 and normally runs through $FFFF. The
6809 microprocessor automatically looks for start up vectors at
the top of memory. The ROM holds these vectors.

Radio Shack emulates the ROM found in other computers by
loading the upper 32K page of RAM in a 64K Color Computer with
0OS-9 start up code stored on track 34 of a standard Extended
BASIC disk. Once the code is in place, the Color Computer’'s SAM
chip turns off the BASIC ROM memory and turns the RAM on. The
6809 then uses the code stored at $F800 to $FFFF to “boot” the rest
of the system from a standard Radio Shack OS-9 disk.

Most Level | systems use a terminal that talks with OS-9
through a serial or parallel port. However, some computer manu-
facturersuseamemory mapped video display. The Color Compu-
ter uses this approach.

Level | OS-9 cansenddatato your printerif you ownone. And
if your computer has a real-time clock chip installed, it will use it.
Printers may be either serial or parallel. The Color Computer uses
a serial printer, but it does not have a hardware clock chip.

OS-9 Level ll systemsusememory management hardware —a
chip called a DAT. The letters DAT stand for dynamic address
translator. The DAT chip makes it possible for the 6809 micropro-
cessor to use more than 64K of memory. Normally, the 6809 can-
not address more than 64K of memory. However, the DAT chip
moves memory in and out of a fixed 64K block that the 6809
addresses.

An OS-9 Level Il computer needs 64K of RAM for the operat-
ing system, plus 32K of RAM for each user. It also needs a main
terminal and a terminal for each person who is going to use it.
OS-9 Level Il computers store their data and programs on both
floppy and hard disks.

Engineers use computers running OS-9to control all types of
hardware. They prefer OS-9 because they can connect new hard-
ware tools to their computer without rewriting or patching the
operating system.

0OS-9 lets you add new hardware to your computer by adding
two new software modules — a devicedriverand a device descrip-

10

tor. After the new hardware is connected to your computer, you
load your two new modules into memory. Once these modules are
in place, you can receive data from the new device or send data to
it by redirecting your standard input and output paths to the new
hardware.

For example, you could build a voice synthesizer and plug it
into one of the expansion slots in the Radio Shack Multi-Pak
Interface. To run it, you would write a device driver — you could
call it voice — and a device descriptor named ‘V’. To make your
voice synthesizer read your directory you would type this com-
mand line:

0S89: dir >/V <ENTER>

Device drivers are short pieces of 6809 code that are smart
enough to knowhow to talk to a particular piece of hardware. Most
08-9 computer systems come with device drivers that know how
totalk to the Asynchronous Communication Interface Adapters or
ACIlAs that connectthemto serial terminals and printers as well as
to the Peripheral Interface Adapters or PIAs thatletthem commun-
icate with parallel keyboards and printers. They also come with
special drivers that know how to communicate with the particular
disk controller used by each manufacturer.

When OS-9 programmers write a device driver, they use reen-
trant code. Because the driveris reentrant, only one copy needs to
be in memory — even though several pieces of hardware may be
using it at the same time.

Forexample, ACIA — the standard OS-9 device driver — often
appears to be talking to your terminal and sending alisting to your
serial printer at the same time. Chapter 24 explains device drivers
in great detail and shows you how to write one.

An OS-9devicedriveruses adevice descriptorwhenittalksto
apiece of hardware. The driveritself is generic. This means it can
talktoany piece of hardware that uses the same chip. Forexample,
ACIA, the device driver we mentioned earlier, can talk to any
device that uses an ACIA. It can send to and receive characters
from a terminal. It can send information into a modem connected
toatelephone which lets you communicate with aremote compu-

.ter. And, it lets you send listings to your printer.

To talk to the terminal, OS-9 uses a device descriptor named
/TERM. When you are working with OS-9 it normally gets the
characters youtypeon your keyboard fromthis device descriptor.
Likewise, the characters you see on your screen come through it.

To feed the modem, you would redirect your standard output
path to a device descriptor named /M. To list a file to the printer,

11

DEVICE DESCRIPTORS

SUMMARY

you would redirect your output to a device named /P. The two
command lines used to feed your modem or printer would look like
this.

0OS9: list Chapter_One >/M <ENTER>
0S9: list Chapter_Two >/P <ENTER>

These device descriptors do what their name implies. They
describethe actual physical characteristics of the hardware for the
device driver. Without them, the device driver would be lost. The
device driver needs to know the name of the device itis supposed
to send data to, its location — or address — in memory, and the
nameofthe file managerthat willbesending thethe data. It gets all
of this information from the device descriptor.

A device descriptor is nothing more than a small table that
holds information that describes each piece of hardware. It also
holds the name of the file manager that will be sending data to the
device,thename of thedriverthat will useit, the absolute physical
address of the device in your computer’'s memory map and an
initialization table.

Theinitializationtable containsinformation that describes the
initial characteristics of a piece of hardware. For example, it may
tell OS-9tosend an ASCIl backspace character, 8 decimal, when it
wants to back the cursor up one space.

Nearly two dozen characteristics — called parameters — are
stored in a typical OS-9 initialization table. They can be read or
changed with the XMODE utility command. In Chapter 23 we
describe devicedescriptors line by line and show you how you can
build them.

In this chapter you have learned about computer hardware in
generaland minimum hardware requirements for the OS-9 operat-
ingsystem. You have beenintroduced to device drivers and device
descriptors, two software modules that make it easy for you to
install new hardware on your computer.

In Chapter 3 we introduce you to the concept of modularity.

You'll learn the advantages of breaking your programs — or
projects for that matter — into small manageable pieces.

12

CHAPTER 3

the memory connection

Random Access Memory can hold information that looks like
a program to a microprocessor such as the 6809. Or, it can hold
information that is manipulated by a program. These two types of
information rarely get confused on a computer running OS-9
because they reside in different parts of memory.

If you run the OS-9 MDIR utility command and take a close look
atthe program memory area in your OS-9 based computer, you'll
see a bunch of names. These names identify a number of small
programs. Allofthese programs live in modules. In this chapter we
talk about memory modules and other memory related matters,
including:

Modularity
0S-9 Memory Use
0S-9 Module Directories
0S-9 Modules
0S-9 Module Headers
Memory Management

MODULARITY

Here's areal world analogy that may help explain the concept
of modularity. Close youreyes fora momentand imagine how you
would react if someone told you that you had to build a condo-
minium.

Don't panic. Rather, look foralogicalsolutiontothe problem.
Visit a local construction site and study the activity. You'll proba-
bly see large cranes lifting giant pieces, the size of a living room,
into place.

13

HOW MEMORY IS USED

The rooms, or modules, have been built somewhere else and
carried to the construction site on large trucks. One module might
come from a company that specializes in living rooms, another
from a firm that builds staircases.

Once the individual pieces arrive on site, they are put together
in the proper order. The contractor combines the modules he
needs to build the apartment that the customer ordered. The resuli
is an apartment with the best living room and the best staircase
that can be built — at least, the most cost effective.

The authors of OS-9 used asimilarapproach when they wrote
this powerful operating system. They used a technique called
structured programming.

First, they defined each problem they were trying to solve in
terms of a number of smaller problems. Then, they broke the
smaller problems down into still smaller problems. Eventually,
they reached the point where they could translate each of the
smaller problems directly into a piece of code their computer
could understand.

Then, they realized that many of the smaller problems they
had been solving were similar. They started to save their solutions
and use them over and over again. They saved their solutions in
program modules. Before long, they had saved enough modules
to construct OS-9.

0OS-9 is a powerful operating system. Yet, it is not one giant
program.Rather, itis a number of small program modules working
together in a synergistic manner. That's modularity.

If you peek into the memory of an OS-9 computer while it is
running you will see the names of all the modules that have been
loaded at the top of memory. You'll see data at the bottom. The
memory in between is free memory that you can use to run addi-
tional programs.

There are a couple of requirements that your computer must
meet if you plan to run OS-9. First, the address of the first byte of
random access memory must be zero — $0000. Second, your
memory must be continuous — it must start at $0000 and run
through to the top of your memory.

There can be no gaps in your memory. In other words, you
could not install a 16K memory board addressed from $0000 to
$3FFF and another addressed from $5000 to $8FFF. You would
need to start the second block at $4000 so that every byte in your
memory map would be accounted for — from $0000 to your top of
memory — $7FFF.

14

If you have a Color Computer, the design engineers at Tandy
met this requirement for you. The memory on your Color Compu-
ter starts at $0000 and runs continuously to $FEFF when you are
running OS-9.

Each time you bring OS-9 to life, it runs a special routine that
looks for the end of your memory. This operation is automatic and
you need not worry about it. However, OS-9 needs the information
gathered by this routine so that it can reserve a few blocks of
memory for its own use.

Actually, OS-9 sets aside two areas of memory. First, it
reserves about 1,000 bytes at the bottom of memory. The Kernal
uses this area as a workspace to hold temporary information.

0OS-9 sets aside another block of memory at the top of your
computers memory map. It needs this space for the buffers it uses
toread and write information to the disk drives, printers and other
devices connected to your computer.

TOP DOWN LOADING

The above heading has nothing to do with the “top down
programming” techniques you may have studied in a book or
magazine. Rather, ittells you how OS-9 loads your programs when
you need to run them.

If you type a command on your keyboard that names a pro-
gram that is not residentin memory, OS-9 tries to load it from your
current execution directory. If it finds the program in this direc-
tory, OS-9 writes your new program module into the very top of the
free memory space in your computer.

If you are running your first program, OS-9 will load it just
below the buffer area that it reserved for itself when you first
startedit. Laterif you load or run another program, it will be written
into memory directly below the first program you loaded.

We mentioned earlier that the variable information used by an
OS-9 program is kept separate from the program itself. Since this
data memory area begins at approximately $0400 hexadecimal,
your very first program will most likely have its data stored begin-
ning at $0400.

Later, if you start another program running, that program’s
data memory area should start just above the end of the memory
area used by your first program. You should be aware of one
additional point, however. All data memory areas — and all pro-
gram modules for that matter — start on an even page boundary.

Let’s use an example to explain. Suppose that the first pro-

15

gram youload uses justunderone page of memory — 249 decimal
or $EF bytes hexadecimal. Further, let's assume that the data
memory area used by your program starts at $0400. That means its
data area would end at $04EF.

Where do you think the data memory area would start for the
next program you run, $04F0? Wrong! It would start at the next
even page boundary or $0500. This happens because OS-9 gives
your program memory one page, or 256 bytes, at a time.

EVERY MODULE HAS A NAME

Just as every person has a name, every OS-9 program has a
name. When your boss needs to tell you what to do, he addresses
you by name. If you expect OS-9 to run a program for you, it must
be able to call that program by name.

The telephone company gives you a directory so that when
you need to call someone, you can find their number. OS-9 has a
directory too — a directory that contains the name of each pro-
gramresidentin your computer's memory. OS-9 may have loaded
these programs automatically when you brought it to life, or you
may have loaded them. OS-9 calls this directory a module
directory.

Each time you run the OS-9 MDIR utility command, you will
see the names of the programs stored in your memory. You can
learn alot more about the programsin the module directory if you
type an ‘e’ — for extended — on your MDIR command line. For
example, this extended report can tell you the actual memory
address where each module is stored and how many processes are
using a module.

This use count also teils OS-9 when a module is not being
used. Thisisimportantbecausewhenamoduleisnot being used it
can be discarded and its memory released for other programs.

Here’show it works. Whena programneedstousethecode or
data in a module, it links to it. When it does this, OS-9 automati-
cally increases the module's link count by one. When the program
is finished with the module it unlinks from it and OS-9 decreases
the link count by one. When this link count reaches zero, OS-9
knows that the module is not being used and removes it from the
module directory, releasing the memory so that it can be used by
other programs.

0S-9 manages your memory for you automatically — you
don'tneedto doathing. Since thismemory managementis totally
transparent to you, you will never see anything happen either.

OS-9 calls the memory located between the top of the data
memory area used by the last program you ran and the bottom of
the last program module itself, free memory. It uses this free

16

memory when it is needed. When does OS-9 need memory? Let’s
try to make a complicated answer simple.

First, OS-9 will need to use some of your free memory when
you load a new program module. Then later when you run this
program, OS-9 will need to givethe processyouhave started some
memory to use for its data memory area.

Sometimes a program itself may request more memory. OS-9
willgivea program more memory ifitisavailable. Andfinally, 0S-9
often needs additional memory to use for a bufferwhenitopensan
input/output path to a new device or file for you.

The process is reversed and OS-9 puts memory back into the
free memory area when a program stops running or when you
unlink — or unload — a program module.

This magical give and take is made possible by information
contained within each OS-9 module. You cannot load anything
into the memory of an OS-9 computer unless it is in a module.
Further, all modulesfollow a precise formatsothat OS-9 willknow
where to find specific information within a module.

For example, if 0S-9 needs to know the size of a module, it will
always look at the third and fourth bytes of the module’s header.

WHAT DOES A MODULE LOOK LIKE

Let’s play aguessinggame. If youwerean OS-9 module, what
doyouthinkyouwould look like? First, youwould have three parts
— a header, abody and a CRC.

The headerislikethe prefacein abook ortheleadsentencein
a newspaper story. By looking atityou — or OS-9 — can find out
everything you ever wantedto know abouta module. For example,
you can find out how many bytes are stored in a module, how
much memory a module needs for data storage, and a module’s
exact location in memory by looking at the module header.

Additionally, the module header can even tell you what type of
datais stored in a module. Specifically, the type byte tells OS-9 if
the module containsa program, a subroutine, adevicedescriptor,
adevicedriver, afile manager orjust plain data. All of thisinforma-
tionisstoredinthe most significant four bits of thetype byteinthe
module header.

The least significant four bits of this same byte tells OS-9
which language uses the module. A module could contain BASIC09
intermediate-code, COBOL intermediate-code, FORTRAN interme-
diate-code, 6809 object code or PASCAL pseudo-code. Each higher
level language that runs under OS-9 checksthetypebyte before it
tries to run the codeinany module. Why? Justimagine what would
happen if BASICO09 tried to run PASCAL p-code. The results would

17

most likely be less than optimal.

Anotherbyteinthe module header tells OS-9 if morethanone
person can run the code stored in a module at the same time. A
module of this type is called sharable. Technically, a sharable
module contains “reentrant” code.

Cometothink of it, why would OS-9 want to let more than one
person run the code in a module at the same time? Think about it
foraminuteandyou’ll see how sharable modules can save a lot of
memory.

On older operating systems two copies of a BASIC interpreter
needed to be in memory if two users wanted to run a BASIC pro-
gram. Effectively, this meant that two users could not run a pro-
gram at the same time on small 64K microcomputers. Not so with
0S-9. BASICO09, which is nearly 22 thousand bytes long, can be
used by several users at the same time because itis reentrant and
each user is assigned to a separate data memory area.

REVISION NUMBER IS VERY IMPORTANT

The least significant four bits of the “sharable” byte in a
module header holds the revision number of the module. The
lowest possible modulerevisionnumberiszero. The highestis 15.

The revision number of a module is very important because it
determines which module stays in memory when you try to load
twomodules of the sametypethat happento have the same name.
Here's the rule.

0OS-9only keeps the module with the highest revision numberin
its module directory. You'll find this handy when you need to
replace code storedina ROM. Torun a later version of the code in
ROM, you need only load a module with the same name, but a
higher revision number, into RAM memory.

HOW OS-9 FINDS A MODULE’S NAME

0S-9 finds the name of a module by looking at the fifth and
sixth bytes in the module header. These bytes contain a value
which tells OS-9 the distance between the beginning of the
module and its name string.

The first nine bytes of all module headers always contain the
sameinformation in exactly the same place. Most module headers
store more information in the bytes that follow. The number of
additional bytes and their specific location is determined by the
module type.

The chart below shows a typical module header. Headers
generated by ASM, the OS-9 assembler and BASICO09 both look
like this. Our table shows you the precise location of the
information.

18

A TYPICAL 0S-9 MODULE HEADER

DISTANCE
FROM
START OF
MODULE

0

11

PURPOSE OF
INFORMATION

marks the beginning of the
module

gives length of
module

points to location of
module’'s name

reports type of module and
language that uses it

contains attributes and
revision number of module

Contains the cyclic
redundancy check (CRC) of
the module header

gives distance between
module beginning and
actual program code

OFFICIAL NAME

Sync Bytes
Module Size
Name Offset
Type/Language
Attributes/
Revision
Header Parity

Check

Execution Offset

tells how much data memory Storage Size

area the program needs

You can use Ildent, an OS-9 utility command, to read the
information stored in a module header. Here’s a look at an “ident”
of the module, “ds” — the screen editor we are using as we write

this book.

Header for: DS

Module size: $38F3 #14579
Module CRC: $A3C080 (Good)
Hdr parity: $FD

Exec. off: $000D #13
Data Size: $7FFF #32767
Edition: $1E #30
Ty/La At/Rv: $11 $81

Prog mod, 6809 obj, re-en, R/O

HOW DOES 0OS-9 FIND ITS MODULES

0OS-9 uses the sync bytes in the first two bytes of the module
header to find all valid modules when it starts up. The two bytes,
$87 and $CD, hexadecimal are both unused 6809 opcodes.

When OS-9 finds these two bytes together it suspects that it

19

has found the start of a bona-fide module. To find out for sure, it
checks the CRC of the module header. If the module header
passes the test, OS-9 reads the module size from the header and
runs a Cyclic Redundancy Check on the entire module. If it
passes, the module is placed in the module directory.

Thebodyofa module follows the header. It usually holds pure
codethatisactually run by OS-9. Sometimes however, itcontains
only data that can be read by other programs.

Following the last byte of the program section of an OS-9
module you will always find three additional bytes. They contain
the result of a Cyclic Redundancy Check. Hence, they are named
CRC.

0OS-9 uses this CRC value when it loads a module into
memory. The value read from the last three bytes of the disk file
must equal thevaluecomputedfromthe code that was loadedinto
memory. If they donotagree, thenthere hasbeenaloaderrorand
OS-9 will not use the code in the module.

ADDITIONAL RULES

Two additional rules govern OS-9 memory modules. First, the
code contained in a module must be positionindependent. Thisis
required because OS-9 always writes a moduleinto the next avail-
ablefreememory areawhenitisloaded from adisk file. You never
know where a program is going to be loaded ahead of time. And
second, the program in the modulecannot modify itself. All chang-
ing data must be stored in another area of memory.

STANDARD MODULES FOUND IN COLOR COMPUTER 0S-9

Major modulesin your Color Computer's OS-9 operating sys-
tem include:

0S9

OS9p2: The kernal which forms the heart ofthe operating
system.

CLOCK: Divides the 6809's time between several different
jobs or processes by managing interrupts from
the 60 cycle power line. This makes the processes
appear to be running at the same time. It also
keeps the time of day.

IOMan: Manages all requests for Input/Output from all
devices.
RBF: Manages all random files stored on floppy disks

and other block oriented devices. It also handles
all directories and other file information.

20

SCF: Manages all communication with your keyboard,
your Color Computer screen and other devices
that read or write one character at a time.

PIPEMAN: Manages all communication between processes
using an OS-9 pipeline. It uses a device driver
named PIPER.

CCDISK: A device driver that sends and receives data to
your disk drives. It works with the RBF file man-
agerandthe/D0,/D1and /D2 device descriptors.

CCIO: A device driver that communicates with the hard-
ware inside CoCo. It services both the keyboard,
and the screen. It works with the SCF file mana-
ger.

RS232: A device driver for the RS-232 port. You use it
when you timeshare your CoCo with an external
terminal. It also works with the SCF file manager.

PRINTER: A device driver for the printer port on the rear of
your CoCo. You can only output data with this
driver.

TERM: A device descriptor that contains data used to tell
your programs what your terminal looks like. It
works with the CCIO device driver.

T1: Another device descriptor that tells your pro-
grams what they can expect from your external
terminal. It uses the RS232 device driver.

P: A device descriptor that describes your printer.
It works with the device driver named PRINTER.
DO: A device descriptor that contains the size and

format of the disk drive number zero. It is used by
the driver, CCDISK. You can read and write to
additional drives with device descriptors named
/D1, /D2, and /Da3.

Most standard OS-9 systems contain the following modulesin
addition to those listed above.

ACIA: A device driver that communicates with the
standard Asynchronous Communications Inter-
face Adapters used in the serial ports of most
computers.

PIA: A device driverthatcommunicates with the Paral-
lel Interface Adapters used in most parallel ports.

You can tell which modules are in memory immediately after
you start your OS-9 system by running the MDIR utility.

21

SUMMARY

In this chapter you have learned how OS-9 uses modules to
manage the memory in your computer. We've also explored the
information you can find in an OS-9 module header.

In Chapter 4 we'll look at the OS-9 Software Connection and
introduce you to both the Kernal and the Shell.

22

CHAPTER 4

the software connection

An OS-9 computer has four major software components — a
Kernal, a Shell, a set of utility programs and a set of application
programs. In this chapter we’ll show you how they all work
together as we introduce you to:

The OS-9 Kernal
0OS-9 Processes
0S-9 System Calls
The OS-9 Shell
The OS-9 Utility Command Set
0OS-9 Application Programs

AN OVERVIEW

The Kernal is the heart of your OS-9 computer. Yet, it's a lot
likeaservant. The other parts of OS-9 call onthe Kernalto perform
a variety of services. On the Color Computer the OS-9 Kernal
comes in two parts, OS9 and OS9p2.

The Shell is the command interpreter for the OS-9 system. It
accepts yourcommands and makes sure thatthey are carried out.
Inthis manner,itisalot likeasergeantinthe Armyora chief petty
officer in the Navy.

When youtype an OS-9commandline, you play the part of an
officer giving an order to the Chief. The Chief — the OS-9 Shell
—translates yourcommandinto a language thatthe troops — the
OS-9 Kernal — can understand. As a result, the job gets done.

Nearly 50 utility programs ~ or commands — are supplied
with the Color Computer version of OS-9. These commands do

23

THE KERNAL

many things. For example, they copy files, edit text and list direc-
tories. We take you on a tour of the complete OS-9 Utility Com-
mand Set starting in Chapter 10.

You can develop your own application programs using tools
such as ASM, the 6809 assembler in the OS-9 Utility Command
Set, and high level languages like BASIC09 and C that run on
0S-9.

INITIALIZATION

While the Kernal works like a servantin someways, itacts like
the boss in others. Although it performs every task requested by
the other parts of OS-9, it also supervises the operation of your
computer and manages its resources.

On the Color Computer, you will find the Kernal stored in the
top 4,000 bytes of memory. It starts at $FO00 and ends just below
the input/output hardware at $FF00. On most other computers the
Kernal is stored ontwo 2K ROMS which load somewhere near the
top of memory.

The Kernal has many jobs. First, it gets OS-9 ready to run
when you boot your system. In programmer parlance, it initializes
your system. Then, once OS-9is on the air, it does the many jobs
the other OS-9 parts ask it to do.

Additionally, the Kernal manages your memory, manages
your CPU time and processes interrupts. About the only thing it
doesn’'t do is windows — and input and output. When the Kernal
receives arequest forinput or outputservices, it passes the jobon
to another OS-9 module named IOMAN. IOMAN stands for input/
output manager.

Each time you start up or “boot” your OS-9 computer, the
Kernal getsit ready to go. First, it searches through every byte of
memory in your computer to see if it can find any valid OS-9
modules. On many OS-9 computers, it will find several modules
storedin ROM. Sincetheinformation storedin ROM memory does
not go away when the power is turned off, these modules are
always there, ready to use when the computer is turned on. If the
Kernal finds any modules, it puts them in the module directory.
Then, it runs a quick check to see how much RAM memory is
available and reserves some space forits own use.

Next, the Kernal looks for the rest of the modules that OS-9
needs and loads them from a disk file named OS9Boot. After this
fileisloaded, the Kernal puts the names ofallthe modules it found
in OS9Boot in the module directory. Once they are loaded, the
Kernal treats these modules as ROM. This means that you cannot
remove them from memory by unlinking them. After the module

24

directory has been brought up to date, the Kernal completes the
initialization process by running a program named SYSGO.
SYSGO starts OS-9 running on your computer.

A PROCESS IS A PROGRAM

0OS-9 can do more than one thing at a time. This is possible
because the Kernal uses a technique called multiprogramming or
multitasking.

The basic unit of multitasking is the process. A process is
simplya program doing work. Whenyourun an OS-9 program, the
program you are running becomes a process.

Generally speaking, a process does things. For example,
while you are running the OS-9 list command, you could say “this
process is listing the contents of my file on the terminal.” You
cannot get any work done on an OS-9 system without creating a
process to do the job.

Since your OS-9 computer only has one CPU, a 6809 microp-
rocessor, it actually can only work on one process at a time.
However, it creates the illusion that is doing a lot of things at the
same time by switching the 6809 from one process to another
many times each second. Since the 6809 can execute several
million instructions each second, it appears to make quite a bit of
progress on each job — even in a second.

OS-9usesatechnique known astimeslicingtoshare the 6809
microprocessor’s time with each program — or process — running
onyour computer. It works like this.

A hardware real time clock interrupts the 6809 60 times each
second. Each one of these interrupts is called a tick. The time
between ticks is known as a time slice. On your Color Computer
the interrupts come at the power line frequency or 60 times each
second. Since there are are 60 ticks each second, a time slice on
your Color Computer is 1/60 th of a second.

PROCESSES CAN BE IN ONE OF THREE STATES

You willalways find a processinone ofthree states. It may be
active — it is actually doing something. Or, it may be waiting or
sleeping.

0OS-9 lets an active process have its share of your 6809’s time.
Itdoesnotgiveanytimeto processesthat are waiting or sleeping.

Processes in a waiting status are on hold. They just sit in
memory until another process is finished. For example, when you
run a utility command program sequentially, the Shell runs it
immediately and then waits foritto finish. While your utility com-
mand programisrunning, the Shellisinthe wait state. Whileitisin

25

this wait state, it doesn’t do anything.

A processthatis sleeping has checked out. It has placed itself
on hold for a specified length of time. A process comes out of this
self-imposed sleep and goes back to work — becomes active —
when the proper length of time has passed or when it receives a
signal telling it to go back to work.

Processes are a lot like people. They need to talk to each
other. They talk to each other using signals.

ALL ABOUT SIGNALS

Just as the signals you see along a railroad track keep the
trains from running into each other, the signals in an OS-9 com-
puter keep processes from running into each other.

Here's anotheruse forasignal. A processthat is sendingdata
to a printer often puts itself to sleep while it is waiting for a signal
that tells it the printer is ready for anothercharacter. The signal in
this case comes from the printer hardware. It is relayed to the
Kernal by the device driver module.

Signals give OS-9 a way to talk to each other. Stated another
way, they coordinate communication between processes. Signals
work a lot like software interrupts — they suspend a process,
execute a routine and then return to the suspended process. A
process sends a signal to another process by sending a service
request to the Kernal.

When a process sends a signal to another process, the signal
carries status information in a one byte code. Up to 256 distinct
codes canbesenttoa process. All of them except four are defined
by the programmer.

The four predefined signal codes kill a process, wakeup a
sleeping process, signal that an operator has aborted the process
from the keyboard or, signal that the keyboard operator has inter-
rupted the process. The table below shows the value of these
codes and the corresponding result.

VALUE RESULT
0 Kill or Abort the process receiving the signal
1 Wakeup a sleeping process
2 Abort the process upon request of the Keyboard Operator
3 Interrupt the process uponrequest of the keyboard operator

You can define all other values between 4 and 255 and use
themto send special signalstoyourown processes. And, you can
set a special signal trap that insures that an operator cannot kill
oneof your processes.

A signal trap sends your program to a routine that contains

26

instructions thattell it what to do when it receives asignal. You set
asignal trap within your assembly language programs by execut-
ing an intercept service request.

ltisvery importantthat youaddasignaltrapto your programs
because if an operator sends a signal — a keyboard abort for
example — to a program that does not contain a signal trap, OS-9
will abort your program whether you want it to or not.

SERVICE REQUESTS TELL THE KERNAL WHAT YOU WANT

When you go to a service station, you ask the attendant to fill
your tank. Essentially, you have requested that he perform a ser-
vice for you.

Likewise, you must issue a request for service to the Kernal
when you want OS-9to do a job for you. OS-9 programmers call
these service requests “system calls.”

There are two types of system call. The first deals with
requests for input or output. For example, when you request a
character from your keyboard, you are using a system call named
ISRead. Other input/output service requests are used to attach
devices, open and close paths, delete files, make directories, etc.

The second type of system call is known as a User Mode
Service Request. You use this type of system call when you want
the Kernal to do something for you that has nothing to do with
input or output. For example, when you need to load a module
from afile on one of your disk drives, youissue the F$Load service
request.

You can tell that a request is an input/output service request
by looking at its name. The mnemonic of all input/output service
requests begins with 1$. For example, you use 1$Close to close a
path to a device or file.

Likewise, the names of all user mode system requests begins
with an F$. For example, if you need to link to a memory module,
you issue a service request named F$Link. All OS-9 service
requests are definedinthe OS9Defs file inthe DEFS directory. The
OS9Defs file makes it easy to write OS-9 assembly code.

Forexample, ifyouwanttoreadabytefromthe keyboard ora
disk file, you need only load a few of the registers in the 6809 with
the proper codes andthenissue an I$Read service request. Specif-
ically, youneedto load the A-register with the path number, load
the X-register with the address where you want to store your data
and load the Y-register with the number of bytes you wanttoread.

After you have loaded the registers, you make the actual
service request by using the special OS-9 assembler operator,

27

0S9. Here's what the code would like in an assembler source code
file.

LDA PathNum
LEAX Buffer,U
LDY #1

0S9 I$Read
BCS Error

If OS-9 was able to read the byte you requested it will return
fromthe I$Read service request with the carry bitin the 6809 clear.
If there has been a problem, it will set the carry bit and place an
appropriate error code in the B-register. For this reason, you will
generally see a6809 branchifcarry set (BCS) mnemonic following
each service request in an OS-9 program. The BCS instruction
sends your program to a special error handling routine.

All OS-9 service requests are documented in your OS-9 Sys-
tem Programmer’s Manual.

PROCESSES ARE EASY TO CREATE

Y.ou’II find that it is very easy to start a new process when you
write an OS-9 program. In fact, the Kernal does most of the job for
you automatically.

To create a new process, you request an F$Fork system call.
When you make this request you must also tell the Kernal the name
of the program you want to start by giving it the name of the
module that contains the program as a parameter. You may also
give it file names or other information for the new process to use
when you issue the F$Fork service request.

The Kernal first tries to find a module with the name you gave
itin the module directory. Remember, this directory contains the
name of all modulesthat are present in memory. Ifitfindsthe name
of your program in the module directory, the Kernal will link to the
module and run it for you.

If the Kernal cannot find the name of your program in the
module directory, it looks for a file by the same name in your
current execution directory — usually, /d0/CMDS. If it finds the
file, it will load it into memory, link to it and run your program.

When the Kernal links to your module, it creates a process
descriptor that holds a lot of information about your program.
OS-9 uses this process descriptorto keep track ofthe state of your
process, its priority, the memory it is using, etc.

The Kernal then sets aside an area of memory that your pro-
gram can use for data storage. It finds out how much memory your

28

program needs by reading the storage size value from the module
header.

Whenthe Kernal starts anew process, itassignsitauniquelD
number. These ID numbers can range from one to 255.

If the Kernal cannot complete any one of the steps above, it
aborts and does not create your process. Yet, it won't leave you
hanging. It let’s you know what happened by printing a message
that contains a special error number that tells you what went
wrong.

PROCESSES — LIKE PEOPLE — HAVE MANY CHARACTERISTICS

Processes are alot like people. Infact if you think of OS-9 as a
family of processes, you will find it much easier to understand.
Let's look at the genealogy of a family of OS-9 processes.

When a process creates another process, it becomes a parent.
The new process is called a child. Further, if the child creates
another process, it also becomes a parent. A process can create
any number of children.

This whole discussion may seem absurd. Yet, the family con-
cept makes OS-9 much easier to understand. If you apply it when
you look at the output of the OS-9 PROCS utility, you can almost
visualize a family tree.

CHILD PROCESSES INHERIT PROPERTIES FROM THEIR PARENTS

Just as human children inherit characteristics — brown hair,
blue eyes, etc. — from their parents, OS-9 child processes inherita
number of properties from their parent process.

Forexample,each personusing acomputer running OS-9has
been assigned a User Number. If a person starts a process, that
process belongs to him — it carries his user number. If that pro-
cess then starts another process, the child process inherits his
user number and belongs to him also.

Other properties that are inherited by a child process include
the standard input and output paths, the process priority, and the
current execution and data directories.

Forexample, if the standard input and output pathusedby a /w
parent process is sending data to the main terminal device, :
/TERM, any children created by the process will also send their
data to /TERM.

Likewise, if you starta process with alow priority,any children
created by that process willalsohave alow priority. Thisisimpor-
tant because the process priority tells the 6809 how important a
jobisto you.lf yougivea process alow priority, the 6809 will give it

29

very little time.

YOU TALK TO 0S-9 THROUGH THE SHELL

As you begin to use OS-9, you will find yourself carrying out a
dialogue with the Shell. After a little practice, it should become
meaningful.

Whenyoutypeacommandonyourkeyboard, youare talking
totheShell. TheShellisacommand interpreterthat translatesthe
words you type into a language the Kernal can understand. The
Kernaltranslatesthecommandfromthe Shellintoan actioninside
your computer.

You will know when you are talking to the Shell because you
will see this prompt on your screen.

0S9:

When you see this prompt, you'llknow that the Shell is waiting
for you to enter a command. To answer the prompt, you simply
type a command line followed by a carriage return. You can use
lowercase letters, uppercase letters or a combination of the two
when you type a command — the Shell doesn’t care.

The Shellitself does not carry out the commands you give it.
Rather, it looks at your command line and starts a process using
the name of the OS-9 application or utility you typed in your
command line. The utility command does the actual work.

It is easy for the Shell to find the right utility command
because thename ofthe commandyoutypeisusuallythesameas
the name of the module in memory that contains the command.

But, when the module is not already in memory, the name of
the command is almost always the same asthe name of the file that
holds the module in your current execution directory. More than
50 utility commands come with the OS-9 operating system.

You'll find that the form of the commands you type rarely
changes. Only the command names will change. Your command
line will usually contain the name of a command, various options
that giveit special information and an argument that tells it where
to find its data. That argument is most often a filename.

EXAMINING THE OS-9 COMMAND LINE

Whenyoutake acloser look at an OS-9 command lineyou will
notice that the first thing following the prompt is the name of a
program — either one of the OS-9 utility commands oran applica-
tion program of yourown. It can be the name of aprogram located
ina modulein memory or the name of afilethatholdsthe program
on a floppy disk.

30

The module can contain 6809 machine code that executes
. directly, compiled intermediate code from a higherlevel language
like BASIC09 or PASCAL or a procedure file. The type of code it
contains determines exactly what will happen when you type
<ENTER>. Here's what happens when you type a command line.

Ifthe Shell finds a module in memory with the name you have
typed, it will run the program. If it doesn’t find the program in
memory, it looks for a disk file with that name in your current
execution directory. If it finds the file, it loads it into memory and
runs it.

If the name you typed is not the name of a module in memory
orthename of afilestoredinyour currentexecutiondirectory, you
still have one more chance — it may be the name of a procedure
file. The Shell knows this, and searches your current data direc-
tory for a file with the same name.

Ifthe Shellfinds afile in your currentdatadirectory, ittreats it
asaprocedure file. A procedurefileis similarto a Shellscript used
on a UNIX-based computer.

Instead of holding 6809 object code that runs in your compu-
ter, or I-code that is run by a high level language interpreter, a
procedure file contains a text file that looks much like a series of
command lines that you would type from the keyboard.

When the SHELL runs a procedure file, it reads the text one
lineatatime — justasif it werereading a command line fromyour
keyboard. Then, it runs that command. After it runs the first com-
mand line in the text file, it runs the second, etc. It repeats the
process until it reaches the end of your procedure file.

PASS THE WORD — USE A PARAMETER

The command name the Shell reads from either your key-
board or a procedure file is usually followed by additional names.
We call these additional names parameters. Let's take time now to
define this word.

If youwanttosucceed in business, you mustpassthewordto
your employees. Likewise if you want an OS-9 program to run
properly, you must pass the proper parameters.

A parameter can beasinglecharacterorastring of characters
typed behind the command name in an OS-9 command line.

Asyoucansee, a parameter givesdirectionstoaprogram. Itis
separated from the program name by one or more spaces. For

example, if you want to list a file named “Rainbow” to your termi-
nal, you must type:

0S9:list Rainbow <ENTER>
31

If you want a “hardcopy” of the same file you can type:
0S9:list Rainbow >/p <ENTER>

Or, you can even send the listing to another file:
0S9:list Rainbow >SonOfRainbow <ENTER>

OS-9 is indeed a very versatile operating system.

Sometimesthe parametersinyourcommandlineare options,
or modifiers. For example when you want to list the names of the
files in yourcurrentdatadirectory toyour Color Computerscreen,

you type:
089:dir <ENTER>
To get more information about your files, You can type:
08S9:dir e <ENTER>

Thiscommand gives you all the available facts about each file
in your current data directory.

The'e’isanoption. It meanslistthe “entire” directory record.
Speaking of directories and options, if you would rather see the
names of the files stored in your current execution directory, type
this command line:

0S9:dir x <ENTER>

If you want to see all available information about the files
stored in your current execution directory, type:

08S9:dir x e <ENTER>

You can run OS-9 programs several ways. You can run them
sequentially — one afterthe other; youcanrunthem concurrently
— allatthesametime;or,youcanpipethem. Whenyoudo this, the
output of one feeds the input of another.

There are two ways to run programs sequentially. The most
obvious way it to type one command line followed by a carriage
return, wait for the program to finish and then type the next com-
mand line.

Or, you may type more than one command on a line. To do

this, you use a semicolon to separate the commands. Here's an
example:

0S9: copy hisfile herfile ; dir >/p <ENTER>

Thiscommand copies the file named “hisfile” from the current

32

datadirectory to a file named “herfile” inthe same directory. When
that job is finished, it willimmediately send a listing of the files in
your current data directory to your printer.

If youwantto run more than oneprogram at the sametime you
may ask OS-9 to run your programs at the same time —
concurrently — by typing an ampersand, ‘ & .

Within reason, you can run any number of programs at the
same time. The amountof memory in your computer is the major
limiting factor.

Pretend for a moment that you have just finished an assign-
ment in school. You need to print it so you may turn it in to your
instructor, but atthe same time you needtobe working onanother
term paper. To do both jobs atthe same time, try this!

0S9:list Englishll.Assignment >/p&
&004
0S9:edit Term.Paper_History

The printer will start immediately after you hit the <ENTER>
key. Yet, the familiar OS-9 prompt will appear on your screen
almostinstantly. When it does, you can type the second command
lineandstart writing. The printer willrunaslongasittakesto print
the English assignment. On most computers it won't slow down
your editing at all. :

YOU CAN TELL 0S-9 HOW MUCH MEMORY YOU NEED

Some OS-9 programs need very little memory to run. Others
require thousands of bytes. This is not really a problem because
each program module header tells OS-9 the minimum amount of
memory needed to run the program. However, when you need
more memory, it is an easy matter to request more with the OS-9
memory size modifer. There are two ways you can do this.

0S9:copy #8 myfile yourfile
This command line tells the OS-9 copy utility to use eight,
256-byte pages of memory — a total of 2048 bytes. Let's try
another.
0S9:copy #2K hisfile herfile
Believe it or not, this command line also gives the copy com-

mand 2048 bytes of memory. The difference? It requests two ‘K’
or two thousand bytes of memory.

LOGGING ON A TIMESHARING TERMINAL

With OS-9 you can do more than just print one file while you
are editing another. In fact, one of the most important things you

33

can do on a computer that can run more than one program at the
same time is let two or more terminals share the computer. On
many OS-9 computers, several different users can work on differ-
ent terminals at the same time.

For example, you can use your editor and Color Computer
screen to write a news release about a new product while your
spouse runs a BASICO09 program to balance the checkbook on
another terminal. Just plug a terminal into the RS-232 jack and
type the following:

ON THE COLOR COMPUTER:

0S9:tsmon /t1&
&005
0Sa9:

YOU'LL SEE THIS ON THE OTHER TERMINAL
0S-9 Level | Version 1.0 Timesharing System 9/1/84 12:30:45

User name?: esther
Password:

Process #5 logged 9/1/84 12:31:05
Shell
08S9:

Your Color Computer prompted you to go back to work
immediately. But while one of you is writing that news release, the
other can be working on the checkbook.

Whenyou firstrunthetimesharing monitor program, TSMON,
nothing happens. The remote terminal remains idle. TSMON
simply sits and waits for someone to hitits return key.

Also, when you want to work from an additional terminal you
must log on. To do this you simply type your name and the proper
password. You will needto give everyone in the family a password
before they try to log on, because if they do not type the proper
password, OS-9 will not let them compute.

When you have finished your work on a remote terminal, you
willwanttolog off. To do this, simply hit the ESCAPE key while the
Shellis waiting for acommand. When you hitthe <ESCAPE> key,
an end-of-file signalis sentto TSMON. The terminal screen will go
blank and TSMON will again sitand waitforsomeone else to come
along and hit the <ENTER> key.

A terminal used for timesharing on your Color Computer is
limited to 300 Baud by the hardware. A “bit banger” portthat uses

34

software to simulate a serial port, and a keyboard without an
encoder that requires the 6809 to constantly scan the keys, burns
upatremendousamount of the6809’s time. This processingload,
combined with an interrupt rate based on the power line fre-
quency, does not leave enough time for you to timeshare at a faster
Baud rate.

In this chapter you have been introduced to three major OS-9
software components — the Kernal, the Shell and the utility com-
mandset. You've learned that processes are programs doingwork.
And,youhavebeenintroduced tosignalsand OS-9 System Calls.

Take a quick breather now, then join us in Chapter 5 as we
take a close look at the OS-9 File System.

35

SUMMARY

CHAPTER 5

the file connection

OS-9 FILES HOLD YOUR DATA

The OS-9file system is so advancedthat you willsoonfind itis
very easy to manage complex information. In this chapter we talk
about the hierarchical file structure that makes it happen and tell
you about the security system that protects your data.

We’ll talk about the “unified input/output system’” that Micro-
ware developed for OS-9. Their approach makes any piece of
hardware you connect to your computer look the same to your
programs. And, we'll talk about your current data and execution
directories.

DIRECTORIES HELP YOU ORGANIZE YOUR FILES

Files make OS-9 data storage possible. They hold business
data such as payrolls and spreadsheets. They hold word process-
ing documents like letters and reports. In fact, they even hold the
programs you use to manipulate the information stored in your
data and word processing files.

OS-9files are a lot like file folders in a file cabinet — they will
hold anything you putin them. And just as every file folder has a
label, every OS-9 file has a name so that you can find it later.

An OS-9 directory is a special file that contains a list of file
names rather than data. It works a lot like a telephone directory.
When you tell OS-9 you need to use a file, it looks in a directory to
find its location on your disk drive.

37

OS-9 directories give you a way to organize your files. Think
of them as the drawers in a file cabinet. Just like their paper
counterparts, OS-9 directories give you a way to gather related
files in a common place so you can find them easily.

If you take a close look at the OS-9 file structure, you will see
how it can help you organize your office.

How is your officesetup? In most organizations, each person
has a desk and an individual file cabinet. That cabinet is divided
into drawers which contain information relevant to a specific part
of that person’s job.

How can we automate that office? Why not start witha micro-
computer that uses an operating system that lets several people
workondifferentterminals atthe sametime? OS-9can do the job.

If weweretouse oneoftheolderoperating systems, CP/Mor
FLEX forexample, everyone'sfiles would beinthesamedirectory
—inthesamefilecabinet so to speak. When a secretary needed to
find a file for her boss, she would have to look through a list of
every fileontheharddisk. It would be like looking atevery folder in
every drawer of a large file cabinet. It would take along time. The
boss would get angry.

So much for the older operating systems. Now lets see how
0OS-9, with its multiple directories, can help solve the problem.
We'llgobacktothe same office, with the same hard disk. But, this
time we'll pretend that OS-9 has been installed.

When we look at the computer on our second visit we will
noticethat the hard drive nowhasaname — probably something
like /HO. When the secretary asks for a listing of files on the drive
—a DIR — it will look something like this.

0S9: dir /h0 <ENTER>
DIRECTORY OF /HO0 12:22:41

OS9Boot CMDS SYS DEFS
Startup Read.This BOSS SECRETARY
SAM JOE SALLY JANE

If weask hertosee moredetailsaboutthose files, shecan add
the ‘e’ option to the command line. When she does this, we will
notice thateachofthefilenames thatis printedin all capital letters
has a ‘d’ printed in a column under the word Attributes. This
means itis a directory. You do not need to use all capital letters
when you name a directory, but it certainly can make life easier
down the road.

Remember, when you create a new OS-9 directory with the

MAKDIR utility command, alwaystypethedirectory name withall
capital letters. Then later, when you scan a directory listing you

38

canimmediately separate the directories from the regular files. It
should save a lot of head scratching.

Let's take a closerlook at the OS-9 directory system. Imagine
that the boss needs to see a letter that Sally mailed to his ad
agency. lfthe office computer is set up properly it should be easy
for the office manager to find the letter. In fact, she would need
only to sit down at the terminal and type:

0S9:chd . ./SALLY
0S9: dir

At this point, she might see something like this:
DIRECTORY OF . 12:22:45

ADVERTISING NEWSLETTER PAYROLL
SCHEDULES ACCOUNTS.PAYABLE

Since she knows that each of the filenames listed are direc-
tories, because they are printed with all capital letters, she would
then type:

OS9: dir advertising
She will see something like this:
DIRECTORY OF advertising 12:23:41

COPY IDEAS Agency.Letter
Instructions

I'll bet the file “Agency.Letter” contains the letter the boss
needs. The office manager can now type the following command
to print a new copy for the boss.

0S9: list advertising/Agency.Letter >/p

The example above shows how easy it is to find a file when it
has been stored in a logical place. The office manager knew that
Sally wrote the letter, so she looked in Sally’s directory. Further,
since she knew the letter was sent to an advertising agency, she
looked in Sally’s advertising directory. She had the bosses answer
in seconds.

If our office manager had been working on a computer run-
ning one of the older operating systems she would have neededto
look through hundreds of filenames on a single hard disk direc-
tory. It would be like searching through an overstuffed file drawer
and would have taken a lot of time. She would have been in a lot of
trouble with the boss. The logical, structured approach of OS-9
files saved her day.

39

The OS-9filestructure is hierarchical. Itlets you group similar
files in a single directory. And, it lets you group like directories in
other directories. This lets you organize your information.

If you turn your imagination loose, you can picture the OS-9
file system as an upside-down tree. In your picture you would see
the roots of the tree at the top. Likewise, on an OS-9 disk you will
always findthe “root” directory atthetopofthefile structure.

In fact, each disk drive in your OS-9 based computer has a
master directory which is called the “root” directory. That root
directory is atthe top of the file structure on each drive. It contains
the names of each file or sub-directory stored on the disk mounted
inthedrive. Arootdirectory is created automatically when adisk is
initialized with the OS-9 FORMAT command.

PATHLISTS HELP OS-9 FIND YOUR FILES

For every OS-9 file there is a pathlist. When the operating
system needs to find a file, it follows that pathlist from the root
directory to the file. For example, here is the complete pathlist to
the letter the office manger printed for her boss.

/HO/SALLY/ADVERTISING/Agency.Letter

We seem to have a paradox. Thefile structure has made it very
easy to organize and retrieve data. But, it could be hard on the
fingers. Typing a pathlist like that could get old real quick. Espe-
cially if you hunt and peck.

But wait! The office managerdidn’ttypeallofthat. Rather,she
typed:

list advertising/Agency.Letter >/p

Why didn’t she need to type /HO/SALLY? That’s a good ques-
tion. And, it gives us a chance to introduce you to the concept of
current data and execution directories. Do you remember when
the office manager typed:

chd../SALLY

When she did this, she told OS-9 to make the directory named
SALLY, which was located in the root directory of a device named
/HO, the current data directory.

Then,whenshetypedtheLIST command, sheusedanabbre-
viated pathlist. Since she didn't need to type a device or root
directory name, thelistcommand knewthatthefile was locatedin
her current data directory — /HO/SALLY.

40

ABOUT THAT SLASH

How did the system know that she didn’t type the name of a
device or root directory? Here’s the plot.

When you type a slash, ‘/’ as the first character of a pathlist,
OS-9looks for the name following the slash in its device directory.
This means that if you start a pathlist with a slash, the name
following that slash must be a device.

When the first character of a pathlistis NOT a slash, ‘/’, OS-9
looks for a file in the current data directory.

In our example above, OS-9 looked in the current data direc-
tory — /HO/SALLY — and found the file ADVERTISING. When it
looked closer, it learned that ADVERTISING was another direc-
tory. It then searched the directory ADVERTISING and found the
file “Agency.Letter”.

Remember, if you start a pathlist with a slash, you must com-
plete that pathlist. In other words, you must type each name
required to trace the pathlist from the device directory through
each sub-directory until you arrive at the file you need.

You can save all of this typing by using your current working
directories. When you do this, you also speed up your computer.
0OS-9 will find your files faster because it won’t need to search
every directory along the road — er, path.

WHY ARE THERE TWO WORKING DIRECTORIES

OS-9differs from UNIX here. UNIX has one current directory.
OS-9 has two — a current data directory and a current execution
directory.

This separation lets you store files that contain programs in
one directory and files that contain data in another. OS-9 can tell
where to look by studying your command line. Here are the rules.

OS-9looks in the current execution directory when it needs to
find afile that holds a program that it needs to run. It assumes that
afile holds the program you want to run if you typed its name first
on a command line or if you used it in a command line after the
word “load.” OS-9 uses the current data directory at all other
times.

When you start your computer, OS-9 sets the current execu-
tion directory to /D0O/CMDS and the current data directory to /DO.

ANONYMOUS DIRECTORIES SAVE KEYSTROKES

Sometimes you need to refer to the current data directory, or
the next higher-level directory that contains it, but you do not

41

know the name of either. Of course, you could find out by using the
PWD or PXD utility commands, butit's easierto use 0S-9’s anony-
mous directories. Remember these shorthand symbols.

A single period refers to the current data directory. Two
periods referto the directory that contains the name of the current
data directory.

You can use this shorthand in place of a pathlist or as the first
name in a pathlist. For example, the following command lines will
all work.

0S9: dir.

This command line tells OS-9 to list the names of all files in
your current data directory.

08S9: dir. .

This command lists the names of all files in the directory that
contains the name of your current data directory.

0S9: del . ./temp

And finally, thiscommand linetells OS-9todelete a filenamed
“temp’” thatis stored in the same directory that contains the name
of your current data directory.

If you use these shorthand symbols as part of the firstnamein
a command line, OS-9 will look for the file you name in your
current execution directory. Likewise, if you use these shorthand
symbols in a pathlist following the load command, OS-9 will look
for the file you name in your current execution directory rather
than your current data directory.

For example, let's assume that you have stored a group of
BASICO09 packed modules in a sub-directory named ICODE in
your CMDS directory — i.e., /DO0/CMDS/ICODE — and it is your
current execution directory. Then, when you need to delete a file
named tempinyour current data directory youcould use the DEL
utility command stored in your /D0O/CMDS directory by typing:

0S9: . ./del temp
Effectively, you could have done the same thing by typing:
0S9: /D0/CMDS/DEL temp
Which would you rather type?
MORE ABOUT PATHLISTS

But, what do you do when you need to read a file that is not

42

stored on the same disk drive as your current data directory?

No problem, just enter a complete pathlist. A pathlist is
nothing more than a complete description of the route your data
must take before it reaches its final destination. OS-9 pathlists may
containthe name of a mass storage device, adirectory, a file oran
Input/Output Device.

For example, many pathlists — like the one used by the office
manager above — contain a device name and one or more direc-
tory names, as well as the name ofa datafile. You should note that
each name in the pathlist is separated by a slash ‘/".

Here are some additional rules you should be familiar with if
youplantotypealotofpathlists. Each name must start with either
an uppercase or lowercase letter and may be up to 29 characters
long. But, a name isn't required to be that long. You could give a
file a name that was only one character long if you wanted to. The
trade-off is between typing time now and readability later.

You may also use the numerical characters 0 - 9, the period
and the underline symbol in your filenames.

If you’re wondering how OS-9 can tell the difference between
a filename and a device name, here’s the secret.

The name of a device always starts with a slash. If that device
can hold multiple files — a disk drive for example — another slash
followed by a directory name or filename follows the device name.

When a device cannot handle multiple files — a terminal or
printer for example — nothing follows the device name.

0S-9 FILE SECURITY PROTECTS YOUR DATA

If you are using OS-9 on a timesharing computer, you won't
need to worry about someone else writing in your data files. OS-9
protects you with its file security system.

Each directory and file has several attributes that tell OS-9
who owns the file and who may use it. Depending on whether
these attributes are set or not:

w Only the owner may write to the file

r Only the owner may read the file

e Onlytheowner mayrunthe programstoredinthefile
pw Anyone may write to the file

pr Anyone may read the file

pe Anyone may run the program stored in the file
s Only one person may run this code at a time

d You know that the file contains a directory

43

SUMMARY

If afile attribute is set, permissionis granted for that attribute.
If an attribute is clear, permission is not granted.

For example, consider a file with all attributes cleared except
owner read. In this case, only the person who created the file can
read it. No one else can read the file. Further, absolutely no one
—not even the owner — can write to the file.

Can you see how you can use file attributes to protect your
information? Study the section that describesthe ATTR command
in Chapter 11. Try the sample commands there and you'll under-
stand the OS-9’s file security system in no time.

Thedirectory attribute tells OS-9that afileis adirectory file. A
directory file is special because it cannot be changed by the user.
To change a directory or delete it during an operation would
create total havoc with the file system. In fact, there would no
longer be a system.

The other file security attributes almost explain themselves.
They work because OS-9 automatically stores the user number of
the owner of any process that writesafile. If you arethe ownerofa
process, you will own any files that it creates.

If you CREATE a file with none of the public attributes set, you
will be the only person — except for the super user — who can
read, write or execute that file. The concept of the “superuser” is
detailed in Chapter 11.

In this chapter we have introduced you to the OS-9 file system.
You've learned about directories and files. And, we've shown you
how OS-9 file attributes can protect your data secure.

Experiment with the DIRectory list utility now. When you get

bored, join us in Chapter 6 where we introduce you to OS-9
input/output.

44

CHAPTER 6

the outside connection

INPUT/OUTPUT WITH 0S-9

If you have grown tired of long chapters, rejoice. This chapter
is short. Yet, its fruit is sweet.

We'llintroduce you to OS-9’s standard input, output and error
paths and show you how to redirect these standard paths to other
devices or files. By the end of the chapter, you'll need a pipe-
wrench as we talk about pipes and show you how to build
pipelines.

FOR OS-9 LIFE IS BUT A LONG STREAM OF CHARACTERS

OS-9 will talk to anybody. Or should we say, OS-9 will talk to
anything? Since OS-9 treats all hardware devices the same, you
can list a file to a modem, a printer, your terminal or another file.
0S-9 could care less.

All devices installed in an OS-9 system have a name. And, as

we mentioned in Chapter5, all of these names begin with a slash,
I

For example, when you start your OS-9 computer you are
usually sitting in front of aterminal. And in almost all cases, when
0S-9 comesto life it setsitself up to talk to a device named /TERM.
This means that OS-9’s standard input pathissetuptoget charac-
ters from the keyboard on your terminal — or /TERM. Its standard
output path is set up to send each character to the screen on your
terminal — also /TERM. And, athird path called the standard error
path, is also set up to send information to the screen on your
terminal.

45

During your session with OS-9 you may need to send a mes-
sage to someone working on another terminal. One of the most
common names forasecondterminalonan OS-9 computeris/T1.

In fact, most devices have standard names. For example,
when you need to send something to your parallel printer, you
usually redirect your outputtoa device named/P.When you need
to send something to your serial printer, you usually redirect your
output toadevice named /P1. Likewise, most people who install a
hard drive on their OS-9 computer name it /HO.

Again,the common thread amongthese namesis the factthat
they all begin with a slash, '/".

When OS-9 sends a character to the screen on your terminal,
it does the same thing it would do if it were sending that character
to a file on one of your disks. This means that if you write a
program that works with a file, it will work with any device. Conver-
sely, if you write a program to work with any device, it will also
work with any file.

A program that works like this is file and device independent.
Microware calls this approach a “unified input/output system.”

Microware’s approach to input and output with OS-9 has
many benefits. For example, you can copy a file to another file if
you need to make a backup copy. Or, you can copy that same file
to your screen if you need to take a quick look atit. If you want a
more permanent paper copy, you can copy the same file to your
printer.

Andifthe possibilities above don'timpress you, consider this:
You can also copy a device to a file, or to your terminal, or to your
printer, ad infinitum. For example, your terminal is a device that
you may want to copy often.

Play around with these command lines. When you want to
stop, type <ESCAPE> — <CLEAR><BREAK> on the Color
Computer. This will send an EOF signalto COPY and return youto
the OS-9 Shell.

0S9: copy /TERM file.from.term <ENTER>
This command line literally copies every character you type
on your keyboard to a file named “file.from.term.” Incidentally,
since you did not type a complete pathlist, that file was stored in
your current data directory.
0S9: copy /TERM /TERM <ENTER>
Thiscommand linedoesn’tdo much. It copies every character

you type on your keyboard to the screen on your terminal. If you
have your terminal setup to echo each character from the key-

46

board to the screen automatically, you may find yourself staring at
two copies of each character you type.

0S9: copy /TERM /P <ENTER>

After you type this command line, every character you type
willbe echoed to your printer. It almost works like a typewriter. But
not quite. Did you notice that the OS-9 copy utility does not add
linefeed characters when it sends a carriage return. For this rea-
son, you will want to use the OS-9 LIST utility command when you
try to copy a text file — or your terminal — to your printer or
another terminal. Your command line should look like this.

0S9: list /TERM >/P <ENTER>

Thiscommand line lets you use the keyboard on your terminal
and your printer to emulate a typewriter. Here’s another experi-
ment for you.

08S9: list tile.from.term >/P <ENTER>

Use thiscommand line when you want to print a hardcopy of a
file you have stored on a disk. Note, also, that this command line
will not work if a file named “file.from.term” is not present in your
current data directory.

Every character that is sent — or input — to OS-9 comes to it
through a path. Likewise, every character that it sends out to a disk
drive, printer or terminal is sent through a path.

Pipelines can carry all types of material — natural gas, oil or
water. Likewise, OS-9 inputandoutput pathscancarry any type of n d
data. They do not care what it looks like or what it will do when it
finally reaches the device at the end of the line.

OS-9 paths can carry the binary code contained in a module
saved in a file on a disk to another file on another disk drive. And,
they can carry information you have saved in a word processing
file to your printer. Again, OS-9 paths don’t care what they carry \\k
—they just keep the data moving. It is up to the program that uses
the information from a path to determine what it means.

STANDARD INPUT AND OUTPUT PATHS

Because of the way OS-9 is designed, most programmers
write short programs designed to do one simple task. Further, they
make sure that their programs get all of their information from the
standard input path. And, when their program sends data to the
outside word, they make sure it always uses the standard output
path.

The OS-9 Shellitselfis a perfect example. It uses OS-9’s three
standard paths. It reads characters from the standard input path. It

47

sends characters to the standard output path. And, it sends error
messages to the standard error path.

Whenyoutypeacommandon yourkeyboard, the Shell starts
a process using the program that you named in your command
line. The program that you are running uses the same standard
input and output path asthe Shell sinceitinherits those paths from
the Shell.

The Shell normally has its standard input path connected to
the keyboard on your terminal. Its standard output and standard
error paths normally send information to the screen on your
terminal.

When you start to write assembly language or BASIC09 pro-
grams for your computer you will learn that these standard input/
output paths can also be identified by number. The chart below
equates the path number to its function.

PATH NUMBER FUNCTION

0 Standard Input
1 Standard Output
2 Standard Error Output

STANDARD INPUT AND OUTPUT PATHS CAN BE REDIRECTED

The real power of OS-9 lies in the fact that its standard input
and output paths can be redirected. To understand why, we need
to look at a typical job performed by a computer.

Imagine that you have been keeping a data file containing
information about each check you write during a year. Among
otherthingsyouincludethe check number,the name and address
of the person receiving the check, the amount of the check, your
bank balance afterthe check hascleared and, finally, the expense
category for your income tax records.

Imagine further that you have written a program that lets you
list this information on your terminal. You have called it “Who_to”
for want of a better name.

“Who_to” works like this. You type the check number; the
program prints the name of the person receiving thecheck andthe
amount.

Ifyouonly needto check one ortwo checks each month, your
program meets your need. But what happens when your business
grows and you need a report about 100 checks. Typing in 100
check numbers and waiting forareport oneach one could getold
real fast.

48

Enter OS-9 with its ability to redirect the standard input path.
Let's see how we can useiit.

Why not put a list of check numbers in a file by themselves.
That file will contain one check number on each line. Make sure
you give the file a usefulname — “Check.Numbers” willdonicely.

Once you have created “Check.Numbers” you can put OS-9
and its ability to redirect the standard input path to work with
“Who_to”. Try a command line like this:

0S9: Who_To <Check.Numbers

This command line will produce a report about each check
number in the list you entered in the file, “Check.Numbers”. Like-
wise, you could have “Who_To” print these reports by redirecting

0S-9's standard output path to your printer. The command would
look like this:

0S9: Who_To <Check.Numbers >/P
Or, you could save your reportsin a file.
0S9: Who_To <Check.Numbers >January.Checks
Thetwomagiccharactersinthe command linesabove arethe
less than sign, ‘<’, and the greater than sign, ‘ >"’. The first redi-
rects the standard input path. The latter redirects the standard
output path.

Remember thisl!

Ifyouwanttoredirecttheinputtoaprogramfromanother file
ordevice, use the less than symbol, ‘<.

If you want toredirect the output of a program to another file
or device, use the greater than symbol, * >".

Ifyouwanttoredirectthe error messages froma program, use
two greater than symbols together, “>>".

Or, in table form:

THIS CHARACTER DOES THIS

< redirects the standard input path
> redirects the standard output path
>> redirects the standard error path

There are many ways to redirect the input of your programs.
Youmay tell your program to get its input from a remote terminal
inyourworkshop. Or,youmaytellittogetitsinput fromamodem
that uses a telephone line to receive data from a distant keyboard.

49

Don't forget the output from your program. You may tell your
program tosendareporttoyour printer. Or, youmaytellitto save
the reportinadisk file soyou can print it later. You are limited only
by your imagination.

BUILD PIPELINES TO HELP FILTER YOUR DATA

One of the most important things you can learn from this
chapter is to design and write all your programs so that they can be
redirected.

In plain English, your programs should read data from the
0OS-9 standardinput path, process it and then write their output to
the OS-9 standard output path. Programs that work like this are
called filters.

Why are we running this point in the ground? Because, we
want you to write your programs this way so thatyou can use them
in a pipeline as you gain experience with OS-9.

“What's a pipeline?” you ask.

Most filters are written to do one simple job extremely well.
Their power however, liesin their ability tobecombined with other
filters in pipelines designed to accomplish a complex task.

Pipelines are built out of pipes. Pipes pass the standard output
of one utility command directly to the standard input of another
utility command. This makes them especially useful on an OS-9
based computer because you can run more than one process at
the same time.

The OS-9 Shell sets up a pipe each time it sees an exclamation
point,‘!’ inacommand line. When an exclamation pointappears,
the standard output from the command on the left side of the ' ! " is
redirected via a pipe to the standard input of the command on the
right side of the ‘!,

To illustrate how pipes work, we will add a few bells and
whistles to our program “Who_To".

Earlier we caused Who_To to print a report with information
about a number of checks by redirecting the standard input to
“Who_To"” from a file called Check.Numbers. Now let’s show you
how you could make it print a sorted report on your printer and
save a file for future reference at the same time.

First, we'llusea “sort” utility commandto put the list of checks
in the file Check.Numbers in order. If we were to run the utility
alone, the command line would look like this:

0S9: sort <Check.Numbers

50

This command line would send a list of check numbers to the
standard output path — usually the screen on your terminal.
Standing alone, this doesn’t do much for you. But, try this.

0S9: list Check.Numbers ! sort! Who_To

If all goes as planned, you should see a report about each
check in the file Check.Numbers listed on your terminal in numer-
ical order.

“Buton aterminal everything goes by so fast that | can’t read
it,” you say. OK, try this!

0S9: list Check.Numbers ! sort ! Who_To ! Tee /P Feb
ruary_Checks

Yourreportshouldappear on yourterminal screenagain. But
this time your printer will print the same report. OS-9 will also write
a copy of the report to a file named “February_Checks”. If you
need torefertoitinthe future, you will find this file in your current
data directory. The extra copies of the report were made possible
by the OS-9 “Tee” utility command.

When OS-9 executes the above command line it will be run-
ning four processes at the same time. Essentially, four simple
programs, which were not specifically written to work together,
have been combined todoacomplextask. Yet, youwere ableto do
a new job without writing a new program.

The OS-9 Shell lets you connect any number of commands
with pipes. The new command line is called a pipeline.

In this chapter you have learned how OS-9 programs com-
municate with each other and the outside world. We've also intro-
duced you to standard input and standard output paths and have
shown you how they can be redirected. Pipes and pipelines gave
us a fitting close.

In Chapter 7 we’ll introduce you to the OS-9 System Disk and

show you how to install OS-9 on your computer. Get a good rest
tonight! It's almost time to get your “Hands On” OS-9.

51

SUMMARY

PART ll: HANDS ON

CHAPTER 7

the rainbow 0s-9 tour guide

Congratulations! You made it through the first six chapters.
Aren’t you glad you resisted the temptationto turn your computer
on before you were ready?

Go ahead, turn it on now. You deserve it. You have built a
strong foundation that will help you understand the reason certain
0S-9 commands work the way they do. Before long you will have
developed a complete repertoire of OS-9 skills.

In this chapter we'll take a quick tour of the OS-9 system disk
and explain the various files and directories you'll find on it. Then,
we’'llbring your computerto lifeaswe show you how to “Boot” the
0S-9 system.

Before we'rethrough,youwillbeabletoformat a new disk and
back up your precious system disk. In fact, you will have made an
insurance copy which you can use in an emergency.

It's time to go to work. Turn on your computer, grab your
Radio Shack OS-9 disks and hold on.

The firstthingyou needtodois “boot” orload OS-9into your
system. Radio Shack has given you two waystodo this. You must
use the first way if you have Disk Extended BASIC Version 1.0. It
requires two disks. If you have Disk Extended BASIC Version 1.1,
or higher, you only need one disk.

53

INSTALLING YOUR SYSTEM

USING ROM VERSION 1.0

If you have Disk Extended BASIC Version 1.0 follow these
steps.

. Turn on your Color Computer

. Put the disk named OS-9 BOOT in drive 0.
. Type: RUN “*” <ENTER>

. You should see this prompt:

HWON =

b BOOT OS9
t TEST DISK DRIVE

5. Type the letter “B” to Boot OS-9.
6. You should see this prompt:

INSERT OS9 DISKETTE
INTO DRIVE 0 AND PRESS A KEY

. Take out the disk marked OS-9 BOOT.

. Put the disk named OS-9 System Master in drive 0.
. Strike any key.

. OS-9 should come alive and ask you for the time.

O ©O© 0o~

USING ROM VERSION 1.1

If you have Disk Extended BASIC Version 1.1 or higher, take
the following steps.

1. Put the disk named OS-9 System Master in Drive 0.
2. Type: DOS <ENTER>

0OS-9 should come to life.

ENTERING THE DATE AND TIME

When OS-9 comes alive, it immediately runs the procedure file
named, startup. This file, as shipped by Radio Shack, merely runs
the SETIME utility command which starts your system clock and
sets the time of day.

You should see a prompt that looks like this:

YY/MM/DD HH:MM:SS
TIME ?

Answer this prompt by typing the date and time. You must
enter the date and time in one of the the formats shown here:

YY/MM/DD HH:MM:SS
TIME ? 84/08/29 14:34:20

YY/MM/DD HH:MM:SS

54

TIME 7?84 0829 143510

Soon after you type the date and time you will see the OS-9
prompt:

0Ss9:
Congratulations! You are underway.
CAUTION: When you get ready to turn off your computer for
the day, make sure that you first take all of the disks out of the

drives.

A LOOK AT THE SYSTEM DISK

Almost all OS-9 disk-based computers use a system disk. This
special disk holds several directories and files that you will need
each time you start OS-9 on your Color Computer. Additionally,
many people use their system disk to hold many of the files they
use each day.

You will want to leave your system disk loaded at all times.
And, since OS-9 usually boots itself from drive number zero, you
should leave this disk mounted in drive /DO.

Let's start our tour of yoursystem disk by looking at a listing of
the root directory of the Radio Shack OS-9 system disk.

directory of /rs2 11:23:50

0OS9Boot CMDS SYS DEFS
startup

Looking at this directory, you'll notice two files and three
directories. We’ll discuss the files first.

If you try to start OS-9 with a disk that does not contain a file
named, OS9Boot, it will not work. OS9Boot is a special file
because it has been linked. This means that the OS-9 bootstrap
program knows how to find it on your disk. To make your own
OS9Boot file you must use one of two utilities that come with
0s-9.

A command named “cobbler” will put an exact copy of the
OS9Boot file you used when you last booted your computer on
your system disk. Another, named OS9Gen, lets you pick and
choose the modules you store in this file. Both of these utilities
insure that your new OS9Boot fileis linked. They storeitin the root
directory of your system disk.

OS9Bootcontains all of the modules neededtorun OS-9on a
standard 64K Radio Shack Color Computer. We'll show you how
to personalize your OS9Boot in Chapter 16. For now, we will work

55

with plain vanilla Radio Shack OS-9.

In order to show you which modules are stored in the file,
0OS9Boot, we ran the short form of the OS-9 ident utility command.
You can look at it on your own Color Computer screen by typing:

0S9: ident -s /d0/os9boot <ENTER>

2 $E1 $524CEB . CCDisk
82 $F1 $EDF046 . DO

82 $F1 $69933D . D1

82 $F1 $6536D3 . D2

82 $F1 $E155A8 . D3

3 $E1 $0A6A0A . CCIO
83 $F1 $3EDF55 . TERM

4 $C1 $BD0579 . IOMan
6 $D1 $C06CB6. RBF

7 $D1 $04D9E6 . SCF

5 $C1 $23FB76 . SysGo
2 $C1 $7255DB . Clock
20 $11 $59ECCS8. Shell

2 $E1 $8D10C1 . RS232
83 $F1 $7BF6CE. T1

1 $E1 $316E57 . PRINTER
83 $F1 $8080DF . P

3 $D1 $5F721D . PipeMan
2 $E1 $5B2B56 . Piper
80 $F1 06AF . Pipe

We described most of these modules for you in Chapter 3. In
the table, the first column gives you the edition number; the
second lets you look at the type/language byte; the third contains
the CRCofthe module; the period tellsyouthatthe CRC is correct;
and finally, the last column tells you the name of the module. If you
see a question mark in the column where the periods appear, the
CRC of this module named in that lineisbad and OS-9will notload
it.

THE OS-9 STARTUP FILE

The other file in the directory listing above is named “startup.”
This file is not absolutely essential, but its an ideal tool that can
save you many keystrokes.

“Startup” is a procedure file or “Shell Script” that tells OS-9
what you want it to do when you bring it to life. If you plan to use a
startup file, you must make sure that you store it in the root
directory of your system disk. This means that the OS-9 pathlist
that describes it will almost always be /d0/startup.

Let'susethe LIST utility command and look atthe startup file
on your Radio Shack System disk.

56

OS9: LIST /DO/STARTUP <ENTER>
SETIME </TERM

The Radio Shack startup file contains only one line. It tells
0OS-9 to run the utility command SETIME. This command starts
your Color Computer's clock and sets the time. Since the Color
Computer does not contain real time clock hardware, SETIME
starts a software programinthe module named CLOCK thatsimu-
lates a real clock.

You should note here that the authors of this startup file have
redirected the input of SETIME to the device /TERM which is the
keyboard on your Color Computer. If they hadn’t redirected the
input, OS-9 would have tried to read the time from the startup file.
Since time never stops, this obviously wouldn’t work.

THE CMDS DIRECTORY

The most important directory on your OS-9 system disk is
named CMDS. In fact, OS-9 makes it the current execution direc-
tory when you boot your system.

Here’s an additional point you should know about. People
running OS-9 Level | usually store the Shell command utility in
their OS9Boot file. However, some don't. If you fall in this latter
category, you must make sure that there is a copy of the Shell
stored in your CMDS directory.

Most people use the CMDS directory to hold all of the OS-9
Utility commands as well as most of the application programsthey
use on their computer. When you start OS-9 a special program
named SYSGO tells OS-9 that your current execution directory is
named /d0/CMDS.

Later, when other users sign on to use your computer from
another terminal, the OS-9 LOGIN utility command assigns
/d0/CMDS as their current execution directory also. In fact,
/d0/CMDS is almost always shared by all users on a computer.

To seethe files that are stored in the CMDS directory on your
0S-9 System Disk from Radio Shack, typethefollowing command:

0S9: dir /d0/cmds <ENTER>

directory of /d0/cmds 11:24:13

asm attr backup binex
build cmp cobbler copy
date dcheck debug del
deldir dir display dsave
dump echo edit exbin
format free ident link

list load login makdir

57

THE SYS DIRECTORY

mdir merge mfree os9gen

printerr procs pwd pxd
rename save setime shell
sleep tee tmode tsmon
unlink verity xmode

THE DEFS DIRECTORY

Three important files live in the SYS directory on your system
disk. Let's take a look. Type:

0S9: dir /d0/sys
directory of /d0/sys 11:24:42
errmsg password motd

The files stored in /D0/SYS are not needed to boot OS-9.
However, they are used by the LOGIN, TSMON and PRINTERR
utility commands. This meansyou will needthemifyou plantouse
a second terminal attached to the RS-232 port on your Color
Computer.

The file named password is used by the LOGIN command.
Thefile “motd” holds a message of theday thatis senteachtimea
new user signs on to your system. The message is displayed by the
LOGIN command.

The file named “errmsg” contains a list of English language
error messages that correspond to the OS-9 error numbers. They
are used by the PRINTERR utility command. If this file is not stored
in a directory named SYS, on a disk mounted on the disk drive
named /d0, PRINTERR will not work.

The last directory on your system disk is named DEFS. You'll
need it if you plan to do any assembly language programming.
Let’s take a look.

0S9: dir /d0/defs <ENTER>
directory of /rs2/defs 11:25:02
OS9Defs RBFDefs SCFDefs SysType
The four files in this directory contain assembly language
source code that assigns English-like names — mnemonics — to
the memory locations and routines you use most often. When you
write your own assembly language programs, you can also use

these names. To do this, you include the OS-9 assembler “USE”
directive in your source code. For example:

58

* Now we'll read the SCFDefs file
USE /d0/defs/SCFDefs
* Names (symbols) in SCFDefs can now be used
OS9Defs is the main system-wide definition file. RBFDefs
contains definitions uniqueto the RBF file manager, while SCFDEfs
contains code unique to the SCF file manager. The SysType file
holds definitions unique to the hardware you are using.

Let’'stakealookatthefilenamed/DO/DEFS/SysTypeonyour
Color Computer:

0S9: list /d0/detfs/SysType <ENTER>
Color equ $0A
CPUType set Color ()
ClocType set0)
DPort set $FF40 R}y

FORMATTING A NEW DISK

Before you dive in to any new computer software you should
alwaystakethe time to make a backup copy of your original disk.
Strange things seem to happen to computers and the disks that
runin them.

Before you can backup your original Radio Shack system
disk, you must format a new OS-9 diskette. Follow these steps:

1. Boot OS-9
2. Type: format /DO <ENTER>
3. You should see this message:

COLOR COMPUTER DISK FORMATTER 1.2
FORMATTING DRIVE /D0

Y (YES) OR N (NO)

READY

. Take out the original Radio Shack System Master disk

. Put an empty disk in drive 0

.TypeY

. You will be asked to name your new disk

. Type: anyname <ENTER>

. You will see each track and sector number while
Format verifies your new disk

10. When you see the “OS9:” your disk is ready

O©oOoO~NOON

You should note two things at this point. First, if the OS-9
FORMAT utility finds a bad sector while it is verifying your new
disk, it will report it and remove it from the allocation map on the
disk. If a sector is not in the allocation map, OS-9 will not use it.

59

You may go ahead and use a disk with bad sectors for most
jobs. However, the 0S-9 BACKUP command will not work with a
bad disk. This means that you must always use a blank disk that
containsonly good sectorswhenyou plantouseit with BACKUP.

And second, if you have two disk drives you can leave your
system disk in drive /D0 and place your new blank disk in drive
/D1. To format the new blank disk, type:

0S9: format /D1 <ENTER>

BACKING UP YOUR SYSTEM DISK

Beginning here we are going to make a very important
assumption. Since itisimpractical to attempt to do any real work
with OS-9 when you only have one disk drive, we are going to
assume that you have two drives in your system — /D0 and /D1.

Ifyouarejustgettingstarted and only have onedrive, you will
findthesingledrive syntaxofthe OS-9 commandsthatcan berun
on one drive in the Radio Shack reference manual named OS-9
Commands.

Now that you have formatted a new disk, you may backup
your Radio Shack System Master disk by following these steps:

. Put the disk you just formatted in /D1
. Put the System Master disk in /DO

. Type: Backup #20K <ENTER>

. You will see the following prompt:

HWND =

READY TO BACKUP FORM /DO TO /D1
?:

5 Type:Y
6. OS-9 will display this message:

anyname
IS BEING SCRATCHED
OK ?:

7. TYPE: Y
8. Wait patiently while Backup does its job

When the Backup operation is complete, you will see a mes-
sage on your screen that tells you how many sectors were copied
and how many were verified. The two numbers should match.

You should now take your original Radio Shack System Mas-

terdisk andstoreitinasafe place. Fromthis pointon, use only the
new system disk you have just made when you work with OS-9.

60

You're on your way. In this chapter you have been introduced
to the OS-9 system disk and the contents of its directories and
files. You've also learned how to bring OS-9 to life on your Color
Computer — and, how to format new disks and make backup
copies of your system software.

Take sometimeto enjoy your new operating system. Now that
you're working with a backup of your original disk, feel free to play
around with OS-9. When you're ready to get serious again, join us
in Chapter 8 where we’'ll introduce you to a number of the special
keys on your Color Computer keyboard.

61

SUMMARY

CHAPTER 8

special keys

Tricks are for kids! That may be an old saying, but it is quite
appropriate here. In this chapterwe hopeto show you a few tricks
that will save your fingers a lot of wear and tear.

We’ll beintroducing youtotwosetsofvery specialkeys on the
ColorComputer keyboard. You'llfind yourself using the firstsetto
savealot of typing. Then,we’llshow you how to generate a few of
the characters that aren’t available on the Color Computer key-
board. You'll need these characters when you start to program
with OS-9.

KEYS THAT MAKE LIFE EASY

There are several special key combinations on the Color
Computer keyboard that willmake youralife abreeze. These keys
can help you correct your mistakes or let you run acommand line
overand over again with only two keystrokes. They can even stop
runaway programs.

We’'re all human and make “misteaks.” But, the first time you
type LOST in an OS-9 command line when you really mean LIST,
you’'ll discover that OS-9 makes it very easy for youto correct your
mistakes. Here’s one way to correctan error.

Hit the backspacekey several times. Each time you hit the key,
you'll notice the cursor backs up one space. Repeat this action
until you reach thebad character. Oncethe cursorisin place, you
can retype the character.

On the Color Computer, use the back arrow key to back up

63

THE REPEAT KEY

one character position. If you are using a terminal that does not
have a backspace key — or a back arrow key — hold down the
<CONTROL>key whileyoutypean ‘H. Thatcombination should
do the job nicely.

The second way to correct your mistake is to hit the “line
delete” key. When you strike this key your computer will erase the
entire line and you can start over again. Name your poison.

What did you just mumble? Your keyboard doesn’t have a key
marked “LINE DELETE.”

Don’t worry! The Color Computer has an alternative. Just hold
down the key marked “CLEAR” and type the letter ‘X’. The com-
mand line you were typing should disappear. On most terminals
youcan performthesame magicby holdingdownthe key marked
<CONTROL> or <CTRL> while typing the letter ‘X".

If you cannot seem to make the connection between <CLEAR
X> and deleting a line, the Color Computer keyboard has another
combination that may be easier for you to remember.

You can also delete an entire line with one keystroke by
holding down the shift key and striking the back arrow key. The
<SHIFT><BACK ARROW> combination to delete an entire line.
Got it!

Hereis another tip you just may wantto remember. When you
are using 0S-9, the CLEAR key on the Color Computer keyboard
always acts like the CONTROL key on other computer terminals.

Other special keys give you a way to repeat your previous
input line, interrupt a program, redisplay the present input line,
exit a program or simply wait.

The “wait” key does just what its name implies. It stopsthe text
from scrolling on your Color Computer screen until you tell it to
start again by striking any key. This gives you a way to stop and
study several sentences in the middle of a long text file while you
are listing it to your screen.

The repeat key will increase your productivity and save your
finger tips. You'll love it. Give it a try! Hold down the “CLEAR” key
and type the letter ‘A’.

You'llfind the repeat key is really handy when you need to run
the same command line several times. Just type <CLEAR A>and
your last command line will magically reappear. Then, type
<ENTER> to run the command again.

Here is something youcantry the nexttime you are working

64

with your Color Computer. Type: dir <ENTER>.

You should see a listing of the contents of your current data
directory.

Then type: <CLEAR A><ENTER>. Your trusty Colorcompu-
tershould listthe directory again. If you think the repeat key is neat
now, wait till you use it with a pathlist 72 characters long.

You'll find that using the <CLEAR A>combination sure beats
typing. Use it every time you get the chance.

If you ever need to interrupt a program while itis running, you
can use the OS-9 Interrupt Key. On your Color Computer just hold
down the <SHIFT> key and strike the <BREAK> key.

When you type the <SHIFT><BREAK> combination, the
Color Computer keyboard sends out a <CONTROL C>. This
means that you could get the same result by holding down the
<CLEAR> key while you type the letter ‘C’.

Here’s what happens when you send an interrupt signal to a
program. Assoon as you type the <SHIFT><BREAK>or<CLEAR
C> combination, the OS-9 prompt will appear on your Color
Computer screen. But, that's only half the magic. Give it a try.
Type:

0S9:list filename >/p

As soon as the printer starts running, type the <SHIFT>
<BREAK> combination. Watch what happens.

Did the “OS9:” prompt reappear on the screen? Isn’'t some-
thing strange going on? Why is your printer still printing? What'’s
going on?

Would you believe that when you typed <SHIFT><BREAK>,
you told OS-9 to run the printing job as a background task. That’s
what happened.

Toproveittypethelistcommand again. Thistime leave off the
“>/p”. Your Color Computer screen should fill with the same
listing that is being printed. The printer should continue to print
until it finishes the job.

PUSHING A TASK INTO THE BACKGROUND

THE | QUIT KEY

When you get tired of a program and want to abort the
process, never fret. OS-9 gives you a way to do it. Just type
<BREAK>.

65

You can also stop a program by holding down the <CLEAR>
key while you type an ‘E’. | guess ‘E’ stands for “End it!”

Here's an historic sidelight. On early OS-9 computer systems
you typed <CONTROL Q>.‘Q’ for quit. Got it?

That combination was easy to remember. Then progress got
in the way. When OS-9 Level Il was released it supported the X -
ON / X - OFF protocol. Since the ASCIlI X - ON code is a
<CONTROL Q> there was a natural conflict. So much for easy
mnemonics.

Here's another handy key. Sometimes you need to redisplay
the command lineyou aretyping. Todo thistype <CLEAR D>.‘D’
for display, maybe?

THE GREAT ESCAPE

0OS-9 has one more special key. It lets you ESCAPE. The
<CLEAR><BREAK> combination sends an end-of-file signal to
0OS-9. This gives you a way to send an end of file signal to any
process that receives its data from the keyboard.

How do you send it? | bet you can’'t guess. Would you believe
that you hold down the <CLEAR>> key and strike the <BREAK>
key.

There's only one catch to the great <ESCAPE>. When you
send the ESCAPE code to OS-9, you must type it as the first
character on the line.

THE <CLEAR><NOTHING> KEY

Oops! | almost forgot something — | mean <CLEAR>
<NOTHING>. The <CLEAR><0> key combination lets you tog-
gle the shift lock on the keyboard. If your keyboard is only sending
out uppercase letters, you can get it to send lowercase letters by
holding down the <CLEAR> key and typing a ‘0.

Tochangebackyousimply typethesamecombination again.
That’'s why we call it a toggle. By the way, when the keyboard is
sending out lowercase letters, you can demand an uppercase
letter by holding the <SHIFT> key.

Here's an interesting problem to ponder. It is possible to type
lowercase letters on the keyboard but only see uppercase letters
on the screen. Why?

This happens when yousetthe TMODE uppercase lock mode
to UPC. Toseethe lowercase letters again, use thiscommand line:

0S9: tmode -upc <ENTER>

66

Remember, the shift lock function — the <CLEAR><0> key
combination — only works when you have used the TMODE utility
command to tell the /TERM device descriptor to recognize both
upper and lowercase characters.

Areyouimpatient? Doyou hateto sitand wait forthe compu-
tertofinishonejobsoyoucancommandittodoanother? Wait no
more! OS-9 lets you “type ahead.”

While OS-9 is running one program, you can type another
command line, or answer the next prompt if you know what it is
goingtobe.Sometimes youmaybeabletostay severalcommand
lines ahead of your Color Computer.

Unfortunately, there are two “gotchas” with type ahead on the
Color Computer. First, you will be typing blind. This is only a minor
slow down and is much better than sitting around twiddling your
thumbs. Secondly, you will find that you cannot type ahead reliably
on the Color Computer keyboard while the disk drives are being
used.

Since there areonly 50 keys onthe Color Computer keyboard,
Radio Shack had to come up with a way to generate a number of
characters needed by the high level languages that run under
0S-9. The keysthatgeneratethese characters area standard item
on most computer terminals.

The table below shows the character generated, its name, the
key combination required to generate it and a description of its
appearance.

OTHER 0S-9 MAGIC

GENERATING ADDITIONAL CHARACTERS

KEY NAME KEY COMBINATION APPEARANCE

— Underline <CLEAR><-> Back Arrow

{ Left Brace <CLEAR><> Left Bracket (REVERSE VIDEO)

} Right Brace <CLEAR><> Right Bracket (REVERSE VIDEO)
~ Tilde <CLEAR><#> Hyphen (REVERSE VIDEO)

\ Backslash <CLEAR></> Slash (REVERSE VIDEO)

| Vertical Bar <CLEAR><1> Exclamation (REVERSE VIDEO)

A Up Arrow <CLEAR><7> Up Arrow

[Left Bracket <CLEAR><8> Left Bracket

] Right Bracket <CLEAR><9> Right Bracket

SUMMARY

Special keys make OS-9 easy to use. In this chapter, you've
been introduced to keys that save typing and keys that generate
characters unavailable on the Color Computer keyboard.

67

In Chapter 9 we let you get a feel for the OS-9 Shell as we
introduce a handful of commands. It will give you a chance to get
ready for our six chapter tour of the complete OS-9 utility com-
mand set.

68

CHAPTER9

a little practice

This chapter is a warm up exercise designed to give you a
chance to shake your stage fright. You can’t talk about computing
forever. Youneedtostartcomputing. Theshorttourin this chapter
should make you feel confident. Before we finish you'll be able to:

Make a directory
Build a file
List a file
Use a file
Change a file

Before a baby can walk, it must learn to crawl. Before a foot-
ball team can win a game, each player must learn to block and
tackle.

Youareaprogrammer. 0OS-9isaprogrammingtool. Together,
you are a team. But, as with any team, you must learn the basics
and practice them before you can turn pro.

Each utility command in your OS-9 CMDS directory is a tool.
Most of these tools work on files. But let’s take first things first.

Before you can work on a file, that file must exist. You must
create it. BUILD is a handy utility command that makes it easy for
you to create small files on a disk so you can use them later.

These files may contain simple messages that OS-9 can list to
your screen later when you need areminder. Or, they may contain
a list of commands to put your Color Computer through its paces
automatically. A file that does the latter is called a procedure file.

69

Essentially, a procedure file is nothing more than a sequence
of short OS-9 command lines that do a big job when they are run
together. An OS-9 procedure file is similar to a shell script on a
UNIX computer.

Forlargerfilesyouwillneedtouse aneditortoenteryourtext
or procedures. EDIT, whichcomes on your OS-9systemdisk, is an
excellent line editor. If you prefer a screen oriented editor, we
suggest DynaStar.

CREATING A DIRECTORY

In Chapter 5 we introduced you to hierarchial directories and
showed how they can help you organize your information. In a
way, these directories are like the files we talked about above.
Before you can use them, you must createthem. In fact, that is our
first assignment.

Since we plan to keep all our files short during this chapter,
you can go ahead and use the backup of the Radio Shack system
master disk you created in Chapter 7. There should be plenty of
room on it for a few short files.

Afteryouboot OS-9, your current datadirectory is usually the
root directory of device /DO. The execution directory is usually
/D0/CMDS.

Let's start by creating a directory you can use to store your
files. Try this command line:

0S9: makdir TEST_DIRECTORY
Notice that we typed the name of the directory in all capital
letters. Uppercase letters makedirectories easy to spotinadirec-
tory listing.
Also notice that we didn’t need to type:

0S9: makdir /DO/TEST_DIRECTORY

Since our current data directory was /D0, OS-9 was smart
enough to putournewdirectory intheroot directory of device /DO.

Now that we have a directory for you to use, let's move you
intoit. Type:

08S9: chd test_directory
Notice that you didn’t need to type the directory name in

capital letterswhenyoucalled forit. The same goes for filenames.
0OS-9 will match either upper- or lowercase letters.

70

Let's create a file. Type:
0S9: build my_first_flle <ENTER>

OS-9will printa question mark on the screen and wait for you
to type a line.

0S9: build my._first_flle <ENTER>

? This Is my first file. <ENTER>

? 1 think I’ll add a second line to It. <ENTER>
? <ENTER>

After you type the ENTER following the third question mark,
0OS-9 will save your file on the disk in drive /DO. It will be stored in
the directory named TEST_DIRECTORY.

Putting a message in a file can be as simple as the example
above. Next, we’ll attempt to prove that you did, indeed, create a
file and it was saved on the disk. Type:

0S9: dir <ENTER>

0S-9 should reply:
DIRECTORY OF . 12:35:45
my_first_file

Congratulations! You have now created a directory and a file.
Do you remember what'’s in it?

BUILDING A FILE

LISTING A FILE

You canread the data storedin any text file by listing it to your
terminal. Youdo this withthe OS-9 list utility command. Goahead
and try it. Type:

08S9: list my_first_flle
0OS-9 should oblige:

This is my first file.
I think I'll add a second line to It.

“My._first_file” is an example of a message that can be printed
on yourterminal. You can create otherfiles that do things. We call
them procedure files. Let's make one. Type:

0S9: build greetings
? echo Good morning Dale L. Puckett

71

USING A FILE

? echo It’s about time you showed up
? echo The correct timeis:

? date t

? echo I've checked your files

? echo Here’s a list of your directory
? dir

? echo Good Bye

? <ENTER>

What do you think will happen when you run this procedure
file? Let’s give it a try.

Procedure files are usually stored in the current data direc-
tory. Let's see how OS-9 handles the procedure file you just
created. Type:

0S9: greetings <ENTER>

When you type this command line, OS-9 looks for a module
named greetingsin its module directory. Most likely, it will not find
it.

Then, it looks for a file named greetings in the current execu-
tion directory. The odds are very good that it won't find it there,
either.

Finally, OS-9 looks for a procedure file in the current data
directory. Since you just saved “greetings” in this directory, OS-9
should find it there and execute each command line in it. You
should see something like this on your screen.

0S9: greetings <ENTER>

Good Morning Dale L. Puckett

It’s about time you showed up

The correct time is:

August 29, 1984 23:33:55

I've checked your files

Here is a listing of your directory
DIRECTORY OF . 23:34:05

my_first_file

Good Byel

0Ss9:

If you would like a greeting like this each time you start OS-9
on your Color Computer, BUILD afilenamed greetings in the root
directory of your system disk /d0 and put the word “greetings” in
the file /d0/startup. Your new “startup” file would look like this:

SETIME </TERM
greetings

72

Atothertimes youcan usethe BUILD utility command to save
information. For example, a short list of names and addresses is a
very helpful thing to have handy on your computer. It sure beats
searching through several hundred business cards.

Here’s how you might build a list of names and numbers.
Type:

0S9: build address_list

? Rainbow, Prospect, KY 40059

? Puckett, Dale L.; Dale City, VA 22193

? Pollution Response Branch, USCG Headquarters 20593
? <ENTER>

Aslongas your list of names and addresses is short, you can
use the OS-9 list utility command to find a name. Later, when the
list grows you can use one of the more powerful OS-9 pattern
matching utility commands — GREP from Microware's OS-9
Toolkit, for example — to find a single entry in your file.

What happens when someone in your name and address file
moves? You'll need to find a way to change the address. You can
do this with the OS-9 EDIT utility command.

Edit is an extremely powerful text editor that you can use to
prepare and edit text files. You can use its macro capability to
automate many tasks. Here, we'llonly show you a few of the basics
SO you can use it to enter and edit a file.

Here’s how you can edit the address file you created with the
build utility command above. Type:

08S9: edit address_Jist

The OS-9 EditUtility Command will load, andin afew seconds
your screen should look like this.

08S9: edit address_list
E:
The“E:"isapromptthattellsyouthat Editis waiting for youto
giveita command. Let's start by making sure we havetherightfile.

To list the entire file, type:

E: I* <ENTER>

Rainbow, Prospect, KY 40059

Puckett, Dale L.; Dale City, VA 22193

Pollution Response Branch, USCG Headquarters 20593

Now let'sinsert a new name at the beginning of the file. Type:

~ry

CHANGING A FILE

E: <SPACEBAR> Dundon, Dick; Kent, WA 98042 <ENTER>
Let’'s seeifitisin place. Type:

E: -*I* <ENTER>
You should see:

E: -*1* <ENTER>

Dundon, Dick; Kent, WA 98042

Rainbow, Prospect, KY 40059

Puckett, Dale L.; Dale City, VA 22193

Pollution Response Branch, USCG Headquarters 20593

Good! Now, let’s puta new name and address at the bottom
of the file. Type:

E: / <ENTER>
E: <SPACEBAR> Hogg, Frank; Syracuse, NY 13202
<ENTER>

Now let’s seeif itisin the right place. Type:
E: -*I* <ENTER>
You should see:

E: -*I* <ENTER>

Dundon, Dick; Kent, WA 98042

Rainbow, Prospect, KY 40059

Puckett, Dale L.; Dale City, VA 22193

Pollution Response Branch, USCG Headquarters 20593
Hogg, Frank; Syracuse, NY 13202 <ENTER>

Now let's imagine that Dick Dundon moves to the Silicon
Valley. We'll need to change his address. Type:

E: -* <ENTER>
E: C/Kent, WA 98042/Sunnyvale, CA 94087/ <ENTER>

Now check your file.

E: -*I* <ENTER>

Dundon, Dick; Sunnyvale, CA 94087

Rainbow, Prospect, KY 40059

Puckett, Dale L.; Dale City, VA 22193

Pollution Response Branch, USCG Headquarters 20593
Hogg, Frank; Syracuse, NY 13202 <ENTER>

The sample editing session above should give you a feel for
the OS-9 Edit utility command. Here is a table that gives you a
handful of editing commands to help you get started. After you
master these, study the the sample sessions in the Radio Shack

74

“0OS-9 Program Development” manual. You'll have the edit
command aced in no time.

COMMAND ACTION

<SPACEBAR> Inserts text following the <SPACEBAR>at the
position of the edit pointer
<ENTER> Moves edit pointer forward one line

+ Moves edit pointer forward one line
+6 Moves edit pointer forward six lines
+* Moves edit pointer to bottom of file
/ Moves edit pointer to bottom of file
- Moves edit pointer back one line

-4 Moves edit pointer back four lines

- Moves edit pointer to top of file

C/old string/new string/
Changes first occurrence of “old string” to “new string”

C3/0ld /new /
Changes next three occurrences of “old” to “new”

C*/bad word/good word/
Changes all occurrences of “bad word” to “good word”

Edit has many other commands that can make your editing
simple. After you master these, dig in.

There’s onething youshould remember. When you giveone
ofthecommands above toEdit, youmuststarttypingitatthe first
character position in the line. If you add any <SPACES>, Edit
will insert a line for you.

And finally, when you are satisfied with your datafileand are
ready to stop editing, don’t forget to type:

E: Q <ENTER>

This will cause Edit to save your file in your current data
directory and return you to the Shell.

SUMMARY

We've eased youinto OS-9gentlyinthis chapter. As youcan
see, if you followed us along on your computer, OS-9canbealot
of fun. Stick with usthough.We all have alottolearn.Inthe next
chapter we start a six chapter tour of the complete OS-9 utility
command set. We begin by showing you commands that give
you information.

75

PART lll: TOURING THE OS-9 COMMAND SET

CHAPTER 10

commands that give
you information

Man invented the computer to help him manage information.
Once he had a computer, he learned to store data in files that “
contained either text or numbers. He then wrote application pro-
grams to manipulate this data and display it for him.

In fact, you probably use more application programs on your / ”
computer than anything else. However, when you get bored just J
using your computer and want to start programming, you'll find
that you'll need a lot of additional information about your operat- 4 k
ingsystem. You’'llwant to know what it isdoing. The commands in

this chapter display reports that give you this information.

In this chapter you’ll be introduced to the following OS-9
utility commands.

date
display
echo
free
Ident
mdir
mfree
printerr
procs

We’'ll start with a simple command — date.

77

DATE

DISPLAY

There's really not awhole lot you can say aboutthe OS-9 Date
utility command. It does just what its name implies. It displays the
month, day and year on your Color Computer screen.

You may also ask DATE forthetime by including the letter‘t’
on your command line. Let’s try it both ways. First, type:

0S9: date <ENTER>

Since the date utility writes its output to the standard output
path, you should see something like this on your screen.

0S9: date <ENTER>
September 23, 1984
0Ss9:

You can also send DATE’s output to any hardware device
attached to your Color Computer or to adisk file. For example, try:

0S9: date t >/p <ENTER>

In a few seconds, your printer should come alive and print a
line that looks like this:

September 23, 1984 20:38:05
The OS-9 date utility, unlike its UNIX equivalent, does not let

you set the date. To set the time on your Color Computer, you
must use the OS-9 Setime utility command described later.

When you want to look at straight English language text files,
you can display them on your Color Computer screen or another
terminal with the OS-9 List utility command. You can also send
English language messages toyour screen or any device attached
to your computer with the OS-9 Echo utility command.

However, life is not always that simple. Sometimes you need
to send a character to your screen that is not in the English
alphabet. An example of such a character is the so called control
code that you use to clear the screen on your Color Computer
screen. Also, you often needto send a control code ortwo to your
printer to make it do something special, like issue a form feed or
underline a word.

You'llfind a complete list of special controlcodes in Appendix
B of the Radio Shack OS-9 Commands manual that will make your
Color Computer dance. This appendix also gives you codes you
can use to display graphics from an OS-9 command line.

78

To send these special characters — or control codes — to
your Color Computer screen or printer, use the OS-9 DISPLAY
utility command.

TouseDISPLAY, justtypethe word “display” followed by one
or more hexadecimal numbers. The DISPLAY utility converts the
hexadecimal number you type to an ASCII character and writes it
to the standard output path.

Let’s try it!
0S9: display C <ENTER>
This command line will home the cursor and clear the screen
on your Color Computer. The ‘C’ in this command line is the
hexadecimal equivalent of the decimal number 12 listed in Appen-
dix B of the Radio Shack OS-9 Commands manual. Remember,
you must always type hexadecimal numbers when you use
display.
Here’'s another example:
0S9: display F >/p <ENTER>

This command will cause an Epson MX-80 printer to start
printing compressed text.

And finally:

0S9: display 31 3233343536 37383930 <ENTER>
1234567890

This DISPLAY shows you another — albeit harder — way to
count to 10.

Quite often you need to remind yourself to push the right
button. Youcando thisby using the Echo utility command in your
Shell procedure files.

Actually, you can use the OS-9 ECHO utility command to print
any message written in English language text on your Color Com-
puter screen atany time. You can also redirect ECHO'’s output to
another terminal or your printer. This means you could use ECHO
to send a message to someone working on a second terminal in
another room.

When using ECHO, you should make sure that you don’t type
any of the special characters recognized by the Shell. The results
may not amuse you.

Let us ECHO.

79

ECHO

FREE

0S9: echo >/t1 I'm starved, let’'s have dinner.<ENTER>

Thiscommand line will display the message, *'I'm starved, let’s
have dinner.” on the terminal device named /t1.

Here’s another!
echo >/term ** ATTENTION ** Formatting Disk!

You could put thiscommand line in a procedure file and have
0OS-9remindyou whenitis getting ready to format adisk. We often
need that one last chance to change our minds.

Since the OS-9 Shell does not process meta-characters, the
ECHO utility is not as powerful as its UNIX equivalent. The UNIX
ECHO lets you substitute commands, variables and all meta-
characters recognized by the Shell.

A meta-characteris any characterthathasaparticular special
use other thanits normal use within the alphabet. Forexample, the
OS-9Shellrecognizestheexclamation pointasasignaltosetupa
pipe. The exclamation point is a meta-character.

Sometimes you need to know how much space you have left
on adisk. The OS-9 Free utility command does this job nicely. To
find out how many sectors of free space are left on a disk, just type
the word FREE followed by the name of adisk drive. You can even
tell how many new files can be stored on a disk by studying the
information provided by the FREE utitity.

As a bonus, you will also learn when the disk was created and
the size of its clusters. The number of sectors in a cluster is
important because it has an effect on the number of files that you
may store on a disk.

Imagine thatyou areusingdisk drivesthathave 16 sectorsina
cluster and FREE tells you that 48 sectors are available. You will
know that you can only create three new files. This limit exists
because OS-9 can only read or write an entire cluster on adisk at a
time.

Let’s give it a try! Type:

0S9: free /d2 <ENTER>
DynaSpell_Documentation created on: 84/06/26
Capacity: 1,274 sectors (1-sector clusters)

1,070 free sectors, largest block 940 sectors

This command line caused free to report that a disk named

“DynaSpell_Documentation” was mounted in device /d2. Further
it reported that the disk was created on June 26, 1984 and that it

80

has a capacity of 1,274 sectors. Of those 1,274 sectors, 1,070
remain free and may be used to store your data.

0OS-9 is a modular operating system. This means that itis not
one long program. Rather, it contains a number of small modules
that work together.

You can find the names of modules present in memory with
the MDIR utility command. Sometimes, however, you need to
know more about a module. That's where the IDENT utility comes
in.

When you run IDENT, it reads the header of the module
named in your command line and displays information from it on
your Color Computer screen. For example, it tells you the size of
the module and prints the value of its CRC. It also tells you if the
CRC is good or bad.

If amodule contains objectcodethat will execute, IDENT tells
you where the actual program code starts by displaying the offset
from the beginning of the module. It also tells you how much
memory the program needs in order to run.

The Ident utility tells you what type of data is contained in a
module and the language that uses it. Further, it displays the
revision number of a module and its attributes. When you run
IDENT onadisk file, itdisplays areport about each module stored
in the file.

You can use fourcommand line options with IDENT: -m, -s, -v
and -x.

The -m option tells IDENT to look for the module in memory.
The -s option causes IDENT to print a short report.

Ifyoutypea-vinyourcommandline, IDENT will not verify the
CRC of the module you are checking.

And finally, if you type a -x, IDENT assumes that the file
named is stored in your current execution directory.

Here’s a trial run!
0S9: ident -m spell
Header for: SPELL
Module size: $25EE #9710
Module CRC: $AE36FF (Good)

Hdr parity: $E3
Exec. off: $ODCF #3535

81

IDENT

MDIR

Data Size: $4BDC #19420
Edition: $2F #47
Ty/La At/Rv: $11 $81

Prog mod, 6809 obj, re-en, R/O

In this example, IDENT read the header of a module named
spell. Since we typed the -m option, it looked for the module in
memory rather than a file. Notice that it verified the modules CRC
andreportedthatitwasgood. Canyoutellthe difference between
this report and the next.

0S9: ident -mv spell

Header for: SPELL

Module size: $25EE #9710
Module CRC: $AE36FF

Hdr parity: $E3

Exec. off: $ODCF #3535
Data Size: $4BDC #19420
Edition: $2F #47
Ty/La At/Rv: $11 $81

Prog mod, 6809 obj, re-en, R/O

Noticethatthe “(Good)” is missing fromthereport. IDENT did
not verify the CRC of the module spell because we used the -v
option. Now, let's ask for a short report of a file stored in the
current execution directory.

0S9: ident -xs ds

30 $11 $A3C080 . DS
3 $21 $749D97 . PINTERP

Notice that when you run the short form of the IDENT utility
command, a period shows you that a module’s CRC is correct. If
theCRCisbad,theshortformofIDENT will print a question mark
in the same column.

Since OS-9 containsanumberofmodules, itis often handy to
know which modules are in memory. You can get a listing of the
names of each module in memory by running the MDIR utility
command.

If you need more information, youcanusethe extended form
of the MDIR command. To do this, add the letter ‘e’ to your com-
mand line. The extended module gives you the names of all
modules in memory and showsyouwhere each module is loaded,
how many bytes it contains, the type of code it contains, its revi-
sion number and the number of processes presently using it.

When you run MDIR on a Level Il system, you will also learn

82

the extended physical address of a module. Let's run MDIR now
and see what happens.

0S9: mdir <ENTER>

Module Directory at 16:40:23

Boot OS9p1 0OS9p2 Init SysGo
IOMan RBF SCF ACIA PIA
PipeMan Piper Pipe Clock TERM
T1 T2 P P1 do

d1 d2 d3 M1 ESTERM
DS PINTERP SPELL Lk DF

That was pretty cut and dried. Now, lets see what kind of
information we can find by using the extended form of the MDIR
command.

0S9: mdir e <ENTER>
Module Directory at 16:47:39

Block Offset Size Typ Rev Attr Use Module Name

FF O 2B0O C1 2 r 1 Boot
FF 2B0O D26 CO 8 r.. 0 OS9pt
1 0 c64 CO 2 r.. 1 0OS9p2
1 C64 2 CO 1 r 1 Init
1 C92 75 11 1 . 1 SysGo
1 D07 929 Cf1 1 r. 1 IOMan
1 1630 10D5D1 1 r.. 4 RBF
1 2705 4C2 D1 1 r 5 SCF
1 2BC7 2A1 Ef 1 r 2 ACIA

When you run a powerful operating system like OS-9 on a
small microcomputer like the Color Computer, you soon learn that
you have limited resources. In fact, on any OS-9 Level | system,
memory is probably the most precious resource.

To manage your memory wisely you need to know how much
you have available. The MFREE system utility command answers
some of your memory questions.

When you run MFREE, it prints a list of the memory areas in
your computer that are not being used. |f they are not being used,
they are available for you to use.

Additionally, MFREE gives you the address where each free
block starts and reports its size. On a Level | system like the Color
Computer, MFREE tells you how many 256-byte pages are
available.

83

MFREE

MFREE also shows the block number, physical beginning and
ending addresses, and the size of each memory area on Level Il
systems. The Level ll sizeisreported as boththe number of blocks
and the number of free (K)ilobytes available.

Here's how you run MFREE.

0S9: mfree <ENTER>

Address pages

800- 8FF 1
BOO-AEFF 164
B100-B1FF 1
Total pages free = 166

The command line above was typed into Color Computer
0S-9. You should see a similar report on any Level | OS-9 system.

0S9: mfree <ENTER>
Blk Begin End Blks Size

70 70000 77FFF 8 32k
80 80000 87FFF 8 32k
90 90000 97FFF 8 32k

Total: 18 96k

When you type mfree on a Level Il OS-9 system, you'll see a
wider listing. If you study the report above, you will notice that
MFREE tells you which block of memory is free and where the free
memory starts within the block.

Remember, the memory areas and amounts displayed by the
MFREE utility command are not in use. This means they are avail-
able for you to use. Of course, since OS-9 programs are all posi-
tionindependent, you will be concerned mainly with the amount of
memory available. MFREE can help you track down the source of a
memory fragmentation problem, however.

PRINTERR

Some computers have a very bad habit. When you make a
mistake, they are unforgiving. They tell you that you blew it, but
they don’t tell you how. If you're lucky, they throw an error number
at you. Some help!

0S-9 has a utility command that helps solve this problem.

Once you run it, the system will report your errors in English.
Believe me, it helps a lot.

84

Printerr displays English language error messages from a file
named /d0/SYS/errmsg. Once you run PRINTERR, it replaces the
standard OS-9 error reporting routine that only prints error code
numbers.

Printerr installs itself permanently the first time you run it.
There’s one thing you should know, though. Once you run PRIN-
TERR, you are stuck with it for the rest of your OS-9 session. It
literally attaches itselfto your computer. If you need to know how
to change the existing error message file or install your own,
consult the Radio Shack OS-9 Users Manual.

The Printerr command syntax could not be any simpler. Just
type:

OS9: printerr <ENTER>

Let's make a mistake on purpose and compare the reports
received both before and after this routine is installed.

BEFORE PRINTERR

0S9: datte <ENTER>
ERROR #216

AFTER INSTALLING PRINTERR

0S9: PrintErr <ENTER>
0S9: datte <ENTER>
ERROR #216

- PATH NAME NOT FOUND

Remember, once you have installed PrintErr you cannot
remove it. DO NOT try to unlink PrintErr. You will crash the sys-
tem. The only way to remove PrintErr once it has been run is to
reboot the system.

Sometimes you may notice that your terminal seems to be
sluggish. Or, a sort may take longer than usual. This happens
when your system is loaded down with too many processes.

Also, if you're snoopy, its nice to know who is doing what on
the system.OS-9 has a utility command that can giveyou allofthis
information. It's called PROCS.

When you run PROCS, it gives you a list of processes that are
running on your computer. Normally, it only lists the processes
you own. However, you may ask to see all processes. To do this,
you just add the ‘e’ option in your command line

PROCS reportsthe user number ofthe ownerofeach process

85

PROCS

anddisplays each process ID number. The state of the process, its
priority, and the amount of memory it is using are also given. The
primary program module and the standard input path for each
process are also displayed.

The Level Il version of PROCS gives you the process ID
number foreach process runningin yourcomputer. It also reports
the ID number of the parent process, the priority of a process, the
amount of memory being used by the process and the current
address of the stack pointer.

Again, the command syntax is simple.

0OS9: procs <ENTER>
Here’s the result on an OS-9 Level Il system.

Parnt User Mem Stack
ID ID Numbr Pty Age Sts Signl Siz Ptr Primary Module

2 1 0 128 129 §80 O 1 $§97E2 SysGo
3 2 0O 128 129 $80 O 3 $95E2 Shell
4 3 0 128 129 $80 0O 128 $93E2 DS
50 0O 128 129 $80 O 2 $90E2 Tsmon
8 4 0O 128 128 $80 O 3 $82E2 Shell
9 8 0O 128 128 $80 O 6 $05F3 Procs

The report above displays only those processes that are
owned by usernumber0. To seea listing of all the processes being
run on your computer you must add the ‘e’ option to your com-
mand line. Try this:

0OS9: procs e <ENTER>>

Parnt User Mem Stack
ID ID Numbr Pty Age Sts Signl Siz Ptr Primary Module

2 1 0 128 129 $80 O 1 $97E2 SysGo
3 2 0 128 129 $80 O 3 $95E2 Shell
4 3 0 128 129 $80 O 128 $93E2 DS
50 0 128 129 $80 O 2 $90E2 Tsmon
6 5 2 128 128 $80 O 3 $8BE2 Shell
7 6 2 128 128 $80 0 125 $88AE Stylo
8 4 0 128 128 $80 O 3 $82E2 Shell
9 8 0 128 128 $80 O 6 $05F1 Procs

Notice that there are two extra processes visible in this listing.
Wecanseethata process named Stylois running. It was started by
a Shell that was started by Tsmon. Both the Shell and Stylo are
owned by User Number Two. That’s why they did not show up in
the first PROCS report.

86

SUMMARY

Inthis chapterwehaveintroduced youto nine programs from
the OS-9 utility command set. Each of these commands tells you
something about your system. In Chapter 11, we look at the OS-9
commands needed to work with files.

87

CHAPTER 11

commands that workonfiles

OS-9 is a disk based operating system. That means that it
stores most ofitsown information in disk files. Likewise,whenyou
run an application program you will be storinga lot ofinformation
in disk files.

In this chapter we’ll concentrate on the OS-9 utility com-
mands that help you work with files. You'll be introduced to:

attr dump
binex exbin
build list
cmp merge
copy rename
del tee

Each OS-9 disk file has a set of qualities that define certain
characteristics about it. Microware and Radio Shack both call
these qualities attributes.

For example, some files contain 6809 object code that you
loadinto yourcomputer and run. Since these files can be run — or
executed — OS-9 assigns an executable attribute to them.

Other files often contain English language text that can be
sent to your screen or printer. But sometimes, the words in these
files may be asecret. For example, if the wrong person reads a file
containing propriety information that could help acompetitorand
then sells it, your company stands to lose money.

89

Because computers are often used to store this type of infor-
mation, OS-9 lets you give a file a “readable” quality or attribute.
With this attribute you can mark a file so that it can be read by
everyone running your computer. Or, you can mark it so that you
are the only one who can read it.

The name of the attribute that tellsOS-9that afilecan beread
by everyone on the systemis “pr.” The letters “pr” stand for public
read. To mark a file so that you are the only one who can read it,
you use the 'r’ or “read permit to owner” attribute.

Now, ponderthis. Forevery“pr” attributethereisanequaland
opposite “-pr” attribute. A file that is marked with a -pr can not be
read by anyone exceptthe owner. Thesamestoryistrue forthe’‘r’
attribute. If you don’t wantanyoneto be able to read afile, includ-
ing yourself, you may tell OS-9 to give the file the “-r"” quality or
attribute.

As you can see, attributes can be used to protect your files
from unauthorized operators — or yourself. But how do you mark
these files, or, in the language of the hacker, how do you set their
attributes?

OS-9 has a special utility command that lets you look at the
attributesof afile. Fortunately, it willalsoletyouchange them. The
name of this utility command is ATTR.

TouseATTR, youshouldbefamiliar with all of the qualities or
attributes availableto a file. They arer, w, €, pr, pw, pe, d, s. What
do you think they mean?

I'll bet you don’t have to stretch your imagination too far?
However, in the interests of being complete, let’s review.

In general, the single letter attributes, r, w and e apply to the
owner only. A file that has the ‘r’ attribute set can be read by the
owner. If the ‘r’ attribute is forced negative, or setto -r, even the
owner will not be able to read the file.

The ‘e’ and ‘w’ attributes work the same way. A filethat has the
‘e’ attribute setcan only be executed by the owner. Ifthe‘e’ issetto
a‘“-e,” eventhe owner willnotbe able toexecute thefile. Pursuing
thesamelogicpath,ifafilehasthe‘w’attribute set,theownercan
write to it. If the file has a “-w” attribute, not even the owner can
write on it.

The two letter commands deal with public access. If a file has
the “pr” attribute set, anyone on the system can read it. If the “pr”
attribute is forced negative or setto “-pr”, and the ‘r’ attribute is set,
only the owner of the file will be able to read it.

The “pw’” stands for “public write. The “pe” stands for public
execute. Both work just like the “pr” attribute above except that

90

they affect the public’s ability to write or execute a file rather than
the ability to read a file.

The rest of the file attributes available on an OS-9 system are
easy to explain. For example, a file that has the ‘d’ attribute set,
contains a directory.

The ‘s’ attribute stands for “sharable.” When it is set, the file
may only be used by one person at a time. It becomes a “single
user file” for want of a better name. For example, if you write a
programthatuses non-reentrantcodeyouwouldneedtosetthe’s’
attribute on the file that holds it.

Inadditiontothefile attributes described above, youmay use
oneoption,“-a”onan ATTR commandline. Thisoption tells OS-9
not to print the file's attributes after they are changed.

Let’s take a look at ATTR in operation. Type:

0S9: attr KISSable_OS9 -pr-pw rw <ENTER>
---wr---

Our command line cleared the public read and public write
attributes of afilenamed, KISSableOS9. At the same time, it set the
‘r and ‘w’ attributes on that file. This means that only the owner
—the person who created the file — can read and write to it.

Actually, that's not quite true. If you are responsible for the
security of your computer system, you should know that user
number 0 on an OS-9 based computer is called the “superuser.”
The superuser can read and write to any file on the system.

After ATTR changed the attributes of our file, it reported its

action in the next line. Here’s what that mysterious looking line
means.

If there is a dash or a negative sign in a position, that attribute
isnegative. Arequest foranactionthatrequiresthatattributetobe
setwill be denied. If aletterappears in a position, that attribute is
set and the corresponding action would be allowed. -

An ATTR report with all attributes set would look like this:

dsewrewr

If all attributes were clear, or negative, an ATTR report would
display the following line.

The attributes flags inthe tworeport lines above appear in the
following order:

91

BINEX AND EXBIN

d, s, pe, pw, pr, e, w, r
Or:

directory

sharable

public can execute
public can write

public can read

only owner can execute
only owner can write
only owner can read

Here's another example:
0S9: attrimportant_data -w -pw -e -pe -a <ENTER>

This command lines shows how you can write protect a file.
When both the public, “pw,” and private, ‘w,” write attributes are
clear, no one can write to that file — not even the system.

Sinceitisimpossibletowritetothe file, itisalso impossible to
delete or rename it. Notice that since you used the “-a” option;
ATTR did notecho a report after it made your changes.

Afteryouclearthewriteandpublic write attributesofa file you
own, you are the only one who can delete the file. In fact, it will
even be a hassle for you to delete the file.

To get the job done you will need to use the ATTR utility
command to reset the write attribute. After you do this you are free
to delete the file. But since you own the file, you are the only
person who can usethe ATTR utility command on the file.

Oh, by the way! If you're thinking about playing games with
another person’s file attributes, don’t bother. You cannot change
the attributes of a file you don’t own.

Here’'s anotherinteresting fact. Youcan change adirectory to
a file if there are no files in it. In fact, that’'s how the deldir utility
works.

After you develop an excellent piece of software, you usually
want to share the wealth — or at least try to find it. This often
means that you must transfer binary object code from one com-
puterto another. Youdothis by porting — orsending — the object
code through an RS-232 port directly. You can also transmit your
code over a telephone line connected to your computer with a
modem.

92

One of the mostcommon ways to port binary codeis to send it
in the Motorola S-record format. The Motorola scheme converts
the binary object codeinto aseries of hexadecimal characters that
you can transmitin ASCII. It also provides a CRC check to ensure
that each record is received correctly.

BINEX reads a file stored in OS-9’s format, convertsitinto the
Motorola format, and storesitin another file. Thenew file can then
be transmitted to another computer.

EXBIN does just the opposite. It reads a file that has been
written in the Motorola format, converts it, and then writes itto a
file in the OS-9 binary format.

Here’s how you call BINEX from the OS-9 Shell:

0S9: binex /d0/cmds/dir dir.Motorola <ENTER>
Enter starting address for file: 0 <ENTER>
Enter name for header record: dir <ENTER>

Notice that OS-9 prompted you for the loading address of the
binary code and asked you fora name to putin the Motorolafile’s
header record. It does this because the Motorola S1 format
requires this information.

A starting address is meaningless to OS-9 because all 0S-9
modules must be positionindependent. Infact, all OS-9 assembler
code is written so that its starting address is zero.

After running the command line above, you will find a file
named “dir.Motorola” in your current data directory. You can send
this new fileto another computer connected toterminal device /T1
like this:

0S9: list dir.Motorola >/T1 <ENTER>
The person you are sending this file to will need to store it
temporarily in a file. After doing this he can runthe EXBIN com-
mandto convertit back sothat hecan runiton his ownOS-9based
computer. Here's the command line:

0S9: exbin newcat.Motorola /D0/CMDS/newcat

Since we let you exercise the BUILD utility command quite a
bit in Chapter 9, we'll try to keep our dialogue short here.

BUILD is an OS-9 utility command that you can use to write
short text files. Generally, you type English language messages on
your keyboard and OS-9 stores them in a file. Additionally, you
can type OS-9 procedure files — or Shell scripts — and have
BUILD store them in a file.

93

BUILD

CMP

Since BUILD reads its input from the standard input path, you
may send it input from a file as well as your keyboard. Remember,
on most OS-9 based computers, the standard input pathis usually
connected to the keyboard on your terminal. BUILD sends its
output to the file that you name on your command line.

When you run BUILD, it opens a path to the file or device that
you name. Then, it sends you a prompt.

The question markthat BUILD displays on your screen means
thatitis waiting for youtotype aline. Afteryoutype anempty line
by hitting your <ENTER> key two timesinarow, BUILD saves the
file and returns you to OS-9.

Let's give it a try, just for review. Type:

0S9: build greetings <ENTER>

? Good Morning <ENTER>

? Welcome to OS-9 Dale! <ENTER>
? <ENTER>

The sequence above will cause your computer to create a file
named “greetings” in your current data directory. It will contain
two lines. To see what is stored in that file you can use the LIST
utility command. Try it!

08S9: list greetings <ENTER>
Good Morning

Welcome to OS-9 Dale!

0S9:

Every once in a while things go wrong while you are writing a
file. Sometimes it’'s the computers fault. On other occasions, you
may make a mistake. When you do, it sure is nice to be able to
compare two files. A good compare utility can point you to a
problem rather quickly. And, with the OS-9 CMP utility command
you can compare any two OS-9 files.

CMP compares each bytein afileto the corresponding byte in
anotherfile. Ifitfinds any differences, it gives you their location. It
alsodisplaysthevalueofthe byte storedatthedisputed locationin
both files.

Let's deliberately create two files that are different:
0S9: buijld key <ENTER>
? This is akey. <ENTER>
? <ENTER>

0S9: build knot <ENTER>>
? This is a knot. <ENTER>

94

? <ENTER>

08S9: list key <ENTER>
This is a key.

08S9: list file2 <ENTER>
This is a knot.

Now let's see if the computer can uncover our plot.
0S9: cmp key knot <ENTER>
Differences

byte #1 #2

0000000B 65 6E
0000000C 79 6F
0000000D 2E 74
0000000E 0D 2E

Bytes compared: 0000000F
Bytes different. 00000004

file2 is longer

Computers will play. Sometimes, they even crash. And when
they do, it sure is nice to have a backup copy of your important
files. OS-9 has a utility command to do this important job.

The OS-9 COPY utility reads theinformation stored inonefile
and writes an exact copy into another file.

When you run the COPY utility command, the first filename
you type on your command line must exist. COPY creates a file
with the second name you type. Then, it writes all of the informa-
tion stored in the first file into the new file. COPY knows when it
hasread all of the information in the first file becauseitreceives an
end of file signal from OS-9.

Because COPY reads and writes large blocks of data, it does
not do any line editing. You can tell COPY how many bytes you
want it to read and write on each pass by using the the OS-9
memory modifier character, #, on your command line.

For example, if you want COPY to read 20,000 bytes from the
first file and write them all to your new file during each pass, you
could use the following command line.

0S9: copy #20K Spell Clone_of_Spell <ENTER>

95

COPY

DEL

You'll save a lot of wear and tear on your disk drives, not to
mention a lot of time, if you request a lot of memory when you run
the COPY utility. If you are doing a lot of single drive copies, you
will thank your lucky stars that OS-9 lets you use the memory
modifer.

Lets give it atry. Type:
0S9: copy KISS_12 KISS_12_BackUp #15K <ENTER>

This command line copies a file named KISS_12 in your cur-
rent data directory to a file named KISS_12_BackUp in the same
directory. When COPY finishes its work, you will see both files if
you list your current data directory.

0S9: copy /d0/cmds/dir /d1/cmds/dir <ENTER>

This command line shows how you can COPY a file from one
directory to another. It also shows you that COPY can recognize a
complete OS-9 pathlist as well as a filename.

Totell COPY that you needto doasingledrivecopy, you must
type the “-s” option in your command line. When you choose this
option, COPY displays a message each time you need to change
disks.

Here is an abbreviated session using COPY’s single drive
copy option.

0S9: copy chpt1 chpti_backup -s #20K <ENTER>
Ready DESTINATION, hit C to continue: ¢

Ready SOURCE, hit C to continue: ¢

Ready DESTINATION, hit C to continue: c

Ready SOURCE, hit C to continue: c

Ready DESTINATION, hit C to continue: c

Many office workers have a serious problem. They are afraid
tothrow anythingaway. Asaresultthey fill up drawer after drawer,
file cabinet after file cabinet. Only when the room is full do they get
around to purging their files.

If you are using an OS-9 based computer, you don’t have any
excuse for leaving extra files on your disks. Using the DEL utility
command, you can easily delete any unwanted files.

There’s only one catch. Before you can delete a file, you must
have permission to write to that file. This means that you must
either be the owner or the superuser.

The DEL utility lets you use one option, -x. If you type a -x in
your command line, OS-9 will look forthe file you named in your

96

current execution directory. Normally, it looks for the file in your
current data directory.

There is one other thing you can’t do with DEL. You cannot
delete a directory file. To get rid of a directory you must use the
0OS-9 DELDIR utility command.

Here we go again! Thatstatementis not 100 percent true. You
can delete a directory using DEL if you have a lot of patience.

To do it, you must first delete all of the files in the directory.
Then, you mustrun the AT TR utility command to change the ‘d,’ or
directory attribute, to a “-d.” When you set the “-d” attribute, you
tell OS-9 that the file is not a directory. Since it is now only a file,
you can go ahead and delete it. Fortunately, Microware wrote
DELDIR to do all of this for us.

Here's a command line that uses the DEL utility:

0S9: del chapter—1 chapter_2 chapter_3 <ENTER>

As you can see, DEL lets you delete more than one file at a
time. It can also recognize a complete OS-9 pathlist as well as
filenames in your current data directory. Give it a try!

0S9: del /d1/chapter-11 <ENTER>

You're probably skeptical, so we'll attempt to prove that DEL
does its job. First, list a directory. For example:

0S9: dir /d1 <ENTER>>

Directory of /d1 15:46:57
Chapter_1 Chapter2 Chapter_3

Now, run the DEL utility:
0S9: del Chapter—1 <ENTER>
Now, list the directory again:
0S9: dir /d1 <ENTER>>

Directory of /d1 15:47:55
Chapter2 Chapter_3

If youwantto get dizzy, try this. Usethe LIST utility command
ononeofthebinary objectcodefiles in your /DO/CMDS directory.
For example:

0S9: list /d0/cmds/dir <ENTER>

97

DUMP

Nine times out of 10 your screen will go bonkers. This
happens because the LIST command displays not only ASCII
characters, but also non-printing control characters. When your
Color Computer screen or terminal receives these control codes,
its hard to tell what will happen.

Yet, there are going to be times when you need to know
exactly which characters arestored in a file. That's why Microware
and Radio Shack gave us the DUMP utility command.

You can use DUMP to display information read from the
standard input path in hexadecimal notation. Since all hexade-
cimal notation is formed from ASCII characters, your screen can
display them.

When you run DUMP, you will see eight bytes of data listed
side by side on each line of your Color Computer screen. On most
of the larger OS-9 computers, DUMP displays 16 bytes on each
line.

In addition to printing the hexadecimal value of each byteread
from the standard input path, DUMP also displays the ASCII value
on the same line. If a byte is non-printable — a control character
for example — DUMP prints a period in the place where its ASCII
value would appear.

DUMP also shows you how far a byte is stored from the
beginning of afile. This means thatif you DUMP an executable file
from your /D0O/CMDS directory, you will be able to tell the exact
offset of each byte in the file after it is loaded into memory.
Remember, all OS-9 modules are stored in a file in exactly the
same form that they appear in memory.

Since DUMP reads characters from the standard input path
you can even ‘‘dump” characters from the keyboard. Give it a try.
Type:

0S9: dump <ENTER>
Now is the time. <ESCAPE> or <CLEAR><BREAK>

23 45 67 89 AB CD EF 02468ACE

0000 4E6F 7720 6973 2074 6865 2074 696D 652E Now is the time.
Isn’t that cute? Now let's try a real file.
0S9: dump /d0/cmds/load <ENTER>

Addr 01 23 45 67 89 AB CD EF 02468ACE

0000 87CD 0024 000D 1181 0CO0 1201 C24C6F61 M.$........ BLoa
0010 E404 103F 0125 07A6 8481 0D26 F55F 103F d..?.%.&...&u.?
0020 0626 7381 &s.

98

Here’s an interesting twist to the DUMP utility command.
There are some unadvertised options buried in the DUMP utility
supplied by Radio Shack. Try these command lines, too. You'll be
pleasantly surprised.

0S9: chd /d0/cmds

0S9: dump dir >/p

0S9: dump -h list >/p
0S9: dump - mdir >/p
0S9: dump -l -h dump >/p

The -h option lets you display a dump of a file without a
header. This means its output would work well as input piped into
an intelligent filter.

The -l option prints the dump 16 bytes across. The normal
Color Computer format puts eight bytes across the 32 column
screen.

Notice also that sincethe DUMP utility writes its output tothe
standard output path that you can redirect it to another file or

device. In the command lines above, we send several DUMPs to
the printer.

Files wouldn’t be much good if you couldn’t look at them.
That's why Microware gave us the LIST utility command.

UNIX has its CAT utility, OS-9 has LIST. The two are very
similar.

Since LIST sends its outputt o the standard output path, you
canuseittoreadthe English language text in any file youname on
your command line. And because you can give it more than one
filename in a command line, you can read several files at a time.
LIST runs until it reaches the end of the last file you name. When it
receives an end of file signal from this file, it returns you to OS-9.

Go ahead, try it! First, with asingle file and a complete pathlist:

08S9: list /d0/startup <ENTER>
echo
t
£2 2222222322222 222222 22221
** Dale L. Puckett **
** DaleSoft -

«t

getime 84 ; * start clock

date,t ; * print date and time

load load

load utils1 ; * load most-used utilities

99

LIST

MERGE

load utils2
tsmon /esterm&

load spell Ik
printerr
unlink load
link shell

Because the LIST utility sends its output to the standard
output path, you can redirect it to any file or device. Here's the
command line | used to get the results of the first command line
above into a file so that | could print it here.

0S9: list /d0/startup >kl

After LIST created the file named “kl,” | copied it into this
document using Dynastar.

I couldjustas easily havesent the filetothe printer by typing:
0OS9: list /d0/startup >/p

In fact, | could emulate a typewriter by typing:
0S9: list /term >/p ; * an on-line typewriter

Finally, let’s give LIST a number of filesto work on. Try some-
thing like this.

0S9: list chpt1 chpt2 chpt3 <ENTER>

Of course, the files you name on your command line must
really exist. Just for fun, type one that doesn’t and see what
happens.

Remember, you cannot effectively list a file that contains
non-printable characters. If you LIST a file that contains control
codes, look out. You’ll see a lot of garbage on your screen and as
often as not you'll crash your terminal.

Quite often you need to combine a number of small files into
one large file. You can almost do the job with the LIST utility
commanddiscussed above. Butifyou do, you'llruninto problems.

When you use LIST, the automatic line editing feature found
in all OS-9 device drivers can change your file. For example, in
many cases these drivers will add a linefeed character following
each carriage return.

If this line editing takes place while you are trying to combine
twofilescontaining binary objectcode, theline editing will change
the program. The program won’t run. Out of need, the MERGE

100

utility command was born.

You mustuse MERGE when youneedto combine a number of
small files. This utility command reads each file you name in your
command line and writes the information from it to the standard
output path.

This means that if you redirect the standard output path to
another file you can combine several smaller files into one large
file. And, since MERGE does not edit the information it sends to
the standard output path, you can use it to copy files that hold
program modules.

Here’'s how you can merge two files. Try it with your own files.

0S9: merge /d0/cmds/ds /d0/cmds/pinterp >New_Dynastar <ENTER>

This command line will merge a copy of Dynastar which is
stored in a file named “ds” with the PASCAL p-code interpreter,
pinterp. It saves them in a file named New_Dynastar, which would
be stored in the current data directory.

You should be aware of one problem with the MERGE utility.
When you use it to combine two or more files that contain execu-
table object code modules it changes the attributes of the new file
and makes it non-executable. This means you cannot load the file
and run it.

To fix the problem you mustusethe ATTR utility commandon
the new file and set the ‘e’ or “pe” options.

RENAME

Each file in an OS-9 directory must have a unique name. You
really can’t argue with that statement, but what happens if you give
one of your files the wrong name. Then later, you run a program
that can only use that name.

Ourworstcase scenario is definitely exaggerated, but it could
happen. Besides, we're all human. Aren’t we? And we do make
mistakes. Don’t we? Besides, when we do make a mistake naming
afile, the OS-9 RENAME utility command gives us a way to correct
it.

You can use the RENAME utility command to change the
name of any file. However, you cannot RENAME a file unless you
have permission to write to it.

Before you get any wild ideas, it is not possible to RENAME a
device or a directory. Don't even try.

Do try a command like this.

101

TEE

0S9: rename outstanding for_sure <ENTER>
When you run this command line, OS-9 will look for a file
named outstanding in your current data directory. If it finds it, it
will change the name of the file to for_sure.

You can also give RENAME a complete pathlist to the file you
want to rename. Like this:

0S9: rename /d1/speech soapbox <ENTER>

Notice that you did not need to give the complete pathlist to
the new name when you typed your command line.

Rename is similar to the UNIX MV utility command.

Every once in a while you are going to want to look at the dump
of abinary object code file, printa copy on your printer, transmit a
copy to a friend who has signed on to your computer through a
telephone line and modem, and make an insurance copy in a disk
file atthe sametime. Demanding, aren’t you? Sound impossible?
It's not with the TEE utility command.

Youcan use the TEE utility command tocopy anything on the
standard output path to any number of files or devices. TEE also
automatically sends the information it receives from the standard
input path to the standard output path.

Because the TEE utility is a filter,a command that receives all
ofitsinformation fromthe standard input path and writes all of its
output to the standard output path, it may be usedin a pipeline to
send a listing to your terminal, printer and a disk file — or any
number of destinations — all at the same time.

Here's how you do it.
0S9: list /d0/startup! tee /p/d1/BOOK/scratch <ENTER>

This command line uses the list command utility to read a file
named startup on device /d0. The exclamation point pipes the
output of the list command into the input of the TEE command
utility.

TEE then writes a copy of the startup file to your printer and a
file named “scratch” in a directory named “BOOK’” on a disk
mounted indevice/D1. It also writesa copytothe standard output
path which is most likely your Color Computer screen or a
terminal.

TEE canalso be used to get a message to people working at
other terminals on your computer. For example:

102

08S9: echo It’s time for the meeting ! tee /t1 /t2 /t3 <ENTER>

The OS-9 Tee differs from the UNIX Tee in that it does not use
the append option. The UNIX Tee will create afileand write to it if it
does not exist, write overitifit does exist, orappendtoitif youuse
the “-a” option. The OS-9 Tee will report an error if you attempt to
Tee to a file that already exists.

SUMMARY

0OS-9 lets you do a lot with files. In this chapter alone you have
been introduced to a dozen different commands used to build,
copy and delete them. In Chapter 12 we look at commands
designed to work with OS-9 directories.

103

CHAPTER 12

commands that work
with directories

Much ofthe power ofthe OS-9 operating system can be traced
to the fact that it uses a hierarchical file system. In English, this

means that you can organize your files according to context. You
can store oranges with oranges and apples with apples.
It's quite ajob to organize your disk files. Further, it takes a lot
of planning. If you have a hard disk with a seemingly endless
amount of storage you may be tempted to do it the easy way. Don’t! P

If youstart throwingfilesontoa hard disk in arandom fashion,
you will have a mess on your hands withintwo or three months. It
will take forever to straighten out the mess.

Here are some rules that should help you get your disks
organized right from the start.

1. The “root” directory on a device should only contain
otherdirectories. All files shouldbestored in directories.

2. Directories of a like type should be grouped in a mas-
ter directory. For example, a “USERS” directory should
hold a group of directories, one for each user.

3. Master directories are like “root” directories. They
should contain only directories. Files must go only in
subdirectories.

4. Files of a like type should be grouped together in a
directory.

105

CHD

5. When you find that a directory listing contains more
files than your screen can display, break that directory
up into several smaller directories.

You are going to need a pretty hefty set of tools to do all this
work. Forstarters, OS-9 gives youeight utility commands that you
can use to manipulate directories. In this chapter you'll be intro-
duced to:

chd dsave
chx makdir
deldir pwd
dir pxd

There's no question about the usefulness of the current data
directory concept. Which one of these command lines would you
rather type?

0S9: /d0/CMDS/list /D1/DALESOFT/ACCOUNTS/PAYABLE/January
08S9: list January

The first command line is very readable and very organized.
Unfortunately, it is also prone to typos. The second is a piece of
cake to use. Through the magic of the OS-9 CHD utility command,
you can use the second form most of the time.

Microware wrote the CHD command to give you a way to
change your working data directory. Since it is part of the OS-9
SHELL, you do not need to keep a copy stored in your /D0/CMDS
directory.

Most OS-9 utility commands and application programs auto-
matically look in your current data directory when they need to
find text files, programs and other data. They also usually store
data that they create in your current data directory.

CHX is to your working execution directory as CHD is to your
working data directories. In other words, it gives you a way to
change your working execution directory. It also is built into the
OS-9 Shell.

When OS-9islookingforacommandthatyouhavetypedina
Shell command line, it looks first at its module directory in
memory. If it finds a module with the right name, it links to it and
executes your command immediately.

But, what happens whenthereis nota module in memory that
has the correct name? You guessed it! OS-9 looks in your current
execution directory. OS-9 knows that all files it finds there will
contain code that it can load and run. It is up to you to make sure
that directory lives up to its expectations.

106

Drive CHD and CHX for yourself! Here’'s the format.
chd /d1/SAMPLE_PROGRAMS <ENTER>

This command line makes a directory named SAMPLE_PRO-
GRAMS which is stored in the root directory of a disk mounted in
device /D1 the current data directory.

Let’s try another one.
chd..<ENTER>

If you run this command line immediately after you run the
first,the rootdirectory of the disk mounted in the drive named /D1
will become your current data directory. Why? Because “/D1” is
the parentdirectory of the directory SAMPLE_PROGRAMS. And,

“ »

.” means “the parent of the present directory.”
Let’'s do two more.

chx../CMDS <ENTER>
chx /d1/BASIC <ENTER>

Get the idea? When you use the CHD and CHX utility com-
mands with OS-9’sanonymousdirectories,’ . and* .. you will find
itis very easy to crawl up and down your directory trees.

Here’s one more sequence for the road.

0S9: chd /d1/TOUR_GUIDE <ENTER>
0S9: dir <ENTER>

Directory of . 14:57:55

dict Chpt1 Chpt2 Chpt3
Chpt4d Chpt5 Chpt6 Print_Book

Let your fingers do the walking! Without the yellow pages we
would allbelost. Thesamegoes forthe OS-9 DIR utility command.
Ifwedidn’t have this simple program, we wouldn’t be able to find
the data files we stored in our directories last week.

And just think, if we couldn’t list the contents of our current
execution directory, we would never be able to decide which
program to run.

You can usethe DIR utility commandtodisplay a listingofthe
names of all files that are stored in any of your directories. DIR
sends these names to the standard output path which means that
they will appear on your terminal unless you redirect them to
another device.

107

DIR

DIR does havetwo options. If youtypean ‘x’onthe command
line, DIR will display a listing of your current execution directory.

You may also type an ‘e’ on the command line. If you do this,
you will receive acomplete descriptionof all filesin yourdirectory.
This extended directory also tells you the size of a file and its
address on your disk. And if you look closely, you can tell who
ownseach file and what type of security has been set up for the file.
If youreally needto keeptabsonyour employees, you can find out
the date and time when each file was last modified.

Howaboutatestdrive? First, here’'sthe command initssimp-
lest form.

0S9: dir <ENTER>

directory of . 20:34:08
print_Book chpt6 chpt8 chpt4 Chpt18
Chpt19 adtoch17 adtoch19

This command line lists the name of each file stored in your
current data directory. Now let's look at the current execution
directory.

0S9: dir x <ENTER>
directory of . 20:31:28
backup binex cmp dcheck
deldir sort dsave exbin

Now let's take a look at an extended listing of the same
directory.

0S9: dir x e <ENTER>

directory of . 20:25:20
Owner Last modified attributes sector bytecount name----

0 83/09/01 1106 —e-rewr 56 4C2 backup

0 83/09/01 1106 —e-rewr 5C 278 binex

0 83/09/01 1106 —e-rewr 60 1019 cmp

0 83/09/01 1106 —e-rewr 72 27C6 dcheck
etc. ..

In addition to the name, this format tells you who owns each
file, when it was last modified and which attributes it carries. It also
tells you how many bytes are in each file and the sector where each
file is stored.

Our last two examples show you that you can also ask OS-9
for a directory listing by giving it a complete pathlist.

0s9: dir /d1/BASIC_PROGRAMS <ENTER>

108

0S9: dir /d1/BASIC_LISTINGS e <ENTER>

DSAVE

If you had to typein the many command lines needed to copy
each file in one directory to another directory every day, you
would soon look for a way to retire early. The job is especially
complicated by the fact that you can only have one current data
directory. This means you must type the complete path list for one
of the command line parameters. If there are more than a half-
dozen files in a directory, the job could take forever.

Neverfear,0S-9has a solution foryou. Theansweris DSAVE,
a utility command that creates a procedure file that automatically
copies all of the files in one directory into another directory.

When you run DSAVE, it generates command lines that copy
files from your current data directory to a directory you name. It
sends these command lines to the standard output path. This
means that you can send its output to a procedure file in your
currentdatadirectory, or pipeitintoaShell and copy the directory
on-line.

If you save DSAVE'’s output in a procedure file, you can edit
thefile. This could comein handy whenyouonlywantto save part
of adirectory. On the other hand, it is handy to be able to save a
directory on-line using the second method. And, it’s fun to watch.
Name your poison.

Here’s another nice thing about DSAVE. If it finds a directory
name, it automatically generatesa MAKDIR command and changes
the working data directory for you. Because it has this feature,
DSAVE can also be used to copy all the files stored on a disk
mounted in one device to a disk mounted in another device.

You can use six options in a DSAVE command line. They are:
-b, -b=<filename>, -i, -L, -m, and -s.

“-b” lets you make a new system disk. Todo this, it copies your
OS9Boot file from the original disktothe new disk. It also links to
it.

“-b=<path>" also lets you create a new system disk. But, it
reads your new OS9Boot file from the file you name rather than
from the OS9Boot file on your old disk.

“-i” gives you a way to indent DSAVE’s output at each direc-
tory level. You can also use it to display a hierarchical listing of all
directories on a disk.

“-L" gives you a way to only copy the files stored at your
current directory level.

109

“-m” keeps DSAVE from automatically including MAKDIR
commands inyour procedure file. You will need to use this option
whenyoutrytocopyasetofdirectories from adiskto anotherdisk
that already has those directories.

And finally, “-s<integer>" gives you a way to tell 0S-9 how
much memory you want it to use when it copies your files. Note
here that the integer value you type next to the ‘s’ should be the
number of kilobytes of memory you need rather than the number
of pages.

Let's take atest drive through atypical DSAVE. Firstwe’ll need
to tell OS-9 which directory we want to copy. We do this by naming
it as the current data directory. Remember, we do this with the
CHD utility command.

0S9: chd /D0/SYS <ENTER>
Then, we must run DSAVE to create a procedure file.
0S9: dsave -s20 /D0 >Copylt <ENTER>

Now, we need to give OS-9 the name of a directory it can use
to store our files. We use the CHD utility command to do this also.

0S9: chd /D1/SYS <ENTER>

Finally, we can run the procedure file that DSAVE created for
us. Remember, we stored it in afile called Copylt. That file is stored
in the directory named /D0/SYS.

0S9: /D0/SYS/Copylt <ENTER>

Here's a listing of the procedure file Copylt which DSAVE
created for us.

t

tmode .1 -pause

load copy

Copy #20K /d0/SYS/password password
Copy #20K /d0/SYS/motd motd

Copy #20K /d0/SYS/mkcpy mkcpy
unlink copy

tmode .1 pause

As youcan see,ifyouaretryingto copy adirectory with 20 or
30 files — or an entire disk — DSAVE can save you a lot of work.

You can also use DSAVE interactively if you pipe its output
directly into a Shell. Here are two alternate forms you can use.
Give them a try when you have some time.

0OS9: dsave /d1 /d0 ! Shell <ENTER>

110

This command line will copy all of the files stored on a disk
mounted in device /d1 to a disk mounted in device /d0. It will
automatically create any directories it needs.

0S9: chd /d1/SPELL
0S9: dsave /d1 ! (-x chd /d1/NEW_SPELL)

This sequence will let you copy all of the files in a directory
named /d1/SPELL to another directory named NEW_SPELL on
the same device.

Whenyou getreadyto organize your disks, you'll find that you
need a way to create new directories. OS-9 gives you a utility
command to do the job.

To create a new directory on an OS-9 disk, youneedonly run
the MAKDIR utility command. Running MAKDIR is as simple as
giving OS-9 the name of the directory you want it to make.

MAKDIR does suffer from one “gotcha.” You cannot create a
directory in a directory or on a device unless you have permission
to write in the parent directory. Do youseenow why ittook usso
long to cover the ATTR utility command?

Here's anothertip. It'sagoodideato capitalize all the letters in
adirectory name. This makes it stand out from other filenames.

It's time to go to work. Try this:
0S9: makdir /d1/TOUR_GUIDE/ <ENTER>
This command line creates a directory named TOUR_GUIDE

in the root directory of device /D1. That was fun! Let's make
another.

0S9: makdir HOMEWORK <ENTER>

This command creates a directory named HOMEWORK in
your current data directory. What's that? You don’t know which
directory you're in. Stay tuned forPWD. You'll soon learn thatit'sa
good idea to find out where you are before you start making new
directories.

Here's a MAKDIR command line that uses an anonymous
parent directory.

0S9: makdir../MUSIC_LIBRARY <ENTER>
This command line uses OS-9's anonymous directories to
create the directory MUSIC_LIBRARY in the parent directory of
the currentdatadirectory. I'll bet you didn’t realize that you would

111

MAKDIR

PWD

be studying genealogy when you bought OS-9.

Here's some trivia that just may come in handy when you
graduate into the OS-9 hacker ranks. When OS-9 creates a new
directory file it contains only the names of the two anonymous
directories, ‘. and “..".

Here's another important point. When MAKDIR creates a
directoryitturnsonallofthe directory file’s attributes. This means
everyone running your computer has permission to use the new
directory.

MAKDIR is very similar to the UNIX Mkdir utility command.

It's very easy to get lost when you first start to work on a
computer that uses hierarchial directories. Because of this, OS-9
gives you twoutility commandsthat can show you your location in
the directory tree.

Let's review for a moment. Remember, the current data direc-
tory is where you are currently storing your data files. You can
read any file in this directory by giving OS-9 its filename. However,
when you want to read a file stored in any other directory, you
need to give OS-9 a complete pathlist.

The current executicn directory is similar. You should always
storethefilesthathold the object code of the programs that run on
your computer in this directory.

The PWD utility command gives you a way to display the
complete pathlistto yourcurrentdatadirectory. What does all this
mean? Stated simply, it means that OS-9 can tell you where you
are when you get lost in its file system.

The pathlist displayed by the PWD utility will take you all the
way back to the “root” directory of the disk mounted in the device
— disk drive — that holds your current data directory.

PXD does essentially the same thing for your current execu-
tion directory. It displays the complete pathlist for your current
execution directory — all the way back to the root directory of the
disk mounted in the device that holds your current execution
directory.

A few examples should make things clearer.

First, let's make sure we know where we are.

0S9:chd /D1/TOUR_GUIDE/CAPTIONS
Now, let’s ask OS-9 where we are.

112

0S9: pwd
/D1/TOUR_GUIDE/CAPTIONS

How about that! Now let's play around some more with those
tricky anonymous directories.

0S9:chd ..
That command line should have put us in a directory named
TOUR_GUIDE stored in the root directory of the disk mounted in
drive /d1. Let’'s check it out.

0S9: pwd
/D1/TOUR_GUIDE

0OS-9two!Humanstwo! We'reon aroll. Let’ssee if PXD cando
its job.

0S9: pxd
/D0/CMDS

Mission accomplished!

In this chapter you have been introduced to the tools you'll
need to effectively manage your OS-9 disk files. Have some fun
now! Create a few directories on a disk. Then, crawl up and down
your new directory tree for a while.

Joinusin Chapter 13 when yougettired. We'll be taking a look

attheutility commands you’ll need when yougetreadyto createa
new system disk or copy an old one.

113

SUMMARY

CHAPTER 13

commands used to create
or copy 0s-9 disks

After you learn how to manage OS-9 files and make your
Color Computer dance to your drum, you’ll still want more. That's
human nature.

Ifyou're a computer hacker, don’t worry. You're just like eve-
ryone else in the world. All you want to do is customize your
computer so that it will have your own personal signature.

Afteryoulearnthecommandsintroduced in this chapter,you
should be able to customize forever. In Chapter 16 we pursue this
avenue in great detail. For now, we hope you will enjoy your tour
of:

backup load
cobbler os9gen
dcheck save
format verify

BACKUP

In Chapter 11 we showed you how you can make a backup
copyofadiskfileusingthe OS-9 COPY utility command.COPY s
avery usefultool, butit would take you an eternity to individually
copy each and every file on a 5-inch disk drive — let alone an
8-inch drive or hard disk system.

We partially solved the problem in Chapter 12 when we
showed you how to use the OS-9 DSAVE utility command to
automatically COPY all the files in a directory or on a disk. You'll
need to use DSAVE when you want to copy a directory from one

115

type of disk to another — say from single-sided to double-sided, or
from 5-inch to 8-inch, for example.

However, when you only need to copy the files on one disk to
another disk of the same size and type, OS-9 gives you a handy
utility command that lets you do the job fast.

You should use the BACKUP utility command whenever you
need to copy all of the information on one disk to another disk of
the same format.

BACKUP copieseachsector on one disk onto the same sector
ontheotherdisk without stoppingtoseewhatwasin thesector. It
pays absolutely no attention to the file structure of your disk. It
doesn't care what is stored on your disk. That's why it is so fast.

Because BACKUP doesn’t check, it is up to you to make sure
that your source and destination disks are the same size and that
they have the same format. This means they must both have the
same number of tracks and the same number of sides. Also, if the
source disk has been formatted to be single density, the destina-
tion disk must also be single density.

When you run BACKUP, you usually give ittwo device names.
It will then copy everything from the first device to the second.
However, you can use a shorthand form ofthe command and skip
typing the device names. When you do this, BACKUP asks you if
you want to BACKUP device /D0 to device /D1. If you neglect to
typethesecond device name, BACKUP asksyouifyouwanttodo
a single disk BACKUP.

Whenyou are doing a single disk BACKUP, OS-9 will tell you
when to change your disks. It works just like the single disk copy
we described in Chapter 11.

Youcanusefouroptionsonyourcommandline whenyourun
BACKUP. They are: e, s, -c and #nK.

‘e’ givesyou a way tostopthe BACKUP if there is aread error

‘'s’instructs OS-9to tell you when to change your disks while
you are doing a single drive BACKUP.

“-v” tells OS-9 not to verify the new disk afterit copies all the
sectors from the original disk.

“#nK"” tells OS-9 to use ‘n’ thousand bytes of memory each
time it reads a block of data from the first disk and writes it to the

second. In general, the more memory you give BACKUP, the faster
it will run.

Let's take a spin.

116

backup /d1 /d3 <ENTER>

This command line lets you make an exact copy of the con-
tents of the disk mounted in device /D1 on a disk mounted in
device /D3.

Let’s try a single disk BACKUP next.
backup /d0 #20K <ENTER>

Ready to BACKUP from /D0 to /D0 2: Y
Ready DESTINATION, hit a key:
DISKNAME

is being scratched
OoK?”2Y
Ready SOURCE, hit a key:
Ready DESTINATION, hit a key:
Ready SOURCE, hit a key:

etc ... until tinally

Ready DESTINATION, hit a key:
Number of sectors copied: $0276
Verily pass

Number of sectors verified: $0276

The command line above let you make a single drive backup
ofthe disk mounted in device /D0. OS-9toldyou whento change
your disks. Changing disks like that gets old fast. But, it works
when you only have one drive or your second drive is out being
repaired.

Noticealso that OS-9 used 20Kof memory each timeitcopied

part of the disk. It did this because you used the OS-9 memory
modifier in your command line.

Here’s another form of the BACKUP command.

0S9: backup -v<ENTER>

This command line makes an exact copy of the disk mounted
indevice/D0onadisk mountedin device /D1. However when you
usethe“-v” option, OS-9 does not verify the datathatis written on
the new disk.

The “-v” option will speed up your BACKUPs, however you
willhave more peace of mind if you let OS-9verify your dataasiitis
copied. The choice is yours.

Here’s one more for the road:

0S9: backup <ENTER>
Ready to BACKUP from /d0 to /d1 2: y

117

COBBLER

MYDISK is being scratched
OK?y

Number of sectors copied: $04FA
Verify pass

Number of sectors verified: $04FA
0Ss9:

If you are going to use a disk to start up your system, it must
containaspecial filenamed OS9Boot. If you want the OS9Boot file
onyour new “boot” disk to be the same as the one you have been
using, you can use a shorthand command supplied with the OS-9
utility command set. This command is called COBBLER.

What do cobblers do? Or, should | ask what did cobblers do?
Yougotit, they make new “boots.” The authors of UNIX and OS-9
were all punsters.

Getting serious again, the OS9Boot file cannot be segmented.
This meansthat when you create this disk, there must be a block of
free space on the disk big enough to holdyourentire OS9Boot file.
For this reason, most people like to run COBBLER on a freshly
FORMATTED disk.

When you run the COBBLER utility command, it writes a new
OS9Boot file on the disk you name in your command line. This
new file will contain all of the modules that were loaded into
memory the last time you started OS-9.

COBBLER has a serious “gotcha” too. You can only use it on
an OS-9 Level | system. If you try to run COBBLER on a Level 1l
system, it will not work.

If youown an OS-9 Level |l basedcomputer, don’t worry. You
can use the 0OS9Gen command to do the same job.

Let's give it a try.
0S9: cobbler /D1 <ENTER>

This command line will write a copy of your last OS9Boot file
onthe disk youhave mounted in device /D1. It's as simple as that.

Here are a few notes about the Color Computer version of
COBBLER. It writes the OS-9 Kernal on the first 15 sectors of track
34. After it does this, it removes these sectors from the disk's
allocation map. If a file has already been stored on this track,
COBBLER willsend you an error message. The DOS commandin
the Disk Extended BASIC ROM loads track 34 into memory when
you start OS-9.

118

DCHECK

Sometimes, it is possible to confuse OS-9. For example, you
could accidentally remove a disk from a drive while a file is still
open.

Then later, after you have put another disk in the same drive,
you close the file. Unfortunately, OS-9 doesn’t have any way to
know that you switched disks. It will write the file in the same
location on the new disk, thinking that it is still writing on the first
disk.

If you're confused, how do you think OS-9 will feel when it
tries to read the disk structure on that second disk.

Besides, if you're a nervous Norvus, you probably always
need to be told that the data you have stored on your disks is OK.
0S-9 has a utility command that can do this for you.

Sometimes you will find that you cannot read a file. Yet,
everything appears to be OK. You've checked to see if the file is a
directory file; it isn’t. You've checked to see if it is an executable
file; it isn’t. What next?

Onething you can dois check thefile structure of your disk. If
your only experience up to now has been with Color Computer
Disk Extended BASIC, you're in for a treat. OS-9 gives you a
command that you can only wish you had with your Disk Extended
BASIC! Enter DCHECK.

DCHECK lets you verify the file structure of any disk mounted
in any drive on your system. Don’t be confused by the $0005A0
sector count. That's 1440 in decimal. |luse 40 Track, double-sided,
double-density drives.

If you are using a system with two drives, try entering:
DCHECK /d1
You should see a listing similar to this:

Volume - 'Rainbow_Articles’ on device /d1

$00B4 bytes in allocation map

1 sector per cluster

$0005A0 total sectors on media

Sector $000002 is start of root directory FD

$000A sectors used for id, allocation map and root directory
Building allocation map work file...

Checking allocation map file...

’Rainbow_Articles’ file structure is intact
4 directories
7 files

119

If you own the disk in device /D1 you can breathe a sigh of
relief. Let’'s consider some other uses for DSAVE.

Perhaps you've just developed a serious software package
designed to count the number of hairs on a balding head. The disk
that contains your program and it's necessary modules and data
files includes a number of files that are stored in several subdirec-
tories. Since your program is dedicated to counting, you want to
tell potential customers exactly how many files and directories are
on the disk.

Youneed aquick countof every file on the entire disk, but you
are afraid it would take days to trace all the directories. No prob-
lem; its time to let DCHECK go to work. DCHECK has an option
that can give you the exact information you need.

If your disk has as many subdirectories as the Tandy OS-9
System Disk, you will find an unknown number of files stored inan
unknown number of directories. Use the DCHECK command with
the -s option and you should see something like this:

DCHECK -s /d1

4 directories
59 files

Other DCHECK options that you may want to experiment with
include: -b, -p, -w=<filename or pathlist>, -m and -o.

“-b” lets you check the structure of a disk without listing the
unused clusters.

“-p” prints the complete pathlist to each clusterthat may have
a problem.

“-w=<filename>" tells OS-9 to store DSAVE's work files in a
file named filename. You can also give DSAVE a complete OS-9
pathlist with the -w option. For example, -w=/d0/SYS/scratch.

“-m” tells OS-9 to keep the allocation map work files that
DSAVE writes.

“-0" tells OS-9 to print all valid DCHECK options. For all
practical purposes it is a HELP command for DCHECK.

You should notethat DCHECK cannot process a diskette with
directories morethan 39levelsdeep. Who cares? How many times
are you going to wind up at level 39 with single-sided, 35 track
drives. If you ever find yourself that far out on a limb, you've
probably overorganized your directories.

120

FORMAT

Before you can store any programs or data on an OS-9 disk
you must initialize it. When OS-9 initializes a disk, it writes a
special sector format to every sector on the disk. Then, it verifies
each sector to make sure that the disk surface is OK. After it has
done all this, it writes an allocation map, root directory and identi-
fication sector on track zero.

This process sounds complicated. But, breathe a sigh of relief,
it is totally transparent to you because OS-9 gives you a handy
utility command to dothe job. All youneedtorememberis the fact
that you must FORMAT a disk before you try to use itin your OS-9
based computer.

Whenyou run FORMAT, OS-9cantell what type of disk drives
you own by reading a table of values in your device descriptor.
Whenyou are in the mood to do something different however, you
can also tell OS-9 how to FORMAT your disk by giving it informa-
tion in your command line.

The FORMAT utility command can recognize seven com-
mand line options. They are: s, d, 1, 2, ‘number’, :number:, and
“name”.

If you type an ‘s’ in your command line you are telling OS-9
that you want the disk being formatted to be single density. If you
type a‘'d, FORMAT will know that you want your new disk to be a
double-density disk.

Whenyoutypea‘1’ FORMAT takes it to mean that youwantto
format only one sideofthe disk. Likewise ifyoutypea‘2,’ FORMAT
will initialize both sides of a disk mounted in a double-sided drive.

You can also tell FORMAT how many tracks you want on the
disk, the sectorinterleave value and the name of yournew disk. To
do this, you type the decimal number of tracks you want between
single quotes, the sector interleave value you want between col-
ons and the name of the disk between double quotes.

Here’'s how you do it.
0S9: format /d0 2 D “RAINBOW” ‘77 <ENTER>

This command line tells FORMAT toinitialize the disk mounted
in device /DO. Further, ittells FORMAT that you want it to initialize
both sides of the disk and that you want the new disk to have a
double-density format.

You have also told FORMAT in your command line that you
want to name your new disk “RAINBOW” and that you want to
initialize 77 tracks. This means that device /D0 must be an ejght-
inch drive.

121

Play it again, Sam!
0S9: format /d1S 1 <ENTER>

This command line tells FORMAT that you want to end up with
a single-sided disk that has a single-density format.

Let's run FORMAT once more. This time we won't tell it what
we want in our command line. We'll let it read our device descrip-
tor. You willbe able to see the report FORMAT gives before it goes
to work.

0S9: format /d0 <ENTER>
FORMAT 1.1

TABLE OF FORMAT VARIABLES

Recording Format: MFM
Track density in TPI: 48
Number of Cylinders: 77
Sector Interleave Offset: 3
Disk type: 8
Sectors/Track on TRK 0, Side 0: 16
Sectors/Track: 28

Formatting on drive /d0

Y (yes), n (no), or q (quit) y
Ready: y

Disk Name: RAINBOW BOOK

You needtotype‘y’'—foryes —twice. Then, FORMAT will go
towork. It willinitialize the disk mounted in drive /d0 and then stop
and ask you for the name you want to give your new disk.

After you type the name of your new disk, you will see FOR-
MAT display eachtrack number. It prints a new numbereachtime
it verifies a track.

Finally, FORMAT tells you how many sectors it has formatted
by displaying a good sector count.

GOOD SECTOR COUNT = $860

If you are using OS-9 on the Color Computer, you will find that
FORMAT will only initialize single-sided, double-density disks.
You'llalso soon learn that this disk will have a non-standard format
that holds 18 sectors on each track. This means you can store
more information on a Color Computer OS-9 disk. A standard
double-density OS-9 disk only stores 16 sectors in each track.

The Color Computer FORMAT Command does let you format

122

a disk with 40 tracks if you own 40 track drives and have modified
the device descriptor that points to the drive you are using. We
show you how to do this in Chapter 16.

LOAD

When you type the name of an OS-9 program in a Shell
command line, OS-9 looks for a module with that name in its
module directory. If it finds it, it links to the module and runs the
program.

If OS-9 cannot find the name of your program in its module
directory, it looks for a file with the same name in your current
execution directory. If it finds it there, it loads that file into
memory, links to the module and runs your program.

This means that if a module is already in memory, OS-9 can
run your program sooner. You won't need to wait foritto load from
adisk. Togetamodulethatis stored in a disk fileinto memory you
must use the OS-9 LOAD utility command.

When you run the LOAD utility command, it reads each and
every modulethatis storedin the file younamed in your command
line and writes it into memory. After it has done this, it places the
name of each of those modules in the OS-9 module directory.

I can hear your question now. What happensifltryto LOAD a
program that is already in memory.

If you try to do this, LOAD will use the module that has the
highest revision number. This means that if you have an old ver-
sion ofaprogramin your OS9Boot file orin read only memory, you
can replace it by LOADing another module with the same name,
but a higher revision number.

Here's the syntax for a Shell command line that uses LOAD.
0S9: load DynaSpell <ENTER>

You must make several tradeoffs when you decide which
modules you want to LOAD in memory.

The alternative to using LOAD is to not load your utility com-
mand modules. Rather, you canjust call each utility from the Shell
command line and let OS-9load them each time.

Let's looks at the two different approaches. First:

0S9: load list
08S9: list file.one
0S9: list file.two
0S9: list file.three
0S9: unlink list

123

OSSGEN

And second:

0S9: list file.one
0S9: list file.two
08S9: list file.three

What are the tradeoffs? If you use the first approach you must
remember to use the UNLINK utility command after you are fin-
ished with the LIST utility. OnceyouLOAD amodule, it will remain
inmemory until you UNLINK it. If you forget to UNLINK amodule,
it may cause memory fragmentation.

If you use the second list of commands, OS-9 will need to go
out to your current execution directory and LOAD the file named
“LIST" each time you ask it to LIST a file. You will hear the drives
LOAD “LIST” three times.

With a short utility file like “LIST” it probably doesn’t make
much difference. But what if the file is long, like ASM or BASIC09?
You'll have to make your own decision.

Each disk that you plan to use when you start up your OS-9
computer must contain a file named OS9Boot. On a Level | system
you can use the COBBLER utility command to make a new “boot”
disk.

But, here's the catch. You cannot use the OS-9 COBBLER
command to make a new system disk ifyou change your OS9Boot
file. To change your OS9Boot file, you must use a special OS-9
utility command named OS9Gen. You must also always use
0S9Gen instead of COBBLER on all OS-9 Level Il computers.

The OS9Gen utility command creates a new “OS9Boot” file
eachtimeyourunit —eventhoughyoucanuseittomakean exact
copy of your present boot file.

0S9Gen’s main use however, is to create a new OS9Boot file
that contains new or additional modules. It can also be used to
make an OS9Boot file that has had modules taken out of it.

When you run OS9Gen, you must give it the the name of the
devicethat holds the disk you wanttoinstall the new OS9Boot file
on. You do this by including the device name in your command
line.

You must also tell OS9Gen where it can find the files that hold
the modules you hope toinstall in yournew OS9Boot file. Oh well,
they say a pictureis worth athousand words. Let's testthetheory.

0S9: os9gen /d1 <ENTER>

124

/d0/os9boot <ENTER>
<ESCAPE> or <CLEAR><BREAK>

These lines tell OS9Gen to install the file OS9Bcot that is
stored on the disk mounted in device /D0 on the disk mounted in
device /D1. It effectively does the same thing as the COBBLER
utility command. However, it gets the modules from the file
/D0/OS9Boot rather than from memory.

Here's another OS9Gen command sequence.

0S9: os9gen /d1 <ENTER>
/d0/os9boot <ENTER>
/d1/new_video_drivers <ENTER>
/d1/new_modem_drivers <ENTER>
<ESCAPE>

This sequence of commands makes a new disk with an
OS9Boot file that contains all of the modules stored in the file
OS9Boot on device /DO, plus two new modules. It gets the new
modules from files named new_video_drivers and new_modem_
drivers on device /D1.

Since OS9Gen reads its input from the standard input path,
youcanredirectitsinputtoafilethat containsalistof names. This
will help eliminate problems from typos. In fact, you'll want to run
0S9Gen this way when you need to put a long list of new files in
your new OS9Boot file. Several sample procedures in Chapter 16
use this approach.

Every once in a while you will need to use the OS-9 Debug
command to change a module while it is in memory. After you do
this a few times, you’ll probably want to keep a copy of the new
version in a disk file. It beats typing Debug commands. The OS-9
SAVE utility command is the tool you need to do the job.

The SAVE utility command gives you a way to save a copy of
the data in a memory module in a disk file. Before you run SAVE
you must make sure that the name of the module you are trying to
save is in the OS-9 module directory.

If you give SAVE a filename it will store your module in a file
withthat name in your currentdatadirectory. If youwant, you may
also give SAVE a complete OS-9 pathlist. SAVE always stores the
module in a file withthe first name thatfollows itin yourcommand
line.

You may save one or more modules in each file. You ask the

SAVE utility toput morethan one modulein afileby givingitalist
of names in your command line.

125

SAVE

VYERIFY

Go ahead, give it a try.
0S9: save /d0/CMDS/NewStrip NewSTrip <ENTER>
This command line SAVEs a copy of a module named New-
Strip in a file named NewStrip in the /DO/CMDS directory. Note
that the first name after the word SAVE in the command line is
always used as the pathlist to the file you are saving.

Here's another SAVE command line.

0S9: save /d0/CMDS/directions North East South West <ENTER>

This time our utility should SAVE four modules — North, East,
South and West. It should store them in a file named directionsin
the /DO/CMDS directory. As we said earlier, SAVE can store one
module, or any number of modules in one file.

Some utility commands act like good insurance policies. The
0OS-9 VERIFY utility falls into this category. It lets you know that
the data within a module stored in a disk file is still valid.

But, VERIFY also has another function. It gives you a way to
correct the CRC of a module that you have modified.

When you modify a module in memory and then SAVE it, the
file you create will contain amodule witha bad CRC. This happens
because the CRC bytes that were generated for the module in its
original form will not agree with the CRC of the modified module.

Yet, the original CRC bytes will be written to the disk file when
you save the modified module. The consequence comes later
when you try to LOAD the file containing the modified module.
Always remember this. When a module has abad CRC, OS-9 will
refuse to load it into memory.

You can use the OS-9 VERIFY utility command to insure that
the module header and CRC of all modules in a file are alright.
VERIFY reads data from the standard input path and sends its
output to the standard output path. This means that you must
usually redirectits input so that it comes from the file you need to
VERIFY. If there are any problems, VERIFY tells you by writing a
message on the standard error path.

You can use the update ‘u’ option when you want VERIFY to
send a new module with a corrected CRC to the standard output
path. However, VERIFY will only update a file like this if you ask it
to. When you do update a CRC with VERIFY you will need to
redirect the output of the VERIFY utility as well as the input.

Let's give it a try.

126

0S9: verify <Speller <ENTER>
Module’s header parity is correct.
Calculated CRC matches module’s.

Thiscommand has VERIFY check a file named Speller, which
is stored in your current data directory. Notice that you must
redirect the input of VERIFY to the file containing the module you
need to VERIFY.

Here’s how you update a modules CRC.
08S9: verify <Bad_file >Good_file u <ENTER>

Thistime we asked VERIFY to update the CRC ofthe modules
inafile named Bad_file. It saves the modules with a corrected CRC
in a file called Good_file. It is the ‘U’ option in the command line
that tells VERIFY to update the CRC bytes. Notice that we can
redirect both the input and output with VERIFY since itreads from
the standard input path and writes to the standard output path.

Whenwetypedthiscommandline, we assumed that both files
were stored in the current data directory. Did you notice that we
did not type a complete pathlist. Here’'s a reminder — a complete
pathlist always begins with a slash.

Here's another trick. Study this command line:

0S9: merge /d0/cmds/dir ! verify

Try it and see what happens. Do you know why it works?

In this chapter you have been introduced to a set of com-
mands that you will need when you start creating new system
disks. If we have awakened your appetite, stand by. In Chapter 16
we show you a number of procedure files where you can use these
utility commands.

Practice awhile. Then, join us in Chapter 14 foralook ata few

utility commands that will let you change a few of parts of OS-9in
memory.

127

SUMMARY

CHAPTER 14

commands that change
the system

Often, when you complaintoother people thatyou “don’tlike
this,” they just look at you and tell you to do something about it.
They make a good point.

How many times have you complained about your computer
because it's always doing something you don'’t like. Maybe it
beeps at you every time you make a mistake. Or, maybe it scrolls
your carefully written prose off the screen while you're still trying
to review it.

Those are just two of the problems you could fix if you knew
how to change your operating system. Here’s a philosophy to
pursue. If you can’t beat the system — at least use it to your
advantage.

This chapter is about using your operating system to your
advantage. Before we're through you'll meet eight more OS-9
utilities — commands that let you change the way your system
responds to your beck and call. You'll learn about:

link tmode
login tsmon
setime unlink
sleep xmode

g
= ST

LINK

Do you remember when we talked about OS-9 memory man-
agement back in Chapter 3. You had a skeptical look in your eye
when we told you that OS-9 always knows when you're finished
with a module?

129

The magic comes from a single byte in the OS-9 module
directory that holds a link count. That byte tells OS-9 how many
programs are using a module at any given time. It works like this.

Before a process — remember, we call a program that is
running a process — can use a module, it must link to it. When this
link is made, OS-9 increases the value of the link count by one.
When a program no longer needs the code in a module, OS-9
decreases the link count by one.

If you keep decreasing a counter, its value will eventually
become zero. When a link count reaches zero, OS-9 knows that
your process is finished with the module and releases it. 0S-9 also
removes the module’s name from its module directory and
releases any memory the module had been using. As soon as this
memory has been released, another program can use it.

If you type the name of a command that is not in the module
directory, OS-9loadsitand linkstoit —onetime. Thelink count is
set to one at this time.

When your program finishes its work, it releases the module
and the link count becomes zero. OS-9 takes it from there and the
module disappears from the module directory.

Now lets look at an example where you have LOADed a
module into memory in anticipation of using it. We'll assume that
no one else is using this module, so after you LOAD it the link
count shouldbesettoone. OS-9 always LINKs toa module when
you LOAD it. Effectively, it has incremented the link count to one
so that the module can stay in memory until it is needed.

What do you think happens when you run a program that uses
this module? Follow this closely. First, the program that is using
the module links to it. This means the link count is increased by
one. It should now have a value of two.

If everything proceeds properly your program will eventualily
finish withthe module. Whenit releases the module, the link count
will be decreased by one. It should be equal to one. Since it has not
reached zero, OS-9 leaves it in memory.

This allmeansthatifaprogramis using a module and it knows
that it is going to need it again soon, it can LINK to it. This insures
that the link count never reaches zero and the module will stay in
memory until its needed the next time.

Torecap, LINKlocks amoduleinto memory. It also increases
the link count of the module by one. When you use LINK on an
0OS-9 Level Il system, it moves (actually, the properterminology is
“maps”) the module you are LINKing into the memory area of the
process that called it.

130

Here's how you would LINK to a module named “Is.”
0S9: link Is <ENTER>

There are several things you should know when you use the
OS-9 LINK utility command. First, you must always be sure that
you UNLINK a program module after you use it. If you don't, you
run the risk of fragmenting your memory. To see why, try the
following command sequence:

0S9: load asm
0S9: load dir
0S9: dir

0S9: asm testfile
0S9: unlink asm
0S9: mdire

Look closely atthe memory map printed by the module direc-
tory utility. You'll notice that you have two rather large chunks of
memory free with a small module containing a few hundred bytes
sittinginthe middle. You may have 120 pages of memory free, but
itis splitinto two pieces only 50 pages long.

The BASIC09 module contains about 23,000 bytes of 6809
object code — that's more than 90 pages of memory. Since OS-9
Level | requires that all program modules be loaded into contigu-
ous memory, this means you couldn’t load BASIC09 into memory
if your memory was fragmented like this. To get rid of this frag-
mentation you must UNLINK the DIR utility.

What's the answer? Just be careful and make sure you
UNLINK a module when you are finished with it. For example:

0S9: load list
0S9: list file.one
0S9: list file.two
0S9: list flle.three
08S9: unlink list

We’'ll start this section by assuming that you are a bona-fide
user on your officecomputer. Youevenhaveanew password from
the boss.

Your LOGIN nameisthename OS-9usestoidentify you when
you sign on. A password ensures that no one else can use your
name to tamper with your files.

Review the short tutorial near the end of Chapter 4 to learn

more about this sign on procedure. OS-9 uses a utility command
named LOGIN when you sign on.

131

LOGIN

SETIME

If you are responsible for the security of data stored on the
computer system in your office or shop, you will love LOGIN. This
OS-9 utility command gives you a way to ensure that employees
can only work with their own files.

YoucanrunLOGIN fromyourterminal. In fact, we'll showyou
how in this section. However, this command is usually run auto-
matically by another OS-9 utility command, TSMON. TSMON,
0OS-9shorthand for timesharing monitor, makes multi-user opera-
tion possible on OS-9 computers.

Whenyou — or TSMON — first run LOGIN, it requests a user
name and a password. You answer its questions first. Then, it
checksyouranswersagainst the information stored ina password
file stored in the SYS directory on device /d0. You have three
chances to answer each question correctly. If you don't, LOGIN
aborts and sends you back to the OS-9 Shell.

Using information from your password file, LOGIN sets up
your user number, working execution directory and working data
directory. Itthenruns a program you have named in the password
file.

Here's some more shorthand. If you answer LOGIN’s prompt
for a user name with <ENTER> you will be logged on as user
number zero. This means you'll be the “superuser.” Do this until
you build your own secret file.

Go ahead, give LOGIN a try!
0S9: login <ENTER>
0S-9 Level 1 Timesharing System Version 1.2 84/09/01 21:25:28
User Name? michele <ENTER>
Password? tiffy <ENTER>>>

Process #04 logged 84/10/07 21:26:05
Hello Michele! Welcome to OS-9

The Color Computer appears to keep time when you run
0S-9. Unfortunately, it does not contain areal clock and must be
set each time you start OS-9. You mustsetthe time with the OS-9
SETIME utility command.

SETIME does more than setthe date and time however. It also
starts the OS-9 clock module. If the OS-9 “Clock” is not running
you cannot run more than one program at a time.

If youhave a hardware clock chip with battery backup in your
computer, you need only give the year when you run SETIME.

132

SETIME willgettherest of theinformationitneeds from the clock
chip.

You may type the date and time on your command line when
yourun SETIME. Or, youmaywaitforittoaskyou forthedateand
time.

Here's one command line that will work.

0S9: setime 84,10,09,2143 <ENTER>

Notice that we typed commas between the year, month, day
and time. You could just as easily have typed spaces.

0S9: setime 84 10 09 2151

Or, you could have run the date and time values together like
this.

08S9: setime 841011 214535 <ENTER>
If you use this command line, make sure that you put the
space between the day and the time. Here's the line to use if you
have a hardware clock.

0S9: setime 85 <ENTER>

If you are skeptical and don’t believe that the SETIME utility
command works, run the OS-9 DATE utility to check.

Computers need sleep, too! No, that’'s not the real reason
0S-9has aSLEEP command, but maybe we woke you up with that
one. You need to be awake to follow this!

SLEEP is another OS-9 utility command that does almost
exactly what its name implies. It puts a process to SLEEP. How
does OS-9 know how long to sleep? You tell it, by typing the
number of ticks you want it to sleep.

You'llneed to testthe SLEEP utility on your computer to find
outhow many ticks it takes to add uptoa second. On most OS-9
Level One computers, a tick is about 100 milliseconds long. Most
OS-9 Level Two computers use a 10 millisecond tick. One tick is
16.66 milliseconds long on the Color Computer.

So what do you do with SLEEP? First, its a good way to stall
and can cause quite a time delay. Or, you may want to use it to
make the computersharethe CPUwhenitisrunning several tasks
that are time intensive.

Here's the SLEEP command line.

133

SLEEP

TMODE

0S9: sleep 10 <ENTER>

Ifyoutypethiscommand ona Color Computerrunning OS-9,
the Shell willgo to sleep for 166.6 milliseconds — or .166 seconds.

You canalso getintotrouble with the SLEEP command if you
aren’t careful. If you run the SLEEP command and type a count of
zero, you will put your computer to SLEEP indefinitely. Unless
there is an error, you will need to re-boot OS-9 to use your
computer.

We promised earlier that you could change the system if you
didn’t likeit. Our next utility command will do just that. It lets you
change 15 of your terminal’s characteristics.

Microware wrote the TMODE command to give you a way to
change the way your terminal responds. It reads the characteris-
tics you type in a command line and installs them in the device
driver of the path you are changing.

TMODE makes its changes on the device that is connected to
the standard input path when it is run. It is used most often with
your terminal. On the Color Computer the standard input path is
usually connected to the keyboard.

You can make TMODE work on any path by typing a period.
followed by a path number on the command line. And, you can
change many things with TMODE. For example:

TO MAKE YOUR TERMINAL TYPE THIS
Print only UPPER case letters upc
Print both Upper and lowercase letters -upc

Erase a character with the Backspace key bsb
Backup but not erase a character -bsb

Backspace over a line when you delete it bsl
Send a line feed when you delete a line -bsl

Echo all characters input to screen echo
Do not echo characters -echo

Send a linefeed with each <RETURN> If

Send a <RETURN>, but no linefeed -If
Stop listing when screen is full pause
Scroll continuously -pause

Send <decimal number> nulls at the

134

end of each line null=<decimal number>

Set video page length to “number” lines pag=<decimal number>

Define backspace character bsp =<hexadecimal number>
Define backspace echo character bse =<hexadecimal number>
Define character that deletes a line del = <hexadecimal number>
Define the bell character bell =<hexadecimal number>
Define the end-of-file character eof = <hexadecimal number>
Define end-of-record character eor = <hexadecimal number>

Initialize ACIA status byte (Note: Since
the Color Computer does not use an ACIA,
it does not use this TMODE parameter) type =<hexadecimal number>

Define character that reprints a line reprint=<hexadecimal number>
Define character that returns last line dup= <hexadecimal number>
Define character used to pause scroll psc= <hexadecimal number>
Define OS-9 abort character abort= <hexadecimal number>
Define character used to stop program quit= <hexadecimal number>
Define X-ON character xon= <hexadecimal number>
Define X-OFF character xoff= <hexadecimal number>

Remember, if you are using a Color Computer, you cannot set
the TYPE parameter with TMODE.

It's time to go to work!
0S9: tmode -upc -If null=0 pause <ENTER>

This command line tells OS-9 that you want your terminal to
print both upper- and lowercase letters but you don’t want it to
echoalinefeed aftereach carriagereturn. Additionally, it lets OS-9
know not to send any nulls at the end of a line and that it must
pause after it fills each screen page.

0S9: tmode page=12 pause bsl bsp=8 <ENTER>

This command line tells OS-9 that the terminal screen is only
12 lines deep, that it should stop after each page is filled, that it
shoulddeletealinebybackspacingoveritandthatthebackspace
character on the terminal has a value of 8 — the standard ASCI|I
backspace.

If you plan to use TMODE to change the way your terminal
operates when you start OS-9, read the next paragraph carefully!

When you use TMODE within a procedure file you must tell it
which path you want to change. Since you are writing to the the
standard output when you start OS-9, you need to change the
device descriptor connected to path #1. To do this you must use
the following command line.

135

TSMON

UNLINK

0S9: tmode .1 -upc

Notethat you must usethe numeralone, not a lowercase letter
T following the period in your command line.

If yourun TMODE, but do nottell itwhat you wantto do, it will
tell you how the device attached to your standard input path is
configured.

We've already shown you how to sign on to an OS-9 system
from a remote terminal, so there’s not much more we can say
about the TSMON utility command. But, let's review.

TSMON mustbeoneofthe most patient programs inthe OS-9
system. Why? Because it doesn’t do anything but wait.

What does TSMON wait for? For you — or someone else
signing on a terminal connected to your computer — to type a
carriage return. When TSMON receives a carriage return it cele-
brates by bringing OS-9 to life on that terminal. Then it runs
LOGIN, the OS-9 utility command we described earlier in this
chapter.

If you are an authorized user and you haven’t dropped a bit
from your password, TSMON rewards you by assigning an OS-9
Shell to you for your own use.

When you have finished computing, you may log off your
terminal by sending an end-of-file character as the first character
ofacommandline. On most OS-9basedcomputers, you do this by
typing the <ESCAPE> key.

To log off from a remote terminal connected to a Color Com-
puter, you type the <CLEAR><<BREAK> combination.

Here's what your command line will look like.
0S9: tsmon /t1& <ENTER>

This command line starts your timesharing monitor on device
/T1.Since youusedtheampersand (&) at the end of the line, OS-9
will push TSMON into the background and return you tothe Shell.
Assoonasyouseethe“OS9:” promptyou may continue to oper-
ate your terminal.

Remember when we told you that you must never forget to
UNLINK a module after you complete a job? In this section we
present a command you can use to do the job.

136

UNLINK gives you a way to manually tell OS-9 that you are
through with a module. When you type UNLINK followed by a
module name on a Shell command line, OS-9 decreases the LINK
countofthe moduleby one. Ifthe count becomes zero, OS-9 will
remove the module from memory. This will make it available for
other users on your computer.

If someone else is using the module when you type the
UNLINK command, OS-9 will still decrease the LINK count of the
module by one when you UNLINK it. If you have previously
LOADed the module, or if you have LINKed to it, everything will
work as planned. The LINK count will not become zero, OS-9 will
leave the module in memory and the other person’s program will
continue to run.

But, be careful! What do you think would happen if you told
0S-9 to UNLINK a module that you have not LOADed — it just
happens to bein memory becausea friend is usingit. You guessed
it, the LINK count would go to zero, OS-9 would take the module
from its directory and release the memory it had been using. Your
friend’s program would crash. Friends like that are not in great
demand.

Here’'s something else you need to watch out for. When you
find yourself in the middle of a software development session
where you keep testing new versions of the same program, make
sure that you actually UNLINK the module after you test it —
before you LOAD a new version.

Why? Because sometimes when you run a series of tests on a
program, you wind up LINKing to a module several times. Since
UNLINK only decreases the link count by one each timeyou runiit,
you must manually repeat the UNLINK command several times
until you are sure you have removed the module from memory.

One waytodothisisto UNLINK a moduleoverandoveragain
until OS-9 reports that it cannot find the moduie. It may not be an
elegant method, butitworks. Besidesif youusethe magic <CON-
TROL><A>key, it's easy. Remember, the TCONTROL><A> key
lets you repeat your last command line with two keystrokes. The
other alternative is to buy one of the OS-9 utility packages that
contains an UNLOAD command. Several third party software
houses sell them.

Go ahead and give it a try!
0S9: unlink Spell Look <ENTER>
This command line will decrease the LINK count of modules
named Spell and Look by one. If either of the LINK counts

becomes zero, OS-9 willremove it from the module directory and
release the memory it had been using.

137

XMODE

Earlier in this chapter we showed you how to change the
characteristics of your terminal by using the TMODE command.
I'll bet you're wondering why there is another OS-9 utility com-
mand that does the same thing.

Actually, TMODE and XMODE are different. Changes made
by TMODE are temporary, while changes made by XMODE are
permanent. When you change a terminal’s characteristics with
TMODE your changes last only as long as the process that was
running when they were made. TMODE is usually called from a
Shell. When the Shell that was alive when you ran TMODE dies,
your terminal characteristics will return to the way they were.

Here's an example. Suppose you are writing a letter using the
DynaStar text editor. When you are about halfway through, you
decide that you need to change one of the TMODE parameters.

To do this you go back to DynaStar’s main menu and type ‘S’
for Shell. You enter your TMODE command and then go back to
your letter. Everything is working fine.

Later, after you have finished with your letter and exited
DynaStar, you LIST a file to your terminal. Something’s wrong!
The terminal isn’t doing what you told it to do with the TMODE
command.

What happened? When you exited DynaStar, you killed the
process named DS — the process that was alive when you
changed your terminal parameters. TMODE had made your
changes in a path descriptor, not in the device descriptor. This
means that when the process died, the path descriptors died. So
did your changes.

XMODE makes more permanent changes by writing new
information into the device descriptor you are changing. After you
make a change with XMODE, any process that uses that device
descriptor will be affected by your changes.

On the Color Computer a lot of programmers use XMODE to
make a permanent change to their Baud rate.

Try it once!
0S9: xmode /T1 <ENTER>
Since you didn’'t give XMODE any parameters in this com-
mand line, it should list the present characteristics of a terminal

named /T1.

Our next command line tells OS-9 to let the screen on a
terminal named /T2 scroll continuously.

138

0S9: xmode /T2 -pause <ENTER>

You should be aware that when we say XMODE makes a
permanent change, that change is only in effect until you turn off
your computer. To make it totally permanent you need to save the
modified device descriptor and run the OS9Gen command to
create a new OS9Boot file after you run XMODE. Use OS9Gen to
save the OS9Gen device descriptors with the new characteristics
in a new OS9Boot file. After you do this, your changes will be in
place every time you start your OS-9 computer.

In this chapter we've introduced you to a number of com-
mands that let you change many of the operating characteristics
of your computer. We complete our tour of the OS-9 utility com-
mand set in the next chapter with a look at a few Shell commands
that are resident in memory. Join us there.

139

SUMMARY

CHAPTER 15

shell commands that are
resident in memory

0OS-9 keeps a handful of Shell commands residentin memory
atall times. Stop for a moment and consider why you would need
these commands in memory, ready for use at a moment’s notice.

Suppose that you change the disks you have mounted in your
drives. If the command you need to change the current execution
directory was not already in memory waiting for you torun it, how
would you change your current execution directory? Well, that’s
why Microware leaves the CHD and CHX commands in memory.

In this chapter we’ll show you eight commands that OS-9
leaves in memory all the time. You can type these commands at the
beginning of a line or after any of the punctuation characters you
use to separate OS-9 commands on a single line.

These characters include the semicolon which lets you run
two utilities sequentially, the ampersand, which lets you run two
commands at the same time and the exclamation point, which lets
you build a “pipeline.” You'll meet:

ex t, -t
kill w
P, -p X, -X
setpr *

EX

Usually when you run a program, an OS-9 Shell starts your
program as a new process. The new process has the name you
typed on your command line. When you start a process, the Shell

141

KiLL

keeps some memory and gives some to the process. This happens
because the Shell starts your program as a process and then waits
aroundforittodie. If you run too many processes, you will run out
of memory.

EX can help you solve this problem. It starts a process without
a Shell. In the language of the OS-9 hacker, it “chains” rather than
“forks” to the new process. When OS-9 chains to a process, the
process that started that process disappears. This saves memory.
Plus, EX is always in memory, ready to run.

There's something else you should know about EX. Ifyou use
it in a command line with more than one OS-9 command, it must
be the last command on the line. Any commands that follow it on
the line will never be run. Give EX a try!

08S9: ex tsmon /t1 <RETURN>

SETPR

Youcanonlyusethe <CONTROL><E>key —the <BREAK>
key on the Color Computer — to stop a process thatisrunningin
the foreground. Occasionally, however, you will need to stop a
process that is running in the background. The OS-9 Shell keeps
the KILL command hangingaround in memory so you can getthe
job done.

When you type KILL followed by a process number on an
0S-9 command line, you effectively send an abort signal to the
process with that process ID number. Before you can do this
though, you must own that process. If you try to KILL a process
that belongs to someone else — OS-9 can tell because it has a
different user number — you will fail.

Here's how you use KILL.
0S9: kill 5 <RETURN>
Don’tforget, you need to know the numberof a process before
you can KILL it. If you forget a process number, you can see a list

of all processes that are running on your computer by running the
0S-9 PROCS utility command.

If you have an important program to run, you can speed it up
by giving it a higher priority than other programs running on your
computer. Whenyouincreasethe priority of a program, you give it
more CPU time.

You use the SETPR utility command to set the priority of a
process — a priority that may be as low as one or as high as 255.

142

Here’s how you use it.
0S9:setpr 4 200 <RETURN>

The sample command line gives process number four a high
priority.

We'll present the rest of the OS-9 resident Shell commandsin
atable.

IF YOU WANT THE SHELL TO: TYPE THIS COMMAND

Wait until a process dies w
Abort process after an error x (OS-9 does this by default)
Ignore all errors -X
Send “0OS9:” prompt p
Not send prompt -p

Copy all input lines to output
Not copy input to output -t (OS-9 comes this way)

Here's a trick you can try with the resident Shell command
named ‘t’. One OS-9 vendor uses it to print a banner from his
startup file.

0S9: echo

t
** DaleL. Puckett **
> DaleSoft *x
Dale City, VA 22193

-t

setime 84 ; * start clock

date,t

load load

load utils1 ; * load most-used utilities

Ps -P, ty 't, w, X, -X

SUMMARY

In this chapter, we have introduced you to a few OS-9 com-
mands that live in memory. It also completes our tour of the entire
utility command set.

But, don't quit now. Join us in Chapter 16 for a look at several
procedure files that use a number of the commands you have
learned in the last six chapters. It will save you a lot of work.

143

CHAPTER 16

put 0s-9 to work
with procedure files

Inthe lastsix chapters you have toured the entire OS-9 Utility
Command Set. Now, we’ll show you how you can combine these
utility commands in procedure files which will really put OS-9 to
work. You'll learn how you can use procedure files to:

Manage memory
Manage disk space
Manage system performance

Let'stacklethe memory problem first. Since letting your com-
puter do all the work for you is the name of the game, we'll write a
procedure file to do the job. We'll call our procedure trimboot.

In orderto show you what happens when you run a procedure
like trimboot, we will make snapshots of several directories and
files along the way.

First, let's set our goals and describe the job in English.

WHY CHANGE YOUR SYSTEM DISK

When you first use OS-9 you will most likely only take advan-
tage of a very small part of its potential. For example, we can
probably assume that:

1. You only own two disk drives
2. You don’t own an external terminal

145

3. You don't own a printer
4. You don't understand filters, so you won't use pipes

Now let's look at the module directory of a Color Computer
booted from a Radio Shack OS-9 system master disk.

Module Directory at 11:55:04

0S9 0S92 Init
Boot CCDisk DO

D1 D2 D3
CCIO TERM IOMan
RBF SCF SysGo
Clock RS232 T1
PRINTER P PipeMan
Piper Pipe Shell
Mdir

Since memory space in a Level | OS-9 system is limited, it
doesn’'t make sense to have modules in memory thatwewon'’t be
using. If we make the assumptions above, we should be able to
remove the following modules from our OS9Boot file.

D2 D3 RS232 T1
PRINTER P PipeMan Piper
Pipe

The procedure file listed should do the job. Usingcommands
in the OS-9 Utility Command Set, it instructs OS-9 to perform the
following steps.

PROCEDURE FILE TRIM_BOOT

t

tmode .1 -pause
makdir /d1/MODULES
chd /d1/modules
load save

save CCIO CCIO
save CCDIsk CCDisk
save IOMan IOMan
save SCF SCF

save RBF RBF

save SysGo SysGo
save Shell Shell

save Clock Clock
save TERM TERM
save DO DO

save D1 D1

unlink save

0S9gen /d1 </d1/bootlist
deldir /D1/modules
d

del /D1/bootlist

146

chd /d0

dsave -s20 /d0 >/d1/makecopy
chd /d1

/d1/makecopy

del /D1/makecopy

tmode .1 pause

-t

Before you use trim_boot you must do the following:

1. Make a BACKUP of your Radio Shack system master
disk by following the instructions we presented in
Chapter Seven.

2. FORMAT a new disk and mount it in drive /D1.

3. Use the BUILD utility command to create a file
named “bootlist” on the disk mounted in drive /D1.

4. Use the BUILD utility command to create a file named
“trim_boot” on the disk in drive /D1. Trim_boot
will contain the procedure file listed above.

(NOTE: If you prefer, you may use the OS-9 EDIT
utility command or a screen editor like DynaStar to
build the files bootlist and trim_boot.)

The file, bootlist, should look like this:

CCIO
CCDisk
IOMAN
SCF
RBF
SysGo
Shell
Clock
TERM
DO

D1

If you study thelist of flenames above, and the list of modules
that the procedure trim_boot saves in the directory /d1/MO-
DULES, you’ll notice that they are identical.

The files you name in your bootlist file must always be avail-
able on a mounted disk, or the procedure trim_boot will fail.
Further, OS-9 must be able to find them with the pathlist you use
when you create your bootlist file.

If you study the description of OS9Gen in the Radio Shack
0S-9 Commands manual, you will learn that it creates, and links
to, anew OS9Boot file. OS9Gen constructs the new OS9Boot file

147

from modules stored in a list of files it receives from the standard
input path. You may even type that list on your keyboard. How-
ever, it is much safer to let OS9Gen read the list from a previously
edited file.

After you have formatted your disk and installed the files
bootlistand trim_boot, you canlet your computer do the rest of the
work. To get it started, type:

0S9: /D1/trimboot

HOW TRIM_BOOT WORKS

We’'ll follow the action play by play, so you will understand
how procedure files work.

The procedure file trim_boot first uses the 't ' Shell command
to ask OS-9 to echo all input lines to the standard output path.
Then, it uses TMODE to tell the system not to pause when the
screen is full. Note here that you must always use the “.1” —
numeral one, not lowercase ‘L’ — with the TMODE command
when you use it within a procedure file.

Next, trim_boot tells OS-9 to create a directory named
MODULES on the disk in device /D1. Then, it changes the current
data directory to that directory. At this point, that directory is
empty.

Next, trim_boot loads the OS-9 SAVE utility command and
uses it to SAVE each module that you intend to place in your new
0S9BOOT file. For example:

SAVE CCIO CCIO

This line tells OS-9 to save a module named CCIO in a file
named CCIO in the current data directory. In the line before,
trim_boot had instructed OS-9 to set the current data directory to
/D1/MODULES, so the full pathlist to the new file is actually
/D1/MODULES/CCIO.

Remember, when you run the SAVE command, the first
parameter (name) is a pathlist to the file where you want to store
the module(s) named on the remainder of the line. The modules
that you are saving are all in memory. They were loaded from the
original OS9Boot file when you booted OS-9.

After OS-9 has saved each of the modules you will need in
your new OS9Boot file, trim_boot UNLINKs the SAVE utility com-
mand and runs the OS9Gen utility command, redirecting its input
from the file, /D1/bootlist.

After OS9Gen creates the new OS9Boot file on the disk in
device /D1 and linkstoit, trim_boot tells OS-9to delete everything

148

in the directory /D1/MODULES and the file /D1/bootlist. They are
no longer needed.

Let's look at a listing of the directory /D1/MODULES before it
was used by trim_boot.

directory of /D1/modules 12:34:24
CCIO CCDisk IOMAN SCF
RBF SysGo Shell Clock
TERM DO D1

Noticethatallofthose SAVEcommandlinesinthe procedure
file trim_boot really worked. Before we continue let's look at a
directory listing of the disk mounted in device /D1 after the line
that DELetes the file named /D1/bootlist.

directory of/D1 12:34:06
OS9Boot trim_boot

A file named OS9Boot has been stored on the disk in device
/D1,and OS-9 has linked to it. OS9Boot contains the modules that
were stored in each file listed in the file “bootlist.” If you need to
prove it to yourself, run the OS-9 IDENT utility command. Type:

08S9: Ident-s /d1/0S9Boot

After deleting the files in the directory /D1/MODULE, the
directory itself and the file “bootlist,” trim_boot tells OS-9 to
changethe currentdatadirectory to/DO. Thisdrive should contain
a backup of the original Radio Shack OS-9 system master disk.

Next, trim_boot tells OS-9 to run the DSAVE utility command
and save the results in a file called “makecopy” on the disk
mounted in device /D1. It uses the -s20 option to tell OS-9 to take
20K of memory when it makes each copy. Let’s list part of the
procedure file “makecopy” so we can see how DSAVE works.

t

tmode .1 -pause

load copy

Makdir CMDS

Chd CMDS

Copy #20K /d0/CMDS/asm asm

Copy #20K /d0/CMDS/backup backup

etc...

Copy #20K /d0/CMDS/verity verify
Copy #20K /d0/CMDS/xmode xmode
Chd ..

Makdir SYS

149

HOW DSAVE WORKS

Chd SYS

Copy #20K /d0/SYS/errmsg errmsg
Copy #20K /d0/SYS/password password
Copy #20K /d0/SYS/motd motd

Chd ..

Makdir DEFS

Chd DEFS

Copy #20K /d0/DEFS/OS9Defs OS9Defs
Copy #20K /d0/DEFS/RBFDefs RBFDefs
Copy #20K /dO/DEFS/SCFDefs SCFDefs
Copy #20K /d0/DEFS/SysType SysType
Chd ..

Copy #20K /d0/startup startup

unlink copy

tmode .1 pause

-t

After the DSAVE utility command creates the procedure file
makecopy, trimboot tells OS-9 to change the current data direc-
tory to /D1. It then tells OS-9 to run makecopy.

Inspection of makecopy shows that it contains every com-
mand needed to make a new copy of the system disk in drive /DO
on a freshly-formatted disk mounted in device /D1.

Allyou need to do now is sit and watch. OS-9 will make all the
directories it needs, and copy all the files DSAVE has told it to.

After OS-9 finishes running the procedure file makecopy,
trim_boot tells it to delete makecopy. It then uses TMODE to
restore the current standard output path to its original condition,
turnsofftheecho oflines input to tha SHELL and exits gracefully.
You now have a brand new disk containing a new OS9Boot file that
you designed.

Use these listings as examples when you design your own
procedure files. They work, and work well. Once you type the
name of a procedure file, OS-9 takes over and runs your computer
for you.

A TRICK THAT SAVES TIME

Now, we'll look at a procedure file that takes a different
approach.

Memory is not the only thing that is limited on the Color
Computer. Since the Radio Shack disk drives are limited to 35
tracks on a single side of the disk, mass storage is also at a
premium. And since these drives only step at 30 milliseconds per
track, operation is slow.

You can improve performance some if you put a few of the
utility commands that you use often in the OS9Boot file. This

150

means that OS9 won’t need to load them from your /DO/CMDS
directory beforeitrunsthem. It also means that you won't need to
store a copy of them in this directory.

In this example, we will assume that you want to use your
original OS9Boot file — or the one you just made following the
example above — plus five new modules. We will add: DIR, DIS-
PLAY, LIST, MDIR and MFREE.

Begin by using your present system disk to boot OS-9. Then,
use the BUILD utility command, or your favorite editor, to enterthe
following procedure in a file named /D0/make_new_sys.

Also, enter a list of the modules you want in your new
0OS9Boot file into a second file named /D0/new_boot_list.

After BUILDing make_new_sys and new_boot_list, run the
procedure make_new_sys by typing:

0S9: /D0/make_new_sys
THE PROCEDURE MAKE_NEW_SYS

t

tmode .1 -pause
format /d1 </term
makdir /d1/MODULES
chd /d1/modules

load save

save CCIO CCIO

save CCDISK CCDISK
save IOMAN IOMAN
save SCF SCF

save RBF RBF

save SysGo SysGo
save Shell Shell

save Clock Clock

save TERM TERM
save DO DO

save D1 D1

unlink save

os9gen /D1 </D0/new..boot_list
deldir /d1/modules

d

del /d0/new_boot_list
chd /d0

dsave -s20 /D0 >/D1/make—_copy
chd /d1
/d1/make_copy

del /d1/make_copy
tmode .1 pause

-t

151

THE FILE NEW_BOOT_LIST

SOMETHING TO THINK ABOUT

Here is a snapshot of the file new_boot_list. Notice that since
the modules, DIR, DISPLAY, LIST, MDIR and MFREE are already
in files, stored in the directory /DO/CMDS, you won’t need to save
them in /D1/MODULES. OS9Gen can load them from the direc-
tory /DO/CMDS. However, you must give OS9Gen the complete
pathlist to these files since your current data directory is set to
/D1/MODULES when you run OS9Gen.

ccio

ccdisk

ioman

sci

rbf

sysgo

shell

clock

term

do

d1

/d0/cmds/dir
/d0/cmds/display
/d0/cmds/list
/d0/cmds/mdir
/d0/cmds/mfree

Remember, each and every module that you wantinyour final
OS9Boot file mustbein afilethatis named in thelist of files named
in new_boot_list. Conversely, all modules that you do not wantin
your OS9Boot file must be excluded from the list.

The procedure file make_new._sys will place a new OS9Boot
file on the disk mounted in drive /d1. Each module storedin a file
listed in the file /d0/new_boot_list will be in the new OS9Boot.
0OS9Gen gets the list of names from this fileinstead of the terminal
because its input has been redirected from this file.

The cost of using this approach is billed in memory. The
payoffis in speed. Name your poison. But remember, once these
commands have been installed in the boot file, they are as good as
in ROM (Read Only Memory). You'll never need them in your
working execution directory again.

Infact, itmightbeagoodidea to createseveral different OS-9
system disks. One could bring the system alive with BASICO09 in
memory and many packed BASICO09 intermediate code modules
in the execution directory.

Another system disk could come alive with a word processor
like DynaStarin memory and a number of word counting and file

162

handling utilities in the execution directory. Go to it. An OS-9
system can be set up just about any way youwant it. Yourimagina-
tion is almost the only limit.

OTHER WAYS TO GET MORE ROOM ON A DISK

As you have probably discovered by now, it doesn’t take long
to fill up the 620 sectors available on a disk used with a Radio
Shack single-sided, double-density drive. Let’s look at another
way to tackle the problem.

Back when you could only buy single-sided, single-density
drives, you had to force yourself to get organized.

| usedtwo drives. The first drive was always the system drive.
The secondwas always the work drive. | used the firstdriveto hold
all command files. | used the second to hold all text files or other
data.

lusedonesystemdiskwhen | was programming. It contained
an editor, an assembler, a debugger, a BASIC interpreter and
several small utilities that | needed all the time. Programs like DIR
and LIST fall in this category.

| used another system disk for word processing. It held an
editor and a text formatter, plus several handy word processing
utilities. The most-used commands, like DIR and LIST, were
storedonthisdisk alongwith several small programs that counted
words, checked readability, etc.

On the work drive, | used different disks for different jobs. One
disk held only BASIC programs, another, magazine articles, and
yet another held college homework. It took a lot of disks, but |
almost always had enough room on the disk to get the job done.

Now, let’'s see how our philosophy can be applied to OS-90on
the Color Computer. Here’s one way to implement this strategy.

First, write protect your original system diskand use BACKUP
tocopyittoafreshly formatteddisk. Then,we’ll change your plain
vanilla OS-9 system disk to a BASIC09 system disk.

Start by printing a listing of the programs in the CMDS direc-
tory. Then, consider how often you would use each of them while
running BASICOS9.

When running BASICO09, it is highly unlikely that you will ever
need to use a utility command like EXBIN. Study the directory
listing and see how many of the utility commands you can get
along without.

The list will most likely include asm, backup, cmp, cobbler,
dcheck, debug, deldir, dsave, dump, edit, exbin, format, ident,

1563

os9gen, shell and quite a few more of your own choosing. Here's a
sample procedure file that will do the job. You'll have to make the
decision about which files to delete yourself.

t

tmode .1 -pause

chx /d0/cmds

chd /d0/cmds

load del

del asm backup cmp cobbler dcheck
del debug dsave dump edit format ident
del login pwd pxd os9gen shell tsmon
del save sleep setime verify xmode
unlink del

tmode .1 pause

-t

Remember, you may need copy, date, del, deldir, dir, display,
echo, free, link, list, load, mdir, mfree, rename, tmode and unlink,
so leave them on the disk.

Since you are creating a BASIC09 system disk and won't be
using it for any assembly language programming, you can also
delete the entire DEFS directory. This directory contains assembly
language code that defines all OS-9 system equates.

To delete this directory, type:
0S9: deldir DEFS
Answer the prompt that appears with a“‘d’ for delete, and in a
few minutes you will have a lot of free space on your BASIC09

system disk.

OTHER PROCEDURES THAT IMPROVE THE SYSTEM

If you own a40-track drive, you can modify the device descrip-
tor so that OS-9 will use the entire disk. Remember, as shipped,
Radio Shack OS-9 only works with 35-track drives.

Here's a way to modify the device descriptor module /DO so
that you can use the last five tracks of a 40-track drive. If you have
two 40-track drives installed, don't forget to change both drive
descriptors. The keyboard sequence looks like this.

0S9: debug <ENTER>
DB: 1d0
C10B 87
DB: . <SPACE> .+18
C123 23
DB: =28
C124 01
DB: q

154

After you change this byte in device descriptor /D0, OS9 will
know that you have 40 tracks available onthat device. The five new
tracks will be available on any disks you format after making this
change.

If you don’t want to make these changes with the DEBUG
utility commandby hand, youcanusethis procedure file. Putitina
file named /D0/To_40_Track.

1d0

. <SPACEBAR> .+18
=28

q

Use the BUILD utility command to create the file. Then run
your new procedure file by typing:

0S9: debug </D0/To_40_Track <ENTER>

This command line is fascinating to the OS-9 novice because
it shows how a program as complicated as DEBUG can be run
from a file of pre-edited instructions. It's amazing to watch.

Once you have changed the device descriptor, you may use
the OS9GEN commandto create a disk that will come on line with
40 track drives for /d0 and /d1. Remember, you must save the
modified device descriptor in a temporary file — you could call it
DO.new — and run the VERIFY utility command with the update
option turned on before you can put the new module in your
OS9Boot file.

This command line sequence will solve the problem and
update the CRC for you.

0S9: save d0.new d0
0S9: verify <d0.new >d0 u
0S9: 0S9Gen /D1 <filelist

All modules you want to include in your new OS9Boot file,

including the newly verified file dO, must be included in the filelist
file.

USING DRIVES WITH FASTER STEP RATES

Here's a way to let OS-9 take advantage of disk drives that can
step from track to track at a faster rate. It modifies CCDisk each
time you boot your system.

Start by putting this line into your file /d0/startup file.

debug </d0/changedisks

This command line will load the debugger from your system

155

directory and execute it. Instead of getting its instructions from
you on the keyboard, however, debug will get them from a file
named “changedisks” on device /d0.

Before creating the procedure file /d0/changedisks, study this
table.

TABLE OF CHANGES TO MODULE CCDISK
TO CREATE FASTER STEPPING RATE

OFFSET INTO MODULE OLD VALUE FOR 6 MS FOR 12 MS FOR 20 MS

01FE 13 10 1 12
0204-0205 2225 0888 0888 0888
02DD 43 40 41 42
02ES 03 00 01 02

CHANGES TO MODULE CCDISK THAT MAKE SECOND SIDE
OF DISK MOUNTED IN A DOUBLE SIDED DRIVE IN /DO
APPEAR TO BE DEVICE /D2

OFFSET INTO MODULE OLD VALUE NEWVALUE
0210 04 41
0211 40 42

Inthe procedure changedisks, we used a value that will create
a 20 millisecond stepping rate since most Radio Shack drives will
step at that speed. If you have fasterdrives, you can usethevalues
from the table above. The tables show you the value for stepping
rates of both 12 and six milliseconds.

THE PROCEDURE CHANGEDISKS

$load echo

$echo Changing step rate in CCDISK
$echo to 20 milliseconds.

| ccdisk

. <SPACE> .+1tfe

| ccdisk

. <SPACE> .+204

=08

=8B

| ccdisk

. <SPACE> .+2dd

=42

| ccdisk

. <SPACE> .+2¢9

=02

$echo Stepping rate has been changed
$unlink echo

q

You could go one step farther and let the debugger tell

156

CCDisk thatyourdrives canuse 40 tracksinstead of 35. To do that
you would just add the code we gave you earlier in this chapter to
the bottom of the file.

It would also also be possible to use separate debug com-
mand files to change the step rate and change the number of
tracks. Perhaps you could call them changestep and changetracks.

Then, you could run them both by putting the following
sequence in your startup file.

load debug

debug </d0/changestep
debug </d0/changetracks
unlink debug

If youonly need to make the changes part of the time, you can
save the sequence above in aseparate procedure file and then run
it from the OS-9 command line when you need to make the
changes.

Stretching the imagination a bit farther, you could use the
procedure above to make thesechanges permanent —ifyourun it
and then install your changes in a new OS9Boot file.

A procedure file like this would work.

chx /d0/cmds

load debug

debug </d0/changestep

debug </d0/changetracks

unlink debug

format /d1 </term

cobbler /d1

verify </d1/o0s9boot >/d1/boot.temp u
del /d1/0s9boot

copy /d1/boot.temp /d1/0s9boot
echo Disk in drive /d1 now has
echo a new CCDISK module that
echo will step at 20 milliseconds.
unlink echo

You will need to put a backup of your original Radio Shack
0OS-9 system master disk in drive /d0 before you run this proce-
dure. Also, the file /d0/changedisks must be present on the disk
mounted in drive /dO.

Do you remember how to add another line or two to this
procedure filesothatit will tell OS-9tocopyallthefilesonthedisk
in drive /d0 to the disk in /d1 after it changes the OS9Boot file? If
not, you should review the first part of this chapter for the answer.

157

SUMMARY

In this chapter you learned how to put OS-9 to work with
procedure files. If you turn your imagination loose, you will proba-
bly dream up hundreds of routine jobs that you can do with proce-
dure files.

In Chapter 17 we introduce you to filters. As soon as you
combine filters with pipes, you will begin torealize the real power
of multitasking.

158

PART IV: PROGRAMMING LANGUAGES

CHAPTER 17

just plain tools —
the toolbox philosophy

Since OS-9 is modeled after the UNIX operating system, it
seems like we would be way ahead in the game if we learned to
work like UNIX programmers.

Inthis chapter we’llintroduce you to five “toolkits.” AlImost all
ofthe utility commands in these packages work as filters in OS-9
pipelines. Before we're through, you’ll meet:

Microware’s OS-9 File Handler Toolbox
D. P. Johnson’s Hackers Kit
Computerware’s Textools
FHL's Utilix and UniCharger

Totuneinto the toolbox philosophy, we need to learn to think
ofindividual programs and utilitiesas tools. OS-9 lets us run more
than one process at a time. That's half the battle. Now all we need
to do is learn how to use several small tools together to do a big
job.

Let's begin with a few examples. When | first ran OS-9, | did
everything the hard way. | typed out every pathlist. | just didn't
trustthe machine. | was as non-productive as one could be. One of
my typical command lines might have looked like this:

0S9:/d0/cmds/copy #16K /d0/cmds/greatbigprogram /d1/cmds/greatbigprogram

Then, | learned about the default directories. Life was much
simpler:

0S9: chd /d0/cmds

159

0S9: copy #16K program /d1/cmds/program

That was much better. Butthen, every once in awhile | needed
to copy a directory that contained 30 or 40 files. | used the magic
key a lot. This saved about half the typing, but it was still a hassle.

Six months later, the OS-9 DSAVE utility command was
released. It helped a lot when you needed to copy an entire direc-
tory — or even an entire disk. The commands went something
like this:

0S9: chd /d1/directorytocopy

0S9: dsave /d1 >/d0/copy-_procedure_file
0S9: chd /d0

0S9: /d0/copy-procedure_file

When | ran this sequence, the machine did most ofthe typing.
DSAVE generatedafilewithaseries oflines that looked similarto
the first example above. At that time, | redirected them into a file
andthenranitasa procedure file. It was really slick to watchthe
computer do all the work by itself.

Then, the process became another order of magnitude easier
when OS-9 pipes were released about a year later. How would you
like to trade the four lines of typing above fortwo command lines
— and the first line really doesn’t count. Write these Shell Com-
mand lines on alabel and stick them on your keyboard. It will save
you hours.

08S-9: Chd /d1/directorytocopy
08S-9: dsave /d1! (-x chd /d0/directory_to_copy_to)

When you run this command line, you’ll be using your first
0S-9 “pipe.” The magic is in the exclamation point — the Shell
command line symbol for an OS-9 pipe. Here's what happens
when you run the command lines above.

The first line sets your current data directory to
/d1/directorytocopy. DSAVE always saves the current data direc-
tory.Inthesecondline, instead of redirecting DSAVE’s output, we
used a pipe, ‘!".

0S-9's Shell sends the output of DSAVE to the standard out-
put device, normally your terminal. But, since you typed the pipe
symbol after the DSAVE command, the Shell pipelined the data
straight into the command following the exclamation point, ‘!’

Inthesecond partofthecommandline, we tellthe Shellnotto
abort on an error and to change the current data directory to
/d0/directory_to_copy_to. Afterwedo this, the Shellaccepts each
line from DSAVE just as if it were coming from the keyboard.

Each time the Shell finds a carriage return, it executes the

160

commands on that line. When each of the lines generated by
DSAVE has been executed, your new directory will be ready to
use.

MICROWARE'’S FILE HANDLER TOOL BOX

Microware designed their toolbox so that most of the utilities
could be used as filters. They read data from the standard input
path, modify it in some manner, and then send it to the standard
output device. Additionally, several of the programs in the package
can take a list of filenames from your keyboard and execute the
same command with each of them.

The ideas for this package came from the book “Software
Tools” by Brian W. Kernighan and P. L. Plauger. All of the tools in
the package are popular with UNIX programmers. The Microware
Tool Box contains:

NAME FUNCTION

Code Displays the hexadecimal equivalent of a key
Count Counts characters, words, and lines
Compress Compresses a text file

D Prints directory listing

Expand Expands a compressed file

Grep Globally Finds Regular Expressions and Prints them
Pr Prints a file with formatting

Qsort Performs Quick in-memory sort

Space Spaces and/or indents a file

Split Splits a file into several files

Tr Transliterates a file’s contents

Xmode Examines or changes a device descriptor

Let's take a closer look at this utility package and show you
how you can use several of these small tools on the same
command line to do a big job.

When your directories get long — they really shouldn’t with
0OS-9's hierarchical directory system — it can be a real hassle to
look through a list of filenames in random order. Life would be
much easier if you could look at a sorted list. Try this command
line:

0S9:d! gsort!pr>/p
Now, imagine that you would like to know how many ‘C’
source files you have in a directory. Let's set up a pipe to count
them:
0S9:d *.c! count -I
This command line should do the job if your ' C’source files

are in your current data directory.

161

Imaginethat youare anauthorand that you have just finished
writinganother chapterinthe great American novel. You have full
confidence in your abilities as a writer, but you realize you have a
bad habit — you keep using tacky words.

Instead of writing “use,” you write “utilize” — almost every
time. If you want to make a quick check to make sure you don’tslip
up again, set up a pipe like this.

08S9: grep utilize Great.American.Novel.Chapt4 ! count -

In a few seconds you'll know how many times you used the
word utilize. With a full toolbox you can find out just about any-
thing you would ever want to know. In fact, you could even use
anothertool fromthis kit to change every occurrence of “utilize” to
“use.”

NOW WHAT, CONTINUED

Here's another example of what you can do when you under-
stand filters, pipes and apply a little imagination. This filter does a
real job.

How manytimes have you wanted a simple database manager
that would let you look up a phone number fast. Try this:

0S9: BUILD phone

? dick herring, 515-555-1212, des moines, ia
? lonnie falk, 502-228-4492, prospect, ky

? jim reed, 502-228-4492, prospect, ky

? <ENTER>

This sequence uses the BUILD utility to place three names
with the proper telephone number, city and state, in an OS-9 text
file.

Now, imagine that you answer the phone and someone asks
you for Lonnie’s number. The stack of little yellow telephone slips
on your desk is more than a foot high and someone has taken his
card from your card file. What can you do?

If you have a Color Computer running OS-9 sitting on your
desk and you have installed one of the UNIX like toolboxes, you
can type:

0OS9: grep Lonnie phone

In a second or two this line will appear on your screen:

lonnie falk, 502-228-4492, prospect, ky

Let's tryanother example. What can you do if you remember a
long lost friend in Kentucky from your ham radio days, but you

162

can't recall his name. Try this:
0S9: grep ky phone
Seconds later you'll see this message on your screen.

lonnie falk, 502-228-4492, prospect, ky
jim reed, 502-228-4492, prospect, ky

How’s that for an easy and cheap electronic phone book?

MICROWARE'S TOOL KIT HAS SEVERAL PLUSES

Three of the tools in the Microware File Handler Tool Box
deserve special mention.

First,lalmostalways usethe D’ utility instead ofthe standard
0S-9 DIR command now. This tool is powerful because of its
wildcards.

b* matches BCD, badfile, b, bird.c or b.temptfile
c matches file.c, BCD, or account.bak

*f matches file.f, testf, temp.f or photograf
*.src matches spell.src, lookup.src, LIST.SRC or any.src

Study the matchesin the table above and you'll see the power
of this utility. Of course, since it outputs one filename on each line,
itis very easy to usein a pipeline.

Twotoolsfrom the File Handlers Tool Box that really shine are
GREP and TR. They are powerful because they recognize a set of
regular expressions. Included in the set are operators that match
any ASCllcharacter, closure, a character class, an EOL character
and a special escape symbol. All the standard escape symbols are
recognized, including:

\t = tab character

\n = new line character
\b = backspace character
\f = form feed character

GREP and TR will both recognize any ASCII numeric value
between 1 and 127 that immediately follows a backslash. For
example, \32 will cause GREP and TR to recognize an ASCII
space.

TR is an especially useful tool because it gives you a way to go
through a file and convert any string of characters to any other
string. To get a feel for its power and shorthand, study this com-
mand line.

163

0S9: TR [a-z] [A-Z] myfile
0S9: TR [A-Z] [a-z] myfile

If you run these two command lines you will see that they are
equivalent to the UNIX commands UPPER and LOWER. In the first
command line TR converts any character between ‘a’and ‘z’ to
the corresponding capital letter.

The second command does just the opposite. Since TR rec-

ognizes the regular expressions we mentioned earlier, it can be
used to change just about anything to just about anything else.

FILTERS, FILTERS AND MORE FILTERS

Several other Third Party Software developers have followed
in Microware’ssteps and released Unix-like filter kits. We'll look at
D. P. Johnson’s tool kits next.

FILTER KIT #1
NAME FUNCTION
LS lists filenames, one per line
BUF buffers input until eof, then outputs it
CP copies files from working directory
DL deletes a list of files from current directory
FLIST lists files to standard output
INFO displays owner, creation date, attributes of a file
MV moves files from directory to directory without copying
PAG formats data into pages
REMOVE removes a file from data directory without deleting
SELL changes owner number of named files
SETAT resets file attributes of list of files
SORT sorts list of up to 300 names
HACKER KIT #1
DISINP disassembles code from standard input
FILTER strips all occurrences of a character from standard input

MEMLIST lists memory in unformatted binary

MEMLOAD loads files into memory at absolute address

REWRITE writes standard input into a file at specific offset
SPLIT splits data from input file into one or more output files

Johnson’s utilities use only the standard input and standard
output paths. This means theirinputand outputcan be redirected
tovarious devicesor files, or pipedto other processes. Utilities like
these are meant to be used together.

For example, LS outputs a list containing the names of files
stored in the current data directory, one on a line. This lets other
commands in the tool kit perform an operation on a list of files.

DL, deletes all files named. PAG paginates alisting of the data
contained in the files named. SORT sorts any data it receives from

164

the files named on the standard input path. These command lines
should make things clear:

0Ss9:ls

0S9:Is ! dl

0S9: Is! pag

0S9: Is! sort! pag

The first command line lists the names of files stored in your
current data directory, one name per line. The second deletes all
files in your current data directory. The third, prints a paginated
listing of filenames from your current data directory. And, the last
command line printsa sorted and paginated listing of the namesiin
that directory.

Normally, you wouldn’t want to delete all the files in a direc-
tory. But,imagine for aminute that you need to delete all files that
begin with the letter ‘a’. To do this, you could use the following
command:

0S9:Isa*!di

If you only want to delete files that begin with the letter *a’and
have filenames three characters long, you could type:

0S9:Is a??!dl

Or, perhaps you need a list of the names of all directory files in
a directory. This command line should do the job:

0S9: Is -A.d.

Here, LS checkstoseethatthedirectory attribute is on before
it lists the filename. LS also lets you check for attributes that are
off, the owners number, and the date. There is even an option that
lets you list the names of files that were created before a certain
date.

Johnson’s CP utility lets you copy files with the filenames
listed on the standard input path from the current datadirectory to
a file with the same name on the destination path.

0S9: chd /d1/SOURCE
0S9: Is -nby83m7 ! cp /d0/SOURCE.BAK

These command lines will copy files in the directory
/d1/SOURCE into the directory /d0/SOURCE.BAK if they were
not modified before July of 1983.

Here are a few more examples of D. P. Johnson'’s utilities in
action. Using INFO is similar torunning the standard OS-9 utility
command DIR with an ‘e’ option. It displays the owner number,
the creation date, modification date and time, attributes, byte-

165

count and the name of a file. Here are two forms of its use:

0S9: info Is cp dI
0S9:Is -e ! info

MV is a handy utility because it lets you move a file from one
directory to another without actually copying the file. Needless to
say, this is much faster. The two directories must be on the same
physical device however.

Suppose you have all the commands you want in a directory,
but they are in random order. You would rather have them filed in
sorted order. Try this sequence of commands:

0S9: makdir /d0O/CMDS.SORTED
0S9: chd /d0/cmds
0S9: Is ! sort ! mv -l /d0/cmds.sorted

D. P. Johnson's HACKER’s KIT #1 does not contain filters.
However, it gives you a set of tools that are very useful to anyone
working with assembly language programming or customizing
their operating system.

The disassembler that comes in the package does not receive
its input from a file as do most disassemblers. Rather, it reads its
input directly from OS-9’s standard input path. This opens up
many possibilities, and you can use it to disassemble code that is
stored in memory or disk files.

Johnson’s FILTER KIT #2, which was released just as this
book went to press, contains another 10 OS-9 utilities. The most
notable is MACGEN — short for Macro Generator. It builds a
module out of a list of Shell commands that can be run with one
command. The function it performs is similar to that of a Shell
procedure file. However, itis faster, and allows you to use parame-
ter substitution in your command line.

Utilities in this release include: Append, Confirm, FF,
ForcError, MacGen, NulDevice, Rep, Size, Touch and UnlLoad.
The Repcommand lets you repeat programs designed for use with
a single parameter by feeding it a list of names on the standard
input path.

UTILIX — UNIX-LIKE TOOLS FROM FHL

UTILIX brings UNIX-like utilities to OS-9. It is a set of tools
from the Frank Hogg Laboratory in Syracuse, NY.

UTILIX
CAT concatenates text files and lists to standard output
CODE prints decimal and hex values of character typed
CRYPT encrypts files

166

DIFF compares two filesline by line and reports differences
DISPLAY displays the ascii, decimal, hex or octal value typed
GREP searches file for expression

LOWER/UPPER converts all characters to lowercase or uppercase
PACK/UNPACK compresses and decompresses text files

PR lists and formats files to standard output
SORT sorts a file with up to 10 keys

TAIL prints the last part of a file

TIME times the execution of a command

wC counts characters, lines and words

Most of the tools in this kit use standard UNIX command
names andtheircommand line syntaxis for the most partidentical
to the corresponding UNIX command.

CAT for example, lists text files to the standard output path.
Thisdoesn’tsound like much, but let’s see what happens when we
apply a little creativity.

The most obvious use for CAT is to merge a number of files
into one.

08S9: cat file1 file2 file3 >blgfile

The redirection operator at the left end of the command line
directs thestandard output pathinto a file named bigfile located in
your current data directory.

Now, let's show you a trick with CAT. What do you think this
command line will do?

0S9: cat >workfile
Believe it or not, it emulates the standard OS-9 BUILD utility.

The CODE utility prints both the decimal and hexadecimal
value of the character you type. If you like to keep secrets, you'll
find CRYPT an interesting tool. You supply the secret code word
and it ciphers the file.

0S9: crypt mycode <myfile >secretfile
0S9: crypt mycode <secretflle

The first command line ciphers the text in a file named
“myfile” locatedin the current data directory, using the code word,
“mycode.” The second, deciphers that file and lists the original
English language text on your terminal.

DIFF isoneoftheslickestprogramsinthe UTILIX package. It
comparestwofilesonaline bylinebasis. If lines are missing from
afile,ittellsyouwhich lines are missingandwhere they should be
located. If a file has extra lines, it finds them for you. If the two files
have different lines in them, DIFF will tell you which lines to
replace to eliminate the differences.

167

UNIX LOOK OUT!

The DISPLAY utility is similar to the standard OS-9 Display
utility, except it is more versatile. The original DISPLAY will only
display hex values to the standard output path. This DISPLAY will
take ascii text, as well as decimal, hexadecimal and octal input,
and display the result on your screen or printer.

The UTILIXSORT utility is notlimited to datain memory, so it
cansortfairly largefiles. Youarelimited onlyby the amount of disk
space you have available for work files.

TAILis very handy and also versatile. It lets you look at the last
fewbytes, characters or lines of afile. You tell it how many charac-
ters or lines you want to see. For example:

0S9: tail -101 myfile
08S9: tail -10c myfile

The first command line will let you see the last 10 lines of
“myfile.” The second will only let you see the last 10 characters.

TIME is a useful program when you are benchmarking a
procedure. Want to know how long it takes to list a file? Ask your
trusty Color Computer.

0S9: time list testfile
And finally, WC is a utility that lets you count the number of

characters, lines or words in a file. If you don’t tell WC what you
want to count, it will count all three.

One programmer came up with a creative strategy recently
that should help everyone using OS-9. Brian Lantz examined each
OS-9toolkit. Then, he studied the standard UNIX utilities.

Lantz didn't want to waste his time reinventing the wheel, so
he struck out to break new ground. His goal was to fill the gap
between OS-9 and UNIX.

His first package contains 17 UNIX-like utilities and is being
marketed by Computerware in Encinitas, CA.

COMPUTERWARE’S TEXTOOLS

CAT — concatenates standard input to standard output
FGREP — a fast, GREP-like pattern matching utility

LOWER — converts all uppercase letters to lowercase

LS — displays list of file names in a directory

PACK — compresses multiple spaces in a file

PR — formats output to standard output path

QSORT — sorts data in memory and sends to standard output
RPL — replaces “key1” from standard input to “key2”

168

SPLIT — splits source file into separate files

TAIL — displays last 10 lines of files

TIME — tells how long it takes to execute a command

TR — translates characters for standard input

UNIQ — removes duplicate lines from standard input
UNPACK— opposite of PACK

UPPER — converts all lowercase letters to uppercase

UPS — repeats command using filenames from standard input
WC — counts characters, words, and lines in standard input

The Computerware package is probably the best investment
for Color Computer users. Thereason? Each utility inthe Textools
set is written entirely in 6809 assembly language. This means the
code is short and runs fast.

The Textools set is almost identical in function to the FHL
UTILIX package. However, the tools in UTILIX were written in C
and are five to 10 times longer. In an OS-9 Level | system where
memory is at a premium, Textools appear to be the best choice.

Wherever possible, the Textools obey all UNIX conventions.
This means they use the same command line and work just like
their UNIX counterpart. Likethe Microware GREP and TR utilities,
most of the Textools recognize meta characters and regular
expressions.

In fact, Lantz has added a utility called META that pre-
processes meta characters for commands that don'’t recognize
them. For example, study these command lines:

0S9: meta del test* <ENTER>
0S9: meta list /d0/LISTINGS/e* <ENTER>

UNICHARGER MAKES OS-9 BEHAVE LIKE UNIX

In addition to the Textools utility set, Lantz has written a
package calledthe “OS-9 UniCharger” for Frank Hogg Laboratory.
This package, designed to make OS-9 behave more like UNIX, is
divided into two sections.

UniCharger SYSTEM COMMANDS

AT set up a procedure file AT a future date and time
ATRUN run a procedure file set up by AT

CHECKMAIL tells you when you have mail

CONFERENCE stdin goes to selected users online

CRON run tasks periodically

FINGER find information about users on line
LOGIN similar to Microware’s, checks for mail
MAIL Send and receive mail from user to user
MAN Online system manual

PASSWD change and encrypt login password

SuU Switch Users without LOGIN

WALL write file to all users on system

169

WHO tells who is on system and where they are logged on
WRITE write message to a specific user
PROFILE an information file used by many of these programs

UniCharger UTILITY COMMANDS

CAL print a calendar of any year

CHMOD changes attributes of file or directory
CHOWN changes ownership of a file

COMM compares two files

CRYPT encrypt standard input to standard output
DU check usage of disk space

ERROR list error message

EXPAND add input from stdin to a “pathname”
HEAD print first few lines of file

META expands meta characters from comand line
MV movesfile

TEE UNIX equivalent, overwrites existing file
TTY Display name of standard input device
UDATE display current date and time, UNIX format
VIS display non printing characters as \nnn

The “System” utilities above must beinstalled onyoursystem.
They change a few of the OS-9 system files and add features that
make OS-9 look very much like UNIX.

For example, the structure of the OS-9 password file is
changed so that a PASSWD utility command can be used to let
individual users change their passwords. On standard OS-9 sys-
tems, only the superuser can change the password file. The new
LOGIN command checks for MAIL.

The UniCharger utility commands stand alone. They are all
patterned after their UNIX counterparts and were written to bring
more UNIX-like functions to OS-9 programmers.

HIRES GIVES YOU A 51 COLUMN SCREEN

In addition to the filter kits we have highlighted so far, we need
to mention several other software packages that greatly enhance
OS-9 operation on the Color Computer. The first deals with the
problem of the 32 column screen.

HiRes lets you write high-resolution textonan OS-9 graphics
screen. This means your programs can use the 24 by 51 screen of
uppercase or lowercase characters, with descenders, and draw
graphic elements on the same screen at the same time.

0S-9, asshipped by Tandy, uses a device driver called CCIO.
It gives you graphics capabilities and lets you reserve memory for
agraphics screen — like the PMODE 3 or PMODE 4 statements in
Extended Color BASIC — and gives you a way to set or erase
points, or draw lines and circles on the screen.

170

When you run HiRes, both the text and graphics are output
through /TERM — OS-9’s standard output device. HiRes draws the
text characters using information from a separate “Character Set”
module which can be modified by the user.

The information in the character set module includes the
shape and size of each character, the spacing of each row and
column, and the default graphics modeand color set used to draw
the characters. The standard character set draws each character
in a seven-dot by four-dot matrix with one-dot descenders. The
descenders make the display easy to read. Characters appear
black on a buff background.

All of the capabilities in the original OS-9 display module still
exist whileyou are running HiRes. Thisis possible because HiRes
passes the graphics commands on to CCIO. Other commands let
you return to the 32 by 16 alpha display and de-allocate the gra-
phics memory used by HiRes. You may want to do this when you
arerunning long programs that require a lot of memory. The Radio
Shack C compiler is one program where you must do this.

HiRes uses all of the CCIO commands that control the text
cursor, including direct cursor addressing, clear screen, erase line
and so on.

HiRes gives you additional features that enhance the text
display. A good example of this is the “Erase from cursor position
toend ofline” function, which isanimportant factor in the efficient
operation of many programs like the DynaStar high-speed screen
editor. Other pluses include the multiple display windows and
smooth scrolling.

The character drawing subroutines seemtobe as fastasthose
in any of the popular implementations of Flex for the Color Com-
puter, despite the penalties associated with allowing user-
adjustable character sets. The speed of HiRes is equivalent to that
of a standard terminal running at approximately 3200 Baud.

HiRes isvery easy to run. You either load the character set and
the module “HiRes,” or insure that they are in your current execu-
tion directory. Then, you type “HiRes”, and when the “0S9:”
prompt appears next, it will be on your high-resolution screen.

HiRes is available from Frank Hogg Laboratory, 770 James
Street, Syracuse, NY 13203.

WORD-PAK: A HARDWARE ALTERNATIVE TO HIRES SCREENS

There are several problems associated with the software
approach to high resolution screens. The first concerns memory.
It takes about 6,000 bytes of screen memory alone to generate a
high resolution screen. After you add another two or three thou-

171

sand bytes to store the high resolution program, you'll find you
have consumed quite abit of memory. Infact, you'llhavealotless
memory left for your own programs. Indeed, memory is a very
precious commodity on an OS-9 Level | computer.

Speed is another consideration. The software approach uses
a lot of your 6809's time — time that could be better used to run
your own programs.

The hardware approach to high resolution screens is the
answer. When you plug a cartridge containing a video generator
chip and its own software into the Color Computer’s expansion
port you accomplish two things. You free up a lot of memory and
youspeed up your computer. You willalso findthat youareableto
work with industry standard software designedto work on screens
that sport 24 or 25 rows containing 80 columns.

Word-Pak, a video cartridge that plugs into your expansion
port, gives you the complete ASCII character set, a programmable
screen and a programmable cursor. The OS-9 device descriptor
and device driver that works with it let you home the cursor, erase
tothe end of the line and erase to the end of the screen. They also
let you position the cursor anywhere on the screen by sending a
pair of X-Y coordinates.

Another model, the Word-Pak Il, adds more advanced fea-
tures. With this cartridge you getanimproved character set thatis
very easy to read, smooth scrolling and a software video switch
that lets you switch your monitor between the Color Computer’s
video output and its own. This means your programs can switch
back and forth between graphics and text. Word-Pak and Word-
Pak Il were designed and built by PBJ, Inc.

SDISK — A GOOD ALTERNATIVE TO CCDisk

0S-9 is a perfect example of the effectiveness of modular
programming. You can add new hardware — additional disk
drives, graphics display boards or mechanical plotters, forexample
— with ease. A package named SDISK from D. P. Johnson brings
this ability to the Color Computer.

Suppose that you own 35-track, single-sided, single-density
disk drives,and arestruggling along doing the best you can. Then,
your day comes and you win the Readers Digest Sweepstakes. Or,
maybe you hit the daily double at the track. In any case, you'll
probably wantto move up to double-sided, double-density drives
right away.

On a standard OS-9 system, you need only plug in the new
drive and change one or two bytes in an OS-9 device descriptor.
Thechange is so simple that you can make it quickly with the OS-9
debug utility.

172

Not so, on the Color Computer version of OS-9. Radio Shack
hard-coded the description of their standard 35-track, single-
sided, double-density drive into the device driver, CCDISK,
instead of having the driver read the description from the device
descriptor.

SDISK is a direct replacement for CCDisk. Once you have
installed it, you can read and write 35, 40 or 80 track drives. Better
yet, those drives can be single or double density, as well as single
or double sided.

SDISK also lets you program the disk drive step rate. And, it
gives you a way to read a disk written by a standard OS-9 system
like the GIMIX. It also lets you write a disk that can be read by the
larger systems.

ADDITIONAL UTILITIES FROM COMPUTERWARE

In addition to the Textools filter package discussed earlierin
this chapter, Computerware of Encinitas, Calif., markets another
utility package that gives you six programs designed to make OS-9
easier to run. It also includes a new device driver, named CCDisk,
which replaces the original CCDISK module.

DirCopy is a very versatile backup program thatletsyou copy
one disk to another, even if the formats are different. It lets you
confirm the copying of each file, lets you copy sub-directories,
pre-sorts the directory you are copying into alphabetical order
and updates the file owner's number.

Patch lets you inspect and modify any file on a disk. It comes
in handy when you need to change the value in a device descriptor
in your OS9Boot file, but don't want to rebuild it. You can also use
it to change the default data area requested by a program. It has a
special Validate feature that lets you restore the header checksum
and module CRC when you change afile. This is essential because
ifamodules CRC s incorrect, OS-9 refuses to load and execute it.

FileLook displays the size, type, revision number and name of
allmodulesin adisk file. It's output looks a lot ikean MDIR E, and
the information it reports is very close to that provided by the
Radio Shack Ident utility.

Compare lets you compare a module in memory to a module
stored in a disk file. When there are differences, it will report the
address of the differences.

Dmode lets you modify the device descriptors used to identify
your disk drives. This makes it easy to access the additional fea-
tures available on many drives. You can set the descriptors up for
one- or two-sideddrives, 6, 12,20 or 30 millisecond stepping rates,
up to 40 tracks per side. You must be using Computerware’s new
CCDisk to take advantages of these changes, however.

173

ANOTHER FILTER TIP

EMULATING A TYPEWRITER

NewFmt is a replacement for the original Color Computer
OS-9 format command that lets you create new single- or double-
sided disks containing one to 40 tracks. This utility is interactive,
and will let you determine the format of the disk before you exe-
cute the command.

CCDisk comes with a file that contains a script of Shell com-
mands that automatically generateanew system disk for you. This
new disk system disk will include Computerware’'s CCDisk in the
OS9Boot file. Since Computerware gives you the command file,
installation is a snap.

Every once in a while, | found myself getting behind in my
writing. While | was preparing this book, | also found myself speak-
ing at several RAINBOWfests around the country. Each time |
got behind schedule, | would play catch up by writing on my
Radio Shack Model 100 while riding in the carpool. What a tool!

However, when | uploaded thefilefromthe Model 100, | found
thatitleftthe TAB character, 9 decimal, in the file. At other times,
I've neededto remove the line feeds. Forexample, | often duplicate
the output of a DIR command in this book by redirecting the
outputofthe commandtoafile. Later, | merge the fileinto the text.
Unfortunately, the DIR command sends out aline feed, 10 decimal
or $0A hexadecimal, after the header.

These extra characters drive the cursor control logic in my
screen editor bonkers. In fact, they may do the same to your
screen editor. The solution is to use a TR or transliterate utility.
One is available from the Users Group Software Committee,
another is in the OS-9 File Handlers Toolbox from Microware
described earlier in this chapter. Here's the command line | used.

08S9: list KISS.temp !tr \9!tr \10 >KISS.December

Here’s another creative application for OS-9 that may save
you some time. On my desk at work, | use a Wang PC. | didn’t buy
it. Frankly, | would rather use DynaStar or Stylo on OS-9 than the
archaic, memory hungry, menu-driven-monster word processing
softwareinthe PC. However,the PC hasone function | like alot —
it can emulate a typewriter.

Needless to say, you must select your way through two or
three menus before you can use it, butthe typewriter emulation on
the PC really comes in handy for short notes and memos. There
are many times when you just don’t want to bother to go through
three menus to createanew word processing document. | decided
I would emulate this function on my GIMIX and Color Computer.

174

If you are running OS-9, you almost don’t need to create it.
The capability is built in. However, | want to take you through an
experiment that will bring you greater understanding of a few
0S-9 commands and a BASICO09 procedure that shows how you
can use more than one technique to get a job done.

First, let's try to build a typewriter emulation with the copy
command. It should work, shouldn’t it? Try the command line
below.Typethe ESCAPEcharacter — CLEARBREAK — on Color
Computer OS-9 when you get ready to quit.

0S9: copy /term /p

What happened? I'll bet it worked great on the first line you
typed. You were probably even wearing a broad smile until you
typed the second line. It was printed right on top of the first line,
wasn't it?

This happens because the copy command does not use the
built-in OS-9 line editing functions. It uses character input and
output routines rather than line input and output. As any hacker
will tell you, the OS-9 Copy utility uses the I$Read and I$Write
system calls rather than the I$ReadLn and I$WritIn calls.

Let's try something else. Type:
08S9: list /term >/p

It worked, didn't it? Congratulations! You now own a new
pseudo typewriter — a typewriter that will let you edit or correct
each line before you print it. Experiment a little and you will find
that the CLEAR A, CLEAR X and other OS-9 special line edit keys
all work while you are using this command line.

| was disappointed. | wanted to write a BASIC09 program to
do the job. Actually, | wrote it anyway. It may just show you how
certain high level language functions relate to functions at the
Operating System level. Meet tw.

PROCEDURE tw
(* Emulate a typewriter *)

DIM printer:INTEGER
DIM in:STRING[80]

OPEN #printer,”/p”:WRITE

LOOP
ON ERROR GOTO 10
INPUT “Enter: “,in
WRITE #printer,in
ENDLOOP

175

10 CLOSE #printer
END

Whenyoutest“tw” you'llsee that it works just likethe second
0S-9command line above. But, since you now have your typewri-
ter emulation written in a high level language you can add some
fancy features of your own. Here’s a HINT. Study the procedure
CONVERT on Page 75 of The Official BASIC09 Tour Guide from
Microware. Have fun!

0S-9 SOFTWARE VENDORS

Here is where you can order the tools discussed in this
chapter.

0S-9 TEXTOOLS AND OTHER UTILITIES

Computerware

Box 668

Encinitas, CA 92024
Phone: 619-436-3512

WORK-PAK

PBJ, Inc.

P.O.Box 813

North Bergen, NJ 07047
Phone: 201-330-1898

UTILIX

Frank Hogg Laboratory

The Regency Tower, Suite 215
770 James Street

Syracuse, NY 13203

Phone: 315-474-7856

FILTER KIT AND HACKERS KITS

D. P. Johnson

7655 S.W. Cedarcrest Street
Portland, OR 97223

Phone: 503-244-8152

FILE HANDLER TOOL BOX

Microware Systems Corporation
5835 Grand Avenue

Des Moines, IA 50312

Phone: 515-244-1929

176

In this chapter you have been introduced to the concept of
combining short programs — tools, so to speak — in OS-9 pipe-
lines to do big jobs. Along the way, we've given you a description
of most of the OS-9 toolkits available when this book went to press.

InChapter 18 you'll meet the OS-9 assembler, ASM. And, we'll
throw in a few programs for good measure.

177

SUMMARY

CHAPTER 18

using the 0s-9 assembler

A complete tutorial on assembly language programming
would take an entire book. In this chapter, we’ll introduce you to
ASM, the OS-9 assembler. In Part VI, we'll list several useful
assembly language programs, including a complete device
driver.

Here, we'll concentrate on a few of the programming tech-
niques you'll need in all of your assembly language programs. By
the end of this chapter you will learn how to:

Use the ASM command line @
Create an OS-9 Module

Define character equates
Define strings

Print those strings =
Get characters from the keyboard -

Output a character l,,;@:
Output a Carriage Return and Linefeed T

Output a decimal number

Use the OS-9 Get Status and Put Status calls
Run another OS-9 process from your program
Check for an End of File condition

Open a file for writing

Read a the decision tree from a menu

ASM — AN OVERVIEW

ASM is a 6809 assembler designed to work with OS-9. It lets
you use specialmnemonics to make OS-9 system calls. It automat-
ically creates OS-9 module headers. And, it encourages you to
develop position independent, reentrant code.

179

This table shows you what you need to do to develop an
assembly language program.

1. Create a source code file using EDIT or your own editor.
2. Run ASM to translate the source code to 6809 object code.
3. If ASM reports errors, correct the source code with EDIT.
4. Use DEBUG to test the program.

5. If you find bugs, correct the source code with EDIT.

6. Document your work, so your program will be easy to use.

THE ASM COMMAND LINE

ASM, like other OS-9 commands, isrun fromthe Shell. Here is
the syntax of the ASM command line.

0S9: asm my_first_program [options] [#memsize] [>listing]

Everything in enclosed in brackets is optional. An actual
command line looks like this.

0S9: asm my_first_ program | s #16K >/p

This line will assemble the source code contained in a file
named my_first_program in your current data directory. It will
create a listing and symbol table and send them to your printer.
Since you have used the OS-9 memory modifier option, ASM will
use 16K of data memory.

Because ofthe length of the OS9Defs file that you mustusein
most of your assembly language programs, you will find that you
need at least 12K to 16K to assemble a program. If you do not use
the OS-9 memory modifier on the command line, ASM will usually
report an error.

Since the OS-9 assembler is controlled by command line
options, let’s look at a few more.

0S9: asm #20K myflle o | >/p

The ‘I’ option on the command line causes the assembler to
list the combined source and generate object code. The redirec-
tion operator, ‘>’ causes the output to go to the printer. The ‘0’
option causes the assembler to send its output to a file named
“myfile” in your current execution directory. This is usually
/d0/CMDS. The printing can be turned on and off within the
source code by using the opt statement, “opt I” or “opt -I".

You can redirect the object file by using the format shown in
the command line below.

0S9: asm #20K myfile | o=/d1/mydirectory/myfile.obj
ASM will list the combined source and object code with the

180

propertabbing, automatically. You must, however, make sure that
eachlinethatis supposed tostart with alabel starts in column one,
and each line that starts with an operator starts in column two. If
you want to make the entire line a remark, you may type an
asterisk, ‘ *’, in column 1. Here's a useful 6809 subroutine shown

before and after assembly.

SUBROUTINE SOURCE CODE BEFORE ASSEMBLY

* A routine to classify a character

* returns with carry set if character
is not alphanumeric.

*

classcmpa#’zcharisin a-reg
bhi notasc
cmpa #’a
bhs ascii
cmpa #Z

bhl notasc

cmpa #A
bhs ascii
cmpa#9

bhi notasc

cmpa #0
bhs ascii

notasc orcc #1 set carry

rts

ascii andcc #$FE clear carry

rts

ALISTING OF THE SAME SUBROUTINE AFTER ASSEMBLY

Microware 0S-9

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019

0000
0002
0004
0006
0008
000A
000c
000E
0010
0012
0014
0016
0018
001A
001B
001D

Assembler 2.1

* A routine to classify a character
* returns with carry set if character
* is not alphanumeric,

817A
2214
8161
2413
815A
220cC
8141
240B
8139
2204
8130
2403
1Aa01
39

1CFE
39

class

notasc

ascii

cmpa #'z char is in a-reg
bhi notasc

cmpa #'a

bhs ascii

cmpa #'%2

bhi notasc

cmpa #'A

bhs ascii

cmpa #'9

bhi notasc

cmpa #'0

bhs ascii

orcc #1 set carry
rts

andcc #SFE clear carry
rts

181

00000 error(s)

00000 warning(s)

$001E 00030 program bytes generated
$0000 00000 data bytes allocated
$0061 00097 bytes used for symbols

ASSEMBLY LANGUAGE TIPS

Inthefollowing tutorial we'lllook at small pieces of code taken
from a working program. We begin with the assumption that you
have looked over the Radio Shack manuals and know a little about
assembly language programming. We'll start at the beginning ofa
program.

CREATING A MODULE

NAM SPELL

IFP1

USE /DO/DEFS/o0s9defs
USE /DO/DEFS/li.equates
ENDC

TTL An OS-9 Utility to find misspelled words
prog MOD SPLEND,SPLNAM,PRGRM+0OBJCT,REENT+1,SPELL,SPLMEM
USE DPEQUATES

prvbuf rmb 32
Ikbuf rmb 32

rmb 255 room for stack
SPLMEM equ.

SPLNAMFCS/SPELL/
COMF1 FCS’/d0/spell/common.dat’
mywf1l fcs ’'/d0/spel/ MYWORDS.DAT’
DICTF1 FCS’/D0/spell/DICTIONARY.DAT’
shistr fcs ’shell’
dirstr fcc /dir/

fcb $0D

USE SPELL.STRINGS
EMOD

SPLEND EQU *
The first line of code tells ASM the name of the program.
Several lines later, the pseudo operator, TTL, gives it some more

information to print in the header of your listing.

Make special note of the lines that say, IFP1 ... ENDC. The
IFP1 conditional tells ASMtousethelines betweenitand ENDC if

182

the assembler is on its first pass. That's why you never see the
“USE /DO/DEFS/OS9DEFS” line in listings that are output from
ASM. The program listing is generated during ASM’s second pass.

The label PROG is used to tell ASM how to set up the module
header in your program. If you read a lot of OS-9 programs, you'll
notice that the MOD line in all programs is almost the same.
Usually, only the name of the program you are reading has been
changed.

SPLEND causes ASM to form a double byte equal to the
length of the program. It will contain the offset from the beginning
of the module to the label SPLEND. Remember, all OS-9 program
modules must start at zero.

SPLNAM forms two bytes that hold the offset from the start of
the module to the label, SPLNAM. The single bytes that follow tell
OS-9 what type of program you are assembling.

Atthe end of the MOD line you'll see the labels SPELL and
SPLMEM. SPELL causes ASMto forma double byte that contains
the offset from the beginning of the module to the start of the
executable code in the module, and SPLMEM tells OS-9 how
much data memory area the program needs.

Noticethat with OS-9 you always use two memory areas when
you run a program. One area contains the program, the other
contains the data used by the program. Nothing in the program
area can change during execution. That is why all variables must
be defined and stored inthe dataarea. Theline, “"SPLMEM EQU .”
tells ASM that this is the end of the data area.

Lines containing the USE pseudo operator tell ASM to insert
the code contained in the file named. USE follows all standard
OS-9rules. If you give afilename only, ASM assumes it is stored in
your current datadirectory. If you give afull pathlist, ASM will use
that pathlist to find the file.

Since the DEFS files are stored in the DEFS directory on
device /D0, you usually need to use a full path list to reach them.
The other USE lines in the code above are filenames only; there-
fore, they are read from the current data directory. The source
code this sample was taken from contains more than adozen USE
files.

Notice the line containing the EMOD operator. It tells OS-9

that this is the end of the program and automatically generates the
modules CRC and inserts it at this point in the object code.

DEFINING CHARACTER EQUATES

*

* CHARACTER EQUATES
183

*

BELL EQU 7

LF EQU $A

CR EQU $D
SPACE EQU $20
NULL EQU 0

The code above is stored in a USE file called DPEQUATES. It
holds the names and locations of all constants and variables used
by the program. This means that you can edit a single constant
once in this file, instead of changing it throughout the program.

After it reads the lines above, ASM substitutes the decimal
numberseven eachtimeitseestheword BELL. Likewise, it will put
the value 10 decimal or A hexadecimal in the object code every
time it sees the word LF.

DEFINING STRINGS

RDICST FDB RDILEN
FCB CR,LF,LF

FCC /DynaSpell is looking for your words in its dictionary./
RDILEN EQU *-RDICST-2

This code segment shows you how to define a string using
ASM.Thelabel RDICST marksthe beginning ofastring definition.

When this string is printed you will seethe words between the
slashes on your terminal. The programming trick occurs at the
label RDILEN. ASM computes the length of your string by sub-
tracting the location of the beginning of the string and two addi-
tional bytes from its present location. It then stores this length at
the label RDICST with the FDB pseudo operator.

PRINTING THOSE STRINGS

How do we print these strings? Follow this code:

pstr pshs a,y
Idy ,x++
Ida opath
0s9 I$writ
Ibcs error
puls a,y,pc

This subroutine does the job. We call it with the 6809's X-
register pointing to the location of the length of the string, RDICST
in this case. Before we begin, we push the value of the A-register
and Y-register on to the stack. We're going to need them later.

Then, we load the Y-register with the length of the string. We

do this by loading it with the value stored at an offset of zero from
the X-register. Remember, we entered this routine with the X-

184

register pointing to — or containing —thelocationof RDICST, the
string length.

Notice that when we loaded the length of the string in the
Y-register we also incremented the X-register twice. This means
that it is now pointing to the first character in our string. In our
sample string, that character is a carriage return.

Finally, weloadthe OS-9 pathnumberintothe A-registerand
use an OS-9 system call, “OS9 I$WRIT. If there is an error, OS-9
willreturnwiththe carry setand we branchto a routine called error
thattakes care of the problem. Otherwise, wereturn by pulling the
tworegisterssaved earlier,and the program counter, off the stack.
We just sent the string to the output path number contained in
opath.

GETTING CHARACTERS FROM STANDARD INPUT PATH

How do you get a single character from the standard input
path — keyboard? How do you print a single character, a carriage
returnandlinefeed, orevenadecimal number? Study theroutines
that follow.

keyin pshs x,y,b,u
bsr getchr
pshsa
puls x,y,b,a,u,pc

getchr pshs x,y
leax chrbuf,u
Ida #0 standard input only
Idy #1
0s9 I$read
Ibcs error
Ida chrbuf

puls x,y,pc

To get a character, we call the routine keyin. It saves the 6809
registers on the stack, gets a character from the routine getchr,
puts thatcharacteron the stack and returns by pulling all registers
andthe program counter. Our characterisinthe6809’s A-register
when we return from keyin.

Getchrshows howtosetup aroutineto getasingle character
from the standard input path. Remember, most of the time you can
equate standard input path with keyboard. When you use the OS9
ISREAD call, the X-register must pointto a buffer in memory where
you are going to store the character. The A-register must contain
the path number.

Remember, the standard input path is always zero. Notice,

also, that ISREAD leaves the character it returns stored at chrbuf.
This means we must load it into the A-register before we return.

185

Check the description of the ISREAD call in the blue Radio
Shack OS-9 Technical Information Manual. You'll see that you can
read any number of characters at a time. The number is put in the

Y-register before the call. Getchr is a special case that only reads
one character.

You can speed up your programs by reading or writing more
than one character at a time.

SENDING CHARACTERS TO STANDARD OUTPUT

Now, let’s take a look at a routine that puts out a single
character.

* routine to output just one
* character to the standard output path

putchr pshs a,x,y
leax chrbuf,u
sta chrbuf
Ida opath
Idy #1
0s9 i$writ
Ibcs error
puls a,x,y,pc

pcrif Ida #cr
Ibsr putchr
Ida #If
Ibra putchr hidden rts

These output routines are almost the direct opposite of the
getchr routine. The only difference is that they use the OS9
ISWRIT call instead of ISREAD.

Pcrif gives you an easy way to output a carriage return and
linefeed to the standard output path. The names of these routines
should be familiar to most FLEX programmers. They are OS-9
routines that emulate equivalent FLEX subroutine calls.

PRINTING A DECIMAL NUMBER

* Routine to output a decimal
* number from the d-register

outdec pshs a,b,x
leax dectab,pcr
clr ,-s
cir ,-s

dec3clr,s

dec2 inc,s
subd ,x
bhs dec2

186

addd ,x++

pshs a,b

Ida 2,s

deca

tfra,b

orb 3,s

stb 3,s

beq dec4

adda #0

bsr putchr
decd puls a,b

tst1,x

bne dec3

leas 2,s

puls a,b,x,pc

dectab fdb 10000,1000,100,10,1,0

CHANGING A DEVICE DESCRIPTOR ON THE FLY

Here is a way to change the status of a device descriptor from
within your assembly language program. For example, if you need
to turn off the pause feature. Here’s one way to do it.

* get status packet
* and set -pause and -If

clra

cirb

leax stapak,u

0s9 i$gstt

Ibcs error

Ida 7,x get pause condition
sta pausav

clr 7,x set no pause

Ida 5,x get If condition

sta lfsav

cir 5,x set no auto line feeds
clra path number

cirb write status packet
0s9 I$sstt setstat call

Ibcs error

This routine uses the OS-9 get status call to retrieve the path
descriptor that holds all device descriptor data for the current
process. You musttellitwhereto save theinformation. We putitin
a buffer named stapak,u. Once you have the information stored in
a buffer you can modify it.

First, we retrieved the pause condition and saved it so that we

could restore everythingto the same condition when we leave our
program. We know from the OS-9 Technical Information that the

187

pause attribute is stored at an offset of seven from the beginning of
the path descriptor.

Then, wesetthe pause location to-pause, or zero, with the “clr
7,x” instruction, and did the same with the “If’ location. After
storing the condition we wanted in our table, we copied that table
back into the Path Descriptor table with the I1$sstt, or set status
call.

That takes care ofthe initial table change. However, when we
leave our program we must put everythingback the way itwas. The
routine below shows how we did it during a normal exit from the
program. We used a similar routine in our error exit.

done Ibsr clrscn clear screen before leaving
leax stapak,u return pause
Ida Ifsav and If to prior
sta 5,x condition before exiting
Ida pausav
sta 7,x
clra
cirb
0s9 i$sstt do it!
Ibcs error
clirb report no errors
os9 f$exit

Have you ever wondered how to start another OS-9 process
from withinone of yourown assembly language programs? Study
this routine.

STARTING A NEW PROCESS

* now do dir
leax shistr,pcr “shell”
Idy #4 size
leau dirstr,pcr “dir”
Ida #1 object code
cirb
0s9 f$fork
Ibcs error
os9 f$walt

The code abovesetsupacalltoaShell thatruns the OS-9 DIR
utility. DIR mustbe eitherin memory orin your current execution
directory when the code runs.

Theinstructions that load the registers show how you tell the
0S-9 F$FORK system call what process you want to start. Leax
shistr,pcr points to a string in memory that holds the characters s-
h-e-I-I. The eighth bitis set on the last ‘I'. This tells OS-9 that it is at
the end of a filename.

188

We pointthe U-register to thelocation of our parameterstring
—thenameoftheprogramwewantournew Shelltoexecute. The
string contains theletters, d-i-r, followed by a carriage return. You
can see the actual strings in the first listing of this tutorial.

After we use the OS-9 F$FORK system call, we put our pro-
cessto sleep and wait for the new Shell to die. To do this, we use
the OS-9 FSWAIT system call.

Here’'s how it works. When the DIR command is finished, the

Shell that ran it will die and send a signal to OS-9 to wake up the
process that called it.

APPENDING DATA TO THE END OF AFILE

Here's a programming technique that lets you append data to
the end of an existing file. The secrettoits successis the OS-9 Get
Status call described on Page 99 of the Radio Shack OS-9 Techni-
cal Information manual.

* First, load the 6809’s A-register with path number
* and load B-register with SS.SIZ function code
* Then, use the OS-9 Get Status system call

Ida path
Idb $02

0s9 |$getstt
bcs error

* If there was no error, the most significant 16
* bits of the current file size will be in the

* X-register and the least significant 16 bits

* will be in the U-register.

To wrap up our assembly language tutorial we’ll give you
three more routines to study. You’'ll learn how to check for, and
handle, an end-of-file condition, open a file, and make simple
menu selections.

CHECKING FOR THE END OF AFILE

eofchk cmpb #e$eof end of file?
Ibne error no, go
Ida lpath yes, close read file
os9 i$clos
Ibcs error
Ida opath standard output?
cmpa #1
beq eofc1 yes, go
0s9 I$clos no, close It
Ibcs error
Ida #1 and set up for
sta opath standard output

189

OPENING A FILE FOR WRITE

READING DECISIONS FROM A MENU TREE

SAMPLE PROGRAMS

eofc1 deca and standard input
sta ipath
orcc #1 set carry to indicate
puis x,pc exit needed

* Open a file for write

writon cir reflag
leax flilnam,u open file
Ida #read.
os9 i$open
sta ipath
writ1 leax temstr,pcr now open “temp”
Idd #wrlte.*256+updat.+pread.+pwrit.
os9 i$crea
bcs wtemchk
sta opath

* A small segment from a menu selection
* decision tree

chkif cmpa #'f want formatted read?
bne chku no, is character a “u”
Ibsr reasty yes, do formatted read
Ibra query and go back to main menu
chku cmpa #’'u want to use another dictionary?
bne chko no, see if want to quit
Ibsr use yes, go to it
Ibra query and return to main menu
chko cmpa #’0 want to go back to operating system?
bne chktb no, want to save accepted words?
Ibra done back to OS-9 yes, go back
chkfb cmpa #b build new dictionary list
bne chkfw
Ibsr savwrd
Ibra query and the beat goes on

We conclude this chapter with several sample programs writ-
ten in 6809 assembly language. They were contributed by Tim
Harris, a computer science student at the University of lowa at
Ames.

Harris does all of his development on a Color Computer run-
ning under Radio Shack OS-9. These programs are written to be
used like the filters described in Chapter 17. Study them! Then,
type them in and run them. Experiment with them, and if you are

190

brave, modify them. In no time at allyou’ll be able to write your own
0S-9 tools.

CRYPT

Microware 0S-9 Assembler 2.1
crypt - 0S~9 System Symbol Definitions

00001 * crypt utility : crypts files for user protection

00002 * 6809 Assembly Language

00003 * for Color Computer 05-9 v. 01.00.00

00004 * Contributed to the 0S-9 Tour Guide by:

00005 * Tim Harris (c) 1984

00006 *

00007 * Uses std. input and output so it acts as a filter
00008 * Sample calls:

00009 * crypt keyword <infiled>codedfile

00010 * crypt keyword <codefile prints file to screen
00011 * list infile | crypt keyword >outfile

00012 * crypt keyword <infile | crypt keyword will print out file
00013 *

00014 *

00015 nam crypt

00016 use /d0/DEFS/0S9Defs

00402 opt 1

00403

00404 *

00405 * Data Area

00406 00D3 EOF equ 211

00407 000F MAXKEY equ 15

00408 D 0000 org 0

00409 D 0000 OUTCHAR rmb 1

00410 D 0001 KEYLEN rmb 1

00411 D 0002 CHAR rmb 1

00412 p 0003 KEYBUF rmb MAXKEY

00413 D 0012 rmb 200 stack area

00414 D 00DA CRPMEM equ

00415 * Program Area

00416 0000 87CD0O061 mod CRPEND,CRPNAM,PRGRM+0OBJCT,REENT+1,CRPENT,
00417 000D 63727970 CRPNAM fcs "crypt"”

00418 0012 5F CRPENT clrb clear the counter
00419 0013 3143 leay KEYBUF,u get the key value
00420 0015 A680 CRP10 lda P X+

00421 0017 810D cmpa §#$0D are you done?

00422 0019 2709 beq CRP15 yes, go on with program
00423 001B 8120 cmpa #$20 maybe, check again?
00424 001D 2705 beq CRP15 yes, go on

00425 001F A7AOQ sta Yyt no, store the char
00426 0021 5cC incb incriment the counter
00427 0022 20F1 bra CRP10 go back for more
00428 0024 D701 CRP15 stb KEYLEN save the key length
00429 0026 D601 CRP20 1db KEYLEN get key length
00430 0028 3143 leay KEYBUF,u point to start of key
00431 002A 3424 CRP25 pshs y,b

00432 002C 4F clra

00433 002D 108E0001 ldy #s1

00434 0031 3042 leax CHAR,u

00435 0033 103F8B os9 ISReadln

00436 0036 251E bcs CRP30

00437 0038 3524 puls b,y

00438 003A 9602 lda CHAR get the char

00439 003C A8AOQ eora ,y+ crypt it

00440 003E 9702 sta CHAR store it for output

191

00441 0040 3424 pshs y,b

00442 0042 8601 lda #$1

00443 0044 108E0001 ldy #S1

00444 0048 3042 leax CHAR,u

00445 004A 1U3F8C 0s9 ISWritln

00446 004D 2507 bcs CRP30

00447 004F 3524 puls b,y

00448 0051 5A decb are you done?

00449 0052 26D6 bne CRP25 no, crypt more

00450 0054 20DO bra CRrP20 yes, get more of the file
00451 0056 C1D3 CRP30 cmpb #EOF is it at EOF?

00452 0058 2601 bne CRP35 no, exit with error
00453 005A 5F clrb yes, clear error status
00454 0058 103F06 CRP35 0s9 FSExit exit the program

00455 005E 9cCco02Aa emod

00456 0061 CRPEND equ *

00457 END

00000 error(s)

00000 warning(s)

$0061 00097 program bytes generated
$01B3 00435 data bytes allocated
$1024 04132 bytes used for symbols

DL

Microware 0S-9 Assembler 2.1
dl - 0S-9 System Symbol Definitions

00001 * dl utility: enhanced delete utility

00002 * modeled after 0S-9/68K delete utility

00003 * CoCo 0S-9 wver. RS01.00.00

00004 * Contributed to the 0S-9 Tour Guide by:

00005 * (c) 1984 Tim Harris

00006 * 651 Pammel Court

00007 * Ames, Iowa 50010

00008 *

00009 * Options: -2z takes list of pathnames from stdin
00010 * -? generates help message

00011 *

00012 * Calls: dl fname deletes file named "fname"
00013 * dl -2 gives help message

00014 * with use of enhanced d (dir) utility you can:
00015 * d ! dl -z delete all entries in the dir
00016 * d -w *,c | dl -z deletes all entries ending in ".c"
00017 *

00018 use /d0/DEFS/0S9Defs

00404 opt 1

00405

00406 nam dl

00407 * Data Area

00408 00D3 EOF equ 211

00409 003C NLEN equ 60

00410 D 000O org 0

00411 D 0000 FNAME rmb NLEN

00412 D 003C rmb 200 stack size
00413 D 0104 rmb 200 param size
00414 D 01cCC DLMEM equ .

00415 * Module Macro

00416 0000 B87CDOOF6 mod DLEND,DLNAM,DLTYP,DLREV,DLENT, DLIIEM
00417 000D 64EC DLNAM fcs "dl"

00418 0011 DLTY® set PRGRM+0OBJCT

192

00419 0081
00420

DLREV
* Program Area

00421 000F A684 DLENT
00422 0011 810D

00423 0013 2602

00424 0015 8D23

00425 0017 812D DLO5
00426 0019 2610

00427 0013 A601

00428 001D 817A

00429 001F 2602

00430 0021 8D29

00431 0023 815A DL10
00432 0025 2602

00433 0027 8p23

00434 0029 8DOF DL15
00435 0028 103F87 DL20
00436 002E 2507

00437 0030 A684

00438 0032 810D

00439 0034 26F5

00440 0036 5SF

00441 0037 103F06 DL25

00442 * Subroutines

00443 003A 8601 help
00444 003C 30810028

00445 0040 108E008B

00446 0044 103F8A

00447 0047 2501

00448 0049 SF

00449 004A 20EB h05
00450 *

00451 004C 4F zoption
00452 004D 30cC4

00453 004F 108E003C

00454 0053 103F8B

00455 0056 2509

00456 0058 30C4

00457 005A 103F87

00458 005D 25D8

00459 005F 20EB

00460 0061 C1D3 z05
00461 0063 2601

00462 0065 5F

00463 0066 20CF z10
00464 *

00465 * Help message
00466 0068 0DOA HI1SG
00467 006A 20646C3A

00468 007F 0DOA

00469 0081 206F7074

00470 00AA 0DOA

00471 00AC 20202020

00472 00C5 0DOA

00473 00C7 2043616C

00474 00F1 0DOA

00475 oo8n HMLEN
00476 00F3 173DCE

00477 00F6 DLEND
00478

00000 error(s)

set

lda
cmpa
bne
bsr
cmpa
bne
lda
cmpa
bne
bsr
cmpa
bne
bsr
bsr
0s9
bcs
1da
cmpa
bne
clrb
0s9

lda
leax
ldy
0s9
bcs
clrb
bra

clra
leax
ldy
os9
bcs
leax
0s9
bcs
bra
cmpb
bne
clrb
bra

fcb
fcc
fcb
fcc
fch
fcc
{fcb
fcc
fcb
equ
emod
equ
END

REENT+1

0,x
#50D
DLO5
help
$'-
DL20
1,x

#'z
DL10
zoption
#'2
DL15
zoption
help
IS$Delete
DL25
0,x
#50D
DL20

FSExit

#S1
HMSG, pcr
HMLEN
ISWrite
h05

DL25

FNAME,u
#NLEN
IS$SReadln
205
FNAME,u
ISDelete
DL25
zoption
$EOF

210

DL25

$0d,$0a

get first param character

is it c.r.?

no, branch around
yes, send help message,
is it a minus sign?

improp

no, use reqular param delete r

yes, get next char

is it a '2'?

no, check for other option

yes, use z routine

is it a 'z2'?

no, check for other option

yes, use z routine

go to help if ? or illegal opt

delete the file
branch on error

is it end of param list?
no, delete more files
clear error status

end program

set std. out
get message

get length
write it out
branch on error

clear error status

exit program

set std. input
point to buffer
get max length
read it in

branch on error

point to name again

delete the file
exit on error

get more if no error

is it EOF?
no, error out

yes, clear status

exit program

/ dl: deletion utility/

$0d4,$0a

/ options:

$0d,S$0a
/

$0d,$0a
/ Call:
$0d,S$0a
*~HMSG

*

193

-2 get paths from list on stdi

-? help message/

dl <options> ||

<fname>,,.<fnam

SUMMARY

00000 warning(s)

$00F6 00246 program bytes generated
$02A5 00677 data bytes allocated
$106F 04207 bytes used for symbols

In this chapter you have been introduced to ASM, the OS-9
assembler. We have also presented a few assembly language
techniques that you can use every day.

Study these techniques for awhile. Then, joinusin Chapter 19
for a look at BASICO09, C and Pascal.

194

CHAPTER 19

high level language

From the beginning, we have tried to impress upon you that
0S-9 is an environment, a home for programming tools of all
kinds. OS-9 tools range from the filters we introduced in Chapter
17 to the assembler we met in the last chapter. They extend to the
high level languages we study here.

0OS-9is also ahome for the many application programs we use
in our businesses and homes daily. These applications range from
database managers to spread sheets to word processors, with a
random sampling of games and other diversions thrown in for e e
variety.

These applications all have one thing in common. They were
developed using the assembler, or one of the high level languages
introduced in this chapter. Once you begin to understand these
languages and how they live within OS-9, you will be able to write
your own applications. When you finish this chapter you will have
met three high-level languages and studied several programs in
each. You'll meet:

BASIC09 C Pascal
BASIC09 — THE REASON BEHIND 0S-9

Yes, OS-9 was developed for a reason. Motorola and Micro-
ware needed a sophisticated operating system to provide a suita-
ble environment for a state of the art language — BASICO09.

Why has BASICO09 been heralded as a state of the art lan-
guage? First, it gives you a tool to write structured, readable

195

programs in a friendly environment. And second, because it con-
tains a built-in editor and debugging aids, it is also highly
interactive.

The structure of a BASIC09 program is made possible by the
controlstatements. All thecommon loop constructs areavailable:
IF/THEN/ELSE, WHILE/ENDWHILE, REPEAT/UNTIL, LOOP/
ENDLOOP, AND EXITIF/ENDEXIT. With control statements like
these, you can throw away those confusing line numbers forever.
Yet, if you really need them, you can use them.

And, just as OS-9 uses small modules of code to build a
complete operating system, BASICO09 lets you write small pieces
of code that you can use over and over again in many different
programs. BASICO09 calls these small pieces procedures.

BASICO9 lets you define your own data types by combiningits
primitive datatypes. This encourages you to divide your programs
into small procedures because it makes it very easy to pass
parameters between procedures.

CHECK OUT THIS BENCHMARK

And, BASICO09is fast. To find out how fast, | tried one of the old
BASIC benchmark programs with BASICO09.

| picked the infamous Benchmark Program Number Seven,
written by Tom Rugg and Phil Feldman and first published in
Kilobaud backinJune of 1977. Thisisthe program that took 204.5
seconds to execute on Southwest Technical Products 8K BASIC.
The fastest BASIC, running at two megahertz on an OSI Chal-
lenger, executed this benchmark in 21.6 seconds.

Here's the BASICO09 procedure.

PROCEDURE Benchmark

0000 DIM a,,k:INTEGER
000F DIM m(5):INTEGER
001B PRINT “start”

0024 SHELL “date,t”
002E k=0

0035 10 k=k+1

0043 a=k/2*3+4-5

0057 GOSUB 20

005B FOR iI=1 TO 5
006B m(l)=a

0077 NEXT |

0082 IF k<1000 THEN 10
0092 SHELL “date,t”
009C END

009E 20 RETURN

BASICO09, running at two megahertz on a GIMIX microcompu-

196

ter, finished the program in four seconds. It only took eight
seconds using BASICO09 on the Color Computer. By comparison
XBASIC, from TSC, long billed as the fastest BASIC interpreter
on an eight-bit microprocessor, executed the benchmark in 24
seconds on the GIMIX.

Since | defined all the variables in the BASIC09 program as
INTEGERS, | decided to play fairand rewrote the XBASIC program
touseintegers. After | did this, it took 12 secondstorun. BASIC09
still ran three times faster.

| decided to make one more comparison and rewrote the
BASIC09 program with REAL variables. It executed in nine
seconds; still more than twice as fast as in XBASIC using real
variables as loop counters.

BASIC and BASIC09 — COMPARED

If you have ever taken a writing course, you'll remember the
instructor telling you to “show” and not “tell.” For this reason,
we're finishing our tour of BASIC09 with 10 short feature programs.

Actually, you'll find 20 program listings because we have
taken 10 relatively simple BASIC programs and written them in
two different ways. The first listing uses standard BASIC — the
second, BASICO09.

The structured, highly readable, self-documenting style of
BASICO09 programs should speak for itself. In this Chapter you'll
find the listings named below. The BASICO09 listings use the same
name with an “09” appended. The last three programs show you
how you can write filter programs in BASIC09. NewStrip, Split-
Words and New_Hex_Dump can all three be used in an OS-9
pipeline, like the other filters demonstrated in Chapter 17.

NumberGuess CoinFlip PowersOfTwo PrimeNumbers
DecimalToBinary Acey_Deucy Quiz Temperature
Regular_Deposits ESP NewStrip SplitWords

New_Hex_Dump

These programs will give you a chance to gain some experi-
ence with BASICO09. They were printed directly from a BASIC09
listing, so you shouldn't have any problems running them.

We kept our samples short so they would be easy for you to
type in and run. They are all simple programs that only begin to
use the power of this programming language. Before you try to
write lengthy programs of your own in BASICQ9, try customizing
the programs listed here. It will give you a good feel for the lan-
guage. But most of all — Enjoy!

197

NumberGuess

This program uses the computerto generate random numbers.

Your jobis to guess the number. After you have made the correct
guess, the computer will tell you how many attempts you needed
to arrive at the answer.

NumberGuess

PROCEDURE numberguess

0000 100 REM Number Guessing Game

001A 110 REM To stop type "Control C"

0038 120 PRINT "I will think of a number *
0058 130 PRINT "between 1 and 100 -- "

0074 140 PRINT "You try to gquess itl "

0090 150 n=0

009B 160 x=INT(RND(0)*99+1)

00BO 170 PRINT

00B5 180 PRINT "What's your guess"®;

00CE 190 INPUT g

00D6 200 n=n+l

00ES 210 PRINT

00EA 220 IF g=x THEN 280

00FD 230 1IF g>x THEN 260

0110 240 PRINT "Too small, try again";

012C 250 GOTO 190

0133 260 PRINT "Too large, try again®;

014F 270 GOTO 190

0156 280 PRINT "You got it in "; n; " tries.”
0179 290 IF n>6 THEN 310

018C 300 PRINT "Very goodl"

019D 310 PRINT

01A2 320 PRINT

01A7 330 GOTO 120

0l1AE 340 END

NumberGuess09

PROCEDURE numbergquess09

0000
0001
0018
0019
0028
0029
002B
005A
0084
0085
008cC
009F
00AO
00A2
00A3
00BO
0o0B2
00B6
00B7
00cz2
00c3
00C5
00Ceé6
00E1l
00E2
00EF

REM Number Guessing Game

DIM numberofgquesses,randomnumber, yourqguess: INTEGER
PRINT

PRINT "I will think of a number between 1 and 100."

PRINT "Let's see if you can guess what it is,"

numberofguesses:=0
randomnumber :=INT(RND(1)*99+1)

LOoOP

EXITIF randomnumber=yourquess THEN
PRINT

ENDEXIT
nuinberofgqguesses;:=numberofquesses+l
PRINT

INPUT "What's your guess? ®,yourguess

IF yourgquess»>randomnumber THEN
PRINT "Too high! Try Againl!”

198

0108 ELSE

olo0c PRINT "Too low! Try Again!"
0124 ENDIF

0126 ENDLOOP

012Aa

0128 PRINT

012D

012E IF numberofguesses<6 THEN

013A PRINT "Very Goodl"

0148 ENDIF

014A

0148 PRINT

014D PRINT "You got it in "; numberofguesses; " tries.,"
016D PRINT "Thank you for playing!”
0187 PRINT

0189

018a END

CoinFlip

Here's another program that uses the computers ability to
generate random numbers. We let it flip a coin 50 times so that we
may study the long-term average. You'll find that you wind up with
heads about 50 percent of the time. Now there’s an even bet.

PROCEDURE Coinflip

0000 100 REM Determine number of heads
001F 110 REM or tails in 50 flips of a coin
0043 120 y=1

004E 130 c=0

0059 140 x=1

0064 150 f=INT(RND(Q)*2)

0075 160 IF f=1 THEN 190

0088 170 PRINT "T";

0091 180 GOTO 210

0098 190 c=c+l

00A7 200 PRINT "H":

00B0 210 x=x+1

00BF 220 IF x<51 THEN 150

00Dp2 230 PRINT

00D7 240 PRINT c; " Heads out of 50 flips."
00F9 250 PRINT

00FE 260 PRINT

0103 270 y=y+1

0112 280 IF y<ll THEN 130

0125 290 END

CoinFlip09

PROCEDURE Coinflip09

0000

0001 (* Count number of heads and tails *)
0026 (* during 50 flips of a coin *)
0045

0046 DIM flip,heads,coins,groups:INTEGER
0059

005A groups:=1

0061

0062 WHILE groups<ll DO

006E

006F heads: =0

199

0076 coins:=1

007D

007E WHILE coins<51 DO
0o08aA

0088 flip:=INT(RND(0)*2)
009Aa

0098 IF flip=1 THEN
00A7 PRINT "H";
00AD heads:=heads+l
0088 ELSE

00BC PRINT "T";
00C2 ENDIF

00cC4

00C5 coins:=coins+l1l
00Do

00D1 ENDWHILE

00D5

00D6 PRINT

00D8 PRINT heads; " Heads our of 50 flips."
00F7 PRINT

00F9

00FA groups:=groups+l
0105

0106 ENDWHILE

glo0Aa

ESP

This is another variation on a number-guessing program.
You're trying to guess whether the computer will get a “‘head” or a
“tail” when it flips a coin. As you play, the computer keepsatabon
your answers — both right and wrong.

PROCEDURE esp

0000 100 REM esp tester
0010 110 REM Type E to stop
0024 120 h=1

002F 130 w
003A 140 t
0045 150 ¢
0050 160 e=10
005B 170 £=INT(RND(Q)*2)

006C 180 IF f=0 THEN aS$="H" \ ENDIF
0085 190 IF f=1 THEN a$="T" \ ENDIF
009E 200 PRINT "H or T";

00AC 210 INPUT xS

00B4 220 PRINT

00B9 230 IF xS$=a$ THEN 280

00CC 240 IF xS="E" THEN 330

0ODF 250 w=w+l

OOEE 260 PRINT "Wrong!"®

00FB 270 GOTO 300

0102 280 c=c+l

0111 290 PRINT "Right!"®

011E 300 PRINT "W="; w; " R="; ¢C
0135 310 PRINT

013a 320 GOTO 170

0141 330 PRINT "Bye"

014B 340 END

200

ESP0S.

PROCEDURE esp09

0000

0001 (* Outguess the computer *)
001c

001D DIM correct,wrong,flip:INTEGER
002cC DIM computer,guess:STRING[1]
003cC

003D correct:=0

0044 wrong:=0

004B

004cC REPEAT

004E

004F flip:=INT(RND(0)*2)

00SE

00SF IF flip=0 THEN

006B computer:="H"

0073 ELSE

0077 computer:=*T"

007F ENDIF

0081

0082 INPUT "Your guess -- (H)eads or (T)ails? ",gquess
00AC

00AD IF computer=guess THEN
00BA correct:=correct+l

00cCS PRINT *Right1!"

00CF ELSE wrong:=wrong+l

00DD PRINT *Wrongl*

00E7 ENDIF

00E9

00EA PRINT

00EC PRINT “"Number wrong = "; wrong
0103 PRINT *Number right = "; correct
0l1lA PRINT

0l1lc

011D UNTIL guess="E" QR guess="e"
0131

0132 PRINT "Goodbye"

013D PRINT

013F

0140 END

0142
PowersOfTwo

Here'saprogramthat generates powers of two untilitreaches
the mathematical limit of BASICO09. It shows how BASIC09 auto-
matically prints numbers in sclentific notation when they become
longer than six digits.

PROCEDURE powersoftwo

0000 100 REM Print powers of two
0019 110 PRINT

001E 120 PRINT *Powers of two"
0032 130 PRINT

0037 140 PRINT "Power value"®
0049 150 x=0

0054 160 y=1

005F 170 PRINT X,y

006B 180 y=y*2

007A 190 x=x+1

0089 200 IF x=125 THEN 220
009C 210 GOTO 170

00A3 220 END

201

PROCEDURE powersoftwo09

0000

0001 (* Generate powers of two *)
001D (* till the computer throws in the towell *)
0049

004A DIM number: INTEGER

0051 DIM powersquared:REAL

0058

0059 PRINT

005B PRINT "Powers of two"

006C PRINT

006E

006F number :=0

0076 powersquared:=1

007E

007F WHILE number<l125 DO

008B

008cC PRINT number,powersquared
0095 powersquared:=powersquared*2
00Al number :=number+1

00AC

00AD ENDWHILE

0081

00B2 END

DecimalToBinary

Now you can generate binary numbers — ones and zeros
—with your computer. This program takes a decimal number and
prints it as a binary number. If you experiment, it will help you
understand what’s going on inside your computer.

PROCEDURE decimaltobinary

0000 100 REM Decimal to binary converter
0021 110 PRINT

0026 120 PRINT "Decimal to binary converter"
0048 130 PRINT

004D 140 PRINT

0052 150 PRINT

0057 160 INPUT x

005F 170 IF x<0 THEN 320

0072 180 IF x>32767 THEN 320
0086 190 PRINT

008B 200 PRINT "X=";

0095 210 y=16384

00A1 220 a=INT(x/y)

00Bl1 230 1IF a=0 THEN 270

00C4 240 PRINT "1%;

00CD 250 x=x-y

00DC 260 GOTO 280

00E3 270 PRINT "0";

00EC 280 y=y/2

00FB 290 IF INT(y)=0 THEN 310
010F 300 GOTO 220

0116 310 GOTO 140

011D 320 END

202

Decimal To Binary09

PROCEDURE decimaltobinary09

0000

0001 (* Convert decimal numbers to binary *)
0028

gggg DIM number,temp,halfnumber: INTEGER
0039 PRINT

003B PRINT "Decimal to Binary Converter"”
005A PRINT

005C

005D LOOP

00SF PRINT

0061 INPUT "What number would you like to convert? ",number
0090

0091 EXITIF number<0 OR number>32767 THEN
00AS PRINT "Negative numbers not allowed."
00Cé6 ENDEXIT

0oca

00CB PRINT

00CD PRINT "Number = ";

00DpB halfnumber:=16384

00E3 REPEAT

00ES temp:=INT(number/halfnumber)
00F3 IF temp<>0 THEN

00FF PRINT "1°";

0105 number:=number~hal fnumber

0111 ELSE

0115 PRINT "0";

0l1lB ENDIF

011D halfnumber:=halfnumber/2

0128 UNTIL INT(halfnumber)=0

0135 ENDLOOP

0139

PrimeNumbers

Thisprogram generates prime numbers until you tellit to stop.

PROCEDURE primenumbers

0000 100 REM Prime Number generator
001C 110 PRINT "Prime Number Generator"
0039 120 y=2

0044 130 a=1

004F 140 GOTO 210

0056 150 «x=1

0061 160 x=x+1

0070 170 z=INT(y/x)

0080 180 1IF INT(z*x)=y THEN 230
0098 190 1IF x*x>y THEN 210

00AF 200 GOTO 160

00B6 210 PRINT a,y

00C2 220 a=a+l

00Dl 230 y=y+l

00E0 240 GOTO 150

00E7 250 END

PrimeNumbers09

PROCEDURE primenumbers09
0000

0001 (* Generate and prime numbers *)
0021

203

0022
0035
0036
003D
0044
0045
004E
004F
005A
0065
0066
0068
0069
0070
007E
oosc
008D
00AO
00Aa4
00AS
0ooB6
00BF
ooca
00CE
00D2
00D4
00D5
00D7
00D8
00E3
O0E4
O00E8
00E9

100

DIM count,prime,temp,holder :INTEGER

count:=1
prime:=2

PRINT count,prime

count:=count+l
prime:=prime+l

LOOP
temp:=1
temp:=temp+1l
holder:=INT(prime/temp)

IF INT(holder*temp)=prime THEN
ELSE

IF temp*temp>prime THEN
PRINT count,prime
count:=count+l

ELSE
GOTO 100

ENDIF

ENDIF
prime:=prime+l
ENDLOOP

END

Acey_Deucy

Games are a good diversion, and this one should be fun to
play. It’s a little longer than the others, so make sure you save it on
disk before you move on. Typing is no fun.

PROCEDURE Acey_Deucy

0000
0018
0029
0046
0048
0068
008l
0086
0091
0096
00Aal
00B6
oocs
00DE
00F3
0106
O0llF
0l12A
0131
013C
0143

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

REM Game of Acey-Deucy
PRINT "Acey-Deucy"”

PRINT "You will get 25 hands."
PRINT

PRINT "Will the card you draw"”
PRINT "be between my two?"
PRINT

h=1

PRINT

t=100

PRINT "You have §$"; t
x=INT(7*RND(0)+6)

IF x>12 THEN 210
y=INT(Xx*RND(0)+1)

IF y>=x THEN 230

IF y=1 THEN y=2 \ ENDIF
a=x

GOosuB 600

a=y

GOSUB 600

PRINT

204

0148 310

PRINT "Your bet";

0158 320 INPUT b

0160 330 IF b<=t THEN 360

0173 340 PRINT "You don't have that much!"
0193 350 GOTO 310

019A 360 2z=INT(13*RND(0)+2)

01AF 370 IF z>14 THEN 360

01c2 380 a=z

01cD 390 GOSUB 600

01p4 400 PRINT

01D9 410 IF z<=y THEN 480

0lEC 420 IF z>=x THEN 480

01FF 430 PRINT "You winl"

020E 440 PRINT

0213 450 PRINT

0218 460 t=b+t

0227 470 GOTO 530

022E 480 PRINT "You losel"

023E 490 PRINT

0243 500 PRINT

0248 510 t=t-b

0257 520 IF t<=0 THEN 560

026A 530 h=h+l

0279 540 IF h>25 THEN 580

028C 550 GOTO 200

0293 560 PRINT "Your outi"

02A3 570 STOP

02A8 580 PRINT "That's 25 hands!"

02BF 590 STOP

02C4 600 IF a<ll THEN 630

02D7 610 IF a>l4 THEN PRINT "ERROR"™ \ STOP \ ENDIF
02F3 620 ON a-10 GOTO 650,670,690,710
0312 630 PRINT a; " ";

031F 640 RETURN

0324 650 PRINT "Jack ";

0331 660 RETURN

0336 670 PRINT "Queen ";

0344 680 RETURN

0349 690 PRINT "King ";

0356 700 RETURN

035B 710 PRINT "Ace ";

0367 720 RETURN

036C 730 END

AceyDeucy08
PROCEDURE AceyDeucy(9

0000

0001 (* The Game of Acey - Deucy *)
001F

0020 DIM firstcard,secondcard,deal:INTEGER
002F DIM bet,hand,ante,yourdraw:INTEGER
0042

0043 PRINT "Acey -~ Deucy”

0053 PRINT "You will get 25 hands."
006D PRINT

006F PRINT "Will the card you draw"
0089 PRINT "be between my two?"
009F PRINT

00Al

00AZ2 hand:=1

00A9 ante:=100

00BO

00B1 WHILE hand<=25 DO

00BD

205

00BE PRINT "You have §"; ante

00DO0

00D1 REPEAT

00D3 firstcard:=INT(7*RND(0)+6)
00E6 UNTIL firstcard<13
00F1

00F2 REPEAT

00F4 secondcard:=INT(firstcard*RND(0)+1)
0108 UNTIL secondcard<firstcard
0114

0115 IF secondcard=1 THEN
0121 secondcard: =2

0128 ENDIF

012A

0128 deal:=firstcard

0133 Gosus 200

0137

0138 deal:=secondcard

0140 GOSuUB 200

0144

0145 100 PRINT

014A INPUT "Your bet? ",bet
015cC

015D IF bet>ante THEN

0l16A PRINT "You don't have that muchl!"”
0187 GOTO 100

018B ENDIF

018D

018E REPEAT

0190 yourdraw:=INT(13*RND(0)+2)
01A3 UNTIL yourdraw<l5

0l1AE

O0laFr deal:=yourdraw

01B7 GOsuB 200

01BB

01BC PRINT

01BE IF yourdraw<=secondcard OR yourdraw>=firstcard THEN
01D3 PRINT "You lose!"
01EO PRINT \ PRINT

014 ante:=ante-bet

01FO0 ELSE

01F4 PRINT "You Wint”
0200 PRINT \ PRINT

0204 ante:=ante+bet

0210 ENDIF

0212

0213 IF ante<=0 THEN

021F PRINT "You're outl"
022E END

0230 ENDIF

0232

0233 hand:=hand+l

023E

023F ENDWHILE

0243

0244 PRINT "That's 25 hands!"
0258 END

025A

0258 200 IF deal<ll THEN

026A PRINT deal; " "
0276 RETURN

0278 ENDIF

027A)

027B IF deal>14 THEN

206

0287 PRINT "Error"”

0290 END

0292 ENDIF

0294

0295 ON deal-10 GoTO 300,400,500,600
02AF

02B0 300 PRINT "Jack ";
02BD RETURN

02BF

02C0 400 PRINT "Queen ";
02CE RETURN

02D0

02D1 500 PRINT "King ";
02DE RETURN

02EO

02E1 600 PRINT "Ace ";
02ED RETURN

02EF

02F0 END

Quiz

Here's a program you can use to teach your youngsters the
multiplication tables. It shows how computers can be used as
teaching aids.

PROCEDURE quiz

0000 100 REM Multiplication Quiz
0019 110 PRINT "Multiplication Quiz"
0033 120 n=0

003E 130 c¢=0

0049 140 1i=0

0054 150 x=INT(RND(O0)*13+1)

0069 160 y=INT(RND(0)*13+1)

007E 170 z=x*y

008D 180 PRINT

0092 190 PRINT x; " times "; y; "=";
00AD 200 INPUT w

00B5 210 PRINT

00BA 220 IF w=2z THEN 270

00CD 230 PRINT "wWhoops!"

00DB 240 PRINT "The answer is "; 2z
00F4 250 i=i+l

0103 260 GOTO 290

010A 270 PRINT "You are right!"
011F 280 «c=c+l

012E 290 PRINT c; " are rightt"®
0144 300 PRINT i; " are wrongl"
015A 310 n=n+l

0169 320 IF n<=9 THEN 150

017C 330 1IF c>=6 THEN 370

018F 340 PRINT "You flunked the guiz,"
0l1AB 350 PRINT "Better practicel"”
01C2 360 GOTO 120

01C9 370 IF c¢>=9 THEN 400

01DC 380 PRINT "You did O.K."

0lEF 390 GOTO 410

01F6 400 PRINT "Nice Jobl!"

0206 410 PRINT "Try again?"

0217 420 INPUT TS

021F 430 IF T$="y" THEHN 120

0232 440 1IF TS$="Y" THEN 120

0245 450 END

207

quiz09

PROCEDURE quiz09

0000
0001
001c
001D
0030
003F
004m»
004cC
0053
005A
0061
0062
006E
006F
0082
0095
0oal
00A2
00A4
00BE
ooc3
00Cs
00C6
00D3
00ES
00FO
00F4
00FF
011D
0128
0l2a
0128
012D
0140
0153
0155
0156
0l61
0162
0166
0167
0173
0180
0184
0190
0ial
01AS
01BE
01Dp2
01D4
01D6
01D7
01D9
0lEC
0l1ED
0202
0206
0208
0209

(* A Multiplicaton Drill *)

DIM counter,correct,wrong,gqguess: INTEGER
DIM firstnumber ,secondnumber ,computersanswer: INTEGER
DIM guery:STRING([1]

counter:=0
correct:=0
wrong:=0

WHILE counter<=9 DO

firstnumber:=INT(RND(0)*13+1)
secondnumber :=INT{RND{0)*13+1)
computersanswer:=firstnumber*secondnumber

PRINT

PRINT firstnumber; "™ times "; secondnumber; " = ";
INPUT guess

PRINT

IF guess=computersanswer THEN
PRINT "You are right!"”
correct:;=correct+l
ELSE
PRINT "Whoops!"
PRINT "The correct answer is "; computersanswer
wrong:=wrong+l
ENDIF

PRINT

PRINT correct; " are right."
PRINT wrong; " are wrong,"
PRINT

counter:=counter+l
ENDWHILE

IF correct>=9 THEN
PRINT "Nice Jobl"
ELSE
IF correct>=6 THEN
PRINT "You did O, K."
ELSE
PRINT "You flunked the quiz."
PRINT "Better Practicel™
ENDIF
ENDIF

PRINT
INPUT "Try Again? ",query

IF query="Y" OR query="y" THEN
RUN quiz09
ENDIF

END

208

Temperature

Now you can have BASICO09 help you. If you know the temper-
aturein Fahrenheit, you can computeitin Centigrade. The reverse
is also true. It's much faster than the bank thermometer.

PROCEDURE temperature

0000 100 REM Convert temperatures

001lA 110 PRINT "This program converts temperatures -- "
0047 120 PRINT "Fahrenheit to Centigrade and Vice-Versa"
0075 130 PRINT

007A 140 PRINT "Type the temperature you want to convert"”
00A9 150 PRINT "followed by comma and a"

00C7 160 PRINT

00CC 170 PRINT " 0 to get Fahrenheit"

00E7 180 PRINT " 1 to get Centigrade"

0102 190 PRINT

0107 200 PRINT "Type a 'Control Q' to quit."

0129 210 PRINT

012E 220 c=0

0139 230 f=1

0144 240 INPUT X,y

0150 250 IF y>1 THEN 240

0163 260 IF y=1 THEN 310

0176 270 a=9*x/5+432

018D 280 PRINT " ="; a; " Fahrenheit"

01AA 290 PRINT

0l1AF 300 GOTO 240

01B6 310 a=5*(x-32)/9

01CD 320 PRINT " =":; a; " Centigrade"

0lEA 330 PRINT

OlEF 340 GOTO 240

0lF6 350 END

Temperature09

PRUCEDURE temperature09

0000

0001 (* This program converts temperatures *)

0029

o02a DIM temperature:REAL

0031 DIM preferred:STRING[1]

003D

003E PRINT "This program converts temperatures -- "

0068 PRINT "Fahrenheit to Centigrade and Vice-versa."

0094 PRINT

0096

0097 LOOP

0099 PRINT

0098 PRINT "Type a 'Control Q' to quit."

00BA INPUT "What is the temperature you would like to convert? "
,temperature

00F5 10 INPUT "To (F)ahrenheit or (C)entigrade? ",preferred

0121

0122 PRINT

0124

0125 IF preferred="C" OR preferred="c" THEN

013A temperature:=5*(temperature-32)/9

0l14E PRINT " ="; temperature; " Centigrade."

0169 ELSE

016D IF preferred="F" OR preferred="f" THEN

0182 temperature:=9*temperature/5+32

0196 PRINT " ="; temperature; " Fahrenheit.,"

01B1 ELSE

01B5 GOTO 10

209

01B9 ENDIF

01BB ENDIF
01BD ENDLOOP
0lcl END
01c3

Regular_Deposits

If you like to daydream about being rich, here's a program to
get you started. Tell the computer how much money you would
like to deposit, giveitthe present interest rate and tell it how long
you would like to save. It will tell you what your account will be

worth.

PROCEDURE regular deposits

0000 100 REM Compute value of reqgular deposits

0027 110 PRINT "This program demonstrates the value of saving!"

005C 120 PRINT

0061 130 PRINT "How much can you save each month";

0089 140 INPUT r

0091 150 PRINT "What is the present interst rate";

00B9 160 INPUT i

00Cl1 170 n=12

00CC 180 PRINT "How many years are you going to save";

00F8 190 INPUT y

0100 200 1i=i/n/100

0113 210 t=r*((l+i)**(n*y)-1)/1

0136 220 PRINT "You will have $"; INT(t*100+.5)/100; " in the bank!"*
0170 230 PRINT

0175 240 PRINT "Another Scenario";

018D 250 INPUT a$

0195 260 IF a$="y" THEN 120

01A8 270 1IF a$="Y" THEN 120

01BB 280 END

Regular_Deposits09

PROCEDURE regular_deposits09

0000

gggé (* This procedure computes the value of reqular deposits
003A DIM totalsaved,deposit,interest,timesperyear :REAL

004D DIM years:INTEGER

0054 DIM answer:STRING[1]

0060

0061 10 PRINT

0066 PRINT "This program demonstrates the value of regular saving."
00AOQ PRINT

00A2 INPUT "How much can you save each month? " ,deposit

oocc INPUT "What is the present interest rate? ",interest

00F7 INPUT "How many years do you hope to save? ",years

0123

0124 timesperyear:=12

0l2cC interest:=interest/timesperyear/100

013C totalsaved:=deposit*((l+interest)**(timesperyear*years)-1)/
015D

015E PRINT

0160 PRINT "You will have $"; INT(totalsaved*100+.5)/100; "™ in the bank!"
0197 PRINT

0199

019A INPUT "Another Scenario? ",answer

01B4

210

01B5 IF answer="Y" OR answer="y" THEN

glca RUN regular_deposits(9
01CE

OlCF ENDIF

01Dl END

A BASIC09 PROCEDURE BORN OF NECESSITY

Here is another BASICO09 procedure that may come in handy
foryou some day. One night, after a long, hard evening filled with
writers block and a general lack of creativity, | saved my efforts and
wentto bed. The nextevening | tried to find out how many words |
had written by running the wc — word count — utility. The utility
reported zero words in the file.

When | tried to list my article, OS-9 returned a CRC error.
When | tried to copy it to another file, | got the same result. | kept
trying. Nothing worked.

| didn’t have the energy to rewrite 3,000 words. Further, my
deadline had arrived and | didn’t have the time. | had to find a way
to recover my work. | used a disk edit utility | own to dump the
sectors in the bad file directly from the disk.

Asitturned out, the first sector of the file contained garbage
and OS-9 refused to read it. Since everything else in the file
seemed to be all right, the answer was to skip the first sector. The
BASICO09 procedure below did the job.

PROCEDURE recover
(* A way to skip a bad sector *)

DIM char,path,newpath:BYTE

OPEN #path,”’KISS.temp”:READ
CREATE #newpath,”KISS.recovered”:WRITE

SEEK #path,257

WHILE NOT(EOF(#path)) DO
GET #path,char
PUT #newpath,char
PUT #1,char

ENDWHILE

END

You can also use the PROCEDURE Recover if the bad sector
islocated somewhere inthe middle of the file. To do this, you need
toLIST the original file to another file. The LIST command should
work up to the point where you hit the bad sector.

211

At this point you can count the number of bytes you have
listedinto therecovery file. Add 256 to this number and change the
SEEK statementinthe PROCEDURE Recover to take you past the
bad sector. After you make this change, run the PROCEDURE
Recover.

Then, merge the file created with “recover” with the file you
LISTed earlier into a new file. After you complete these steps, you
willonly need to rewrite the copy that was stored in the bad sector.
Rewriting 256 characters is a whole lot better than rewriting 3,000
words.

THREE BASICO09 FILTERS

We have included the source code for three BASICO09 proce-
dures that can be run as filters. They get their input from the
standard input path — path number zero. They write their output
to the standard output path — path number one.

Each of the procedures below can be PACKed into your cur-
rent execution directory, usually /d0/CMDS, and run as com-
mands. OS-9 will automatically load RunB and execute it when
you ask for these procedures by name. RunB must be in memory
or stored in your current execution directory when you run these
commands, however.

PROCEDURE NEWSTRIP

NewStrip will remove all control characters from a file except
for carriage returns and line feeds. It sometimes comes in handy
when you need to edit a file you have downloaded from a bulletin
board with your screen editor. Use the following command line:

0S9: list anyfile ! newstrip >anyfileminuscontrols

PROCEDURE NewStrip
(* A program to strip off all control characters in a file *)
(* except CR's, LF's and DEL's *)

(* modified by Dale L. Puckett to get its input and output *)
(* from standard input and standard output *)

DIM count,Control:REAL

DIM CHAR:BYTE

DIM InPath,OQutPath,ErrorPath:BYTE
InPath:=0

OutPath:=1

ErrorPath:=2

Control=0 \count=0

ON ERROR GOTO 10

WHILE EOF(#InPath)=FALSE DO
GET #InPath,CHAR

212

count=count+l

IF CHAR<S$20 OR CHAR=S$7F THEN
IF CHAR=S$S0D OR CHAR=S$S0A THEN
PUT #0OutPath,CHAR

ELSE

Control=Control+l

ENDIF

ELSE

PUT #OutPath,CHAR

ENDIF

ENDWHILE

10 PRINT §ErrorPath
PRINT #ErrorPath,"Total number of characters = "; count

PRINT #ErrorPath,Control; " control characters were stripped from file,"

PRINT §ErrorPath
END

THE PROCEDURE NEWHEXDUMP

NewHexDump takes its input from the standard input path. It
sends its output to the standard output path. All characters are
written in hexadecimal. This lets you see control characters that
may be imbedded inthe file. The program also counts the number
ofcontrol charactersinthefileandthe numberofcarriagereturns
and line feeds. Use this command line:

0S9: list /d0/cmds/dir ! newhexdump <ENTER>

PROCEDURE New?Hex Dump
(* Program prints a structured hexadecimal dump of all *)
(* control and ascii characters in a file *)

DIM count,Control,cr 1f count:REAL
count=0 \Control 0 \cr Iif _count=0

DIM char_blocks per_line:INTEGER
char_ blocks _per__ line=0

DIM InPath,OutPath,ErrorPath:BYTE
InPath:=0 \OutPath:=1 \ErrorPath:=2

DIM CHAR:BYTE

DIM Blank:STRING(1]
Blank=" "

ON ERROR GOTO 10
PRINT #OutPath

WHILE EOF{(#InPath}=FALSE DO

GET #InPath,CHAR
char_blocks_per_line=char_blocks_per_line+l
count=count+1l

IF CHAR<S20 OR CHAR=S7F THEN

IF CHAR=S0D OR CHAR=S$0A THEN

cr_1f count=cr_1f count+l

ENDIF

PRINT $OutPath USING *'[',H2,']',81",CHAR,Blank;

213

Control=Control+l
ELSE

PRINT #OutPath USING "'[',H2,']',S1",CHAR,Blank;
ENDIF

IF char_blocks_per_line>=16 THEN
PRINT #QutPath

char_blocks per line=0

ENDIF -~

ENDWHILE

10 PRINT #ErrorPath,Blank
PRINT #ErrorPath

PRINT #ErrorPath,"Total number of characters = *; count
PRINT #ErrorPath,"Found "; Control; ™ control characters in file."
PRINT #ErrorPath,"0f which "; cr_1f count; " were <CR> or <LF> v

END

THE PROCEDURE SPLITWORDS

The PROCEDURE Splitwords reads a text file from the stand-
ardinputpath. It printsalistof words in the file, onetoaline, on the
standard output path.Sinceitis afilteryoucan pipeitsinputfrom
the output of the OS-9 LIST utility. It is also possible to pipe its
output to the input of another tooi like a SORT utility. These
command lines will work:

08S9: list yourstory ! splitwords ! sort <ENTER>
08S9: list ashortstory ! splitwords <ENTER>

PROCEDURE splitwords

PIM char:BYTE

DIM gotone:BOOLEAN

DIM inpath,outpath,errpath: INTEGER
ON ERROR GOTO 180

inpath:=0
outpath:=1
errpath:=2
qotone:=FALSE

LOOP

GET #inpath,char

1F «otone THEN

IF char=32 OR chr=9 OR chr=13 THEN
qotone:=FALSE

WRITE #outpath

ELSE

PRINT #outpath,CHRS(char):;

ENDIF

ELSE

IF chr=32 OR chr=9 OR chr=13 THEN
ELSE

qotone:=TRUE

PRINT #outpath,CHRS(char);

ENDIF

ENDIF

214

ENDLOOP

BYE

100 (* We may have reached the end of file *)
DIM errnum: INTEGER

errnum=ERR

IF errnum=211 THEN

BYE

ELSE

ON ERROR

PRINT #errpath,"Error number: "; errnum
BYE

ENDIF

As soon as | received my copy of Radio Shack’s new C Com-
piler from Microware, | went to work and compiled my first
program.

main()

{

int sum, x, y;

x = 20;
y =30;
sum =x +y,

printf(“This is my first ‘C’ program.\n”);
printf(“The sum of %d and %d = %d”,x,y,sum);

}

Granted, the program doesn’t do too much. But it compiled
perfectly and ran the first time. It was quite a sight to watch. To
compile the program, | typed the line:

0S9:cc CTest.c

Step by step, my Color Computer went through the motions
needed to compile a C program. In several minutes it ran these
programs.

c.prep (a macro pre-processor)

c.pass1 (OS-9 Level | systems)

c.pass2 (require two passes)

c.opt (the assembly code is optimized)

c.asm (an assembled by a relocating assembler)
cc.link (an finally linked by a linkage editor)

C is not interactive like BASICO09, but it sure is an effective
package. Written by James McCosh, author of several 6809 C
compilers, and fine tuned to OS-9 by the programmers at Micro-
ware, thislanguage is implemented almost exactly as describedin
“The C Programming Language” by Kernighan and Ritche.

215

C COMPILER

SAMPLE PROGRAMS

Bit fields are the only thing missing. Other differences
between the C descriptionin K & R and the Color Computer C can
be counted with the fingers on one hand. And, they all reflect parts
of C that are obsolete, or constraints imposed by memory limita-
tions of the Color Computer.

Cisnotone of the most elegantlanguages around, but it gives
you asolutionto alot of different problems. It is sort of ahigh-level
assembly language.

One of the things C does have going for it is the fact that its
code is highly transportable. You can write aprogram on the Color
Computer and carry itover toan IBM PC for, example. The power
of the C language can be attributed to the fact that most C pro-
grammers use libraries, written in C, which can be adapted to any
environment.

Onereal plus for the Radio Shack C fromMicroware is the fact
that it supports almost all system calls for both OS-9 and UNIX.
This means you can write a C program on the Color Computer,
port the source code to a 68000 computer running UNIX, compile
it there and run it. Microware made this possible by using UNIX
names for system functions, even though the same OS-9 function
might have a different name.

Sometimes, there are UNIX functions that do not have an
exact OS-9 equivalent. Because of this, Microware gave you a
library function to simulate the UNIX function. Finally, when there
is an OS-9 function that does not have a UNIX equivalent, OS-9
names are used.

This C also has an optional profiler which can be used to
determine how many times a function is executed when a program
is run. This means you can identify the most frequently used
functions and study them in an attempt to find a more efficient
algorithm.

As we did with BASICO09, we will show you several C pro-
grams. Study them and see how they work. You'llbe up tospeedin
no time.

The first several programs were written by Tim Harris, a com-
puter science studentat the University of lowa in Ames. Since they
allfunction as filters, they are a valuable addition to your OS-9tool
kit.

‘D’isaspecial directory utility thatlists flenamesonelineata
time. Its output can be piped into the input of DL, the delete utility
in Chapter 18. You'll also find a word count utility and another
version of the CAT command.

216

The last group of C programs were written by Bill Ball,aU. S.
Coast Guard public affairs specialist, so that he could analyze his
writing. Since Ball believes in Readability, he wrote a filter that
counts the number of characters, words and sentences in a story.
It reports the average number of letters in a word and the average
number of words in a sentence. (Note that Ball's definition of a
“word” is abit non-standard, so his word count will not agree with
the “wc” utilities.) His program even shows you how to deal with
terminal cursor control codes in C. Enjoy!

wC

/* wc utility wver 2.0 - word, line and char counting */
/* modeled after UNIX wc utility */
/* CoCo 0S-9 wver 01.00.00 Microware C Compiler *;
/* *
/* Contributed to the 0S-9 Tour Guide by: */
/* Tim Harris (c) 1984 */
/* 651 Pammel Court */
/* Ames, Iowa 50010 */
/* */
/* Options: -1 : line count only */
/* -w : word count only */
/* -c : char count only */
/* ~?2 : generate help message */
/* N/
/* Uses stdin and stdout, may be redirected and piped */
/* Ccalls: */
/* wec < file coundts lines, words and chars */
/* in file */
/* wc ~1 < file counts lines only in file */
/* d ! we -1 reports number of files in dir */
/* spint pat <file ! wc.c -1 reports occurances of "pat" */
/* in the file */
/* wCc =7 generates help message */
/* +7

finclude <stdio.h>
g§define TRUE 1
fdefine FALSE O

main(argc,argv)
int argc;
char **argv;

{

int c,nl,nw,nc,inword;
int lon,con,won;
char *s;

inword = FALSE;
nl = nc = nw = 0;
lon = won = con = TRUE; /* default all on

while (--argc > 0 && (*++argv)[0] == '-"')
for (s = argv[0]+1l; *s 1= '\0'; s++)
switch (*s) {

case '1':
won = con

break;

case 'w':
lon = con

break;

case 'c':
won = lon

FALSE;

it

FALSE;

[

FALSE;

217

*/

break;
case '?';:
help():
break:;
default:
printf("wc : illegal option %c\n",*s);
help();
break;

}

while ((c = getchar()) t= EOF){

++nc;

if (c == *\n"')
++nl;

if (¢ == ' " || ¢ == '\n" || ¢ == "\t")
inword = FALSE;

else if (inword == FALSE){
inword = TRUE;
++nw;

}

if (lon)

printf(" %d4d",nl);
if (won)

printf(" %d4d",nw);
if (con)

printf("™ %d",nc);
printf£("\n\n");

)
help()
{
printf("wc : word count utility\n");
printf("options: -1 line count only\n");
printf (" -w word count only\n");
printf(" -C char count only\n");
printf(" -? help message \n");
printf("call : wc [option] \n");
exit{0);
}
PR
* pr utility - print with pagnation & numbering */
/* CoCo 0S-9 C Compiler 01.00.00 */
/* Contributed to the 0S8-9 Tour Guide by */
/* Tim Harris (c) 1984 */
/* Options : -n : line numbering */

finclude <stdio.h>
#define NULL O
fdefine MAXLINE 256
#define PAGLEN 63

main(argc,argv)
int argc;
char *argv(];

FILE *fp, *fopen():
int linenum=1, number=0;
char line[MAXLINE];

if (argc > 3 || argc == 1)

error ("pr: improper arguments",NULL):
if (argc == 2){

218

if ((fp=fopen(argv([1l],"c")) == NULL)
error ("pr: can't open %s",argv([1l]);

}
else {
if (argv[1][0] == '-' && argv[1l][1l] == 'n')
number = 1;
else
error ("pr: illegal option %c",argv[1][1]);
if ((fp=fopen(argv{2],™c")) == NULL)
error ("pr: can't open %s",arqgv[2]);
}

while (fgets(line,MAXLINE,fp) > NULL){
if (number)
printf("%05d ",linenum);
else
printf(" ")
printf("ss",line);
++linenum;
if (linenum > PAGLEN){
linenum = 1;
printf("\n\n\n");
}

while (linenum <= PAGLEN) {
++linenum;
printf("\n");

}
print£("\n\n\n");
fclose (fp);

exit(0);

CAT

/* cat utility - concatenate files */
/* modeled after UNIX cat utility */
/* CoCo 0S-9 ver 01.00.00 Microware C Compiler */
/* */
/* Contributed to the 0S-9 Tour Guide by: */
/* */
/* (c) 1984 Tim Harris */
/* 651 Pammel Court */
/* Ames, Iowa 50010 */
/* */
/* Copies files from stdin or files to stdout, may use */
/* redirection on output to a file */
/* Call: «cat [file]....[file] */
/* */

#include <stdio.h>

main(argc,argv)
int argc;
char *argvl];

{

FILE *fp, *fopen();

if (argc == 1) /* no args - use stdin */
filecopy (stdin);
else

while (--argc > 0)

219

}

if ((fp = fopen(*++argv,"r")} == NULL){

printf("cat: can't open %s\n",*argv);

exit(l);

I else {
filecopy(fp);
fclose(fp);

filecopy(fp) /* copy file fp to stdout */
FILE *fp;

{

int c;

while ((c = getc(fp)) I= EOF)
putc(c,stdout) ;

/* spint utility -~ Search and PrINT file for expression
/* modeled after UNIX grep utility
ver 01.00,00 Microware C Compiler

/* CoCo 0S-9

/* Copyright (c

/* Options:

/* Wildcard:

/* Uses stdin a
/* Calls:

/* spint
/* spint
/* spint
/*

/* spint
/*

#include <stdio.

#define MAXLINE
#define TRUE 1
#define FALSE O

main(argc,argv)
int argc;
char *argvl[];

)

-X
-n
-?

?

nd

1984 Tim Harris

651 Paminel Court
Ames, Iowa 50010

lines except those with match
line nummers printed

help message generated

single char wildcard

stdout can be redirected and piped

the <file 1lists lines containing "the"
-X the<file lists lines without "the"
the <file ! wc -1 counts occurances of

word "the"™ in file

~n b?t <file 1lists lines with "but",

"bat",

h>

100

char line[MAXLINE],*s;
long lineno=0;
int except=FALSE,number=FALSE;

pflinit();

/* initialize to print long numbers */

while (--argc > 0 && (*++argv)[0] == '=")
for(s=argv[0]+1; *s!='\0"; s++)

switch (*s){

case 'x':

except = TRUE;
break;

220

SPINT

n':
number = TRUE;
break;
case '?2':
argc=0;
break;
default:
printf("spint: illegal option %c\n",*s);
argc=0;
break

case

}

if (argc !'= 1){
printf("Spint: Search and PrINT \n");
printf("Options: -x exception \n");
printf(" -n line numbering\n");
printf(" -? help message\n");
printf("Wildcard: ? single char wildcard\n"});
printf("call: spint [<X -n -?] pattern \n");
| exit(0);

while (gets(line)i= NULL){
lineno++;
if ((index(line,*argv) != FALSE) != except) {
if (number)
printf("%ld: ",lineno);
printf("%s\n",line);

}

index(s,p)
char s{],pl];

{

int i,73,k;

for(i=0; s[i]l= '\0'; i++){

for(j=i,k=0; plk1t="\0"'&&(s[jl==pl[k] || plk]l=="2");j++,k++)
if (plk] == '\0")
return(TRUE) ;

}

return(FALSE) ;
1
UPLOW
/* uplow utility - convert text to all upper or lower case */
/* CoCo 05-9 ver 01.00.00 Microware C Compiler */
/* Copyright (c) 1984 Tim Harris */
/* 651 Pammel Court */
/* Ames, Iowa 50010 */

* */

/* Options : -u convert to upper case */
/* ~]1 convert to lower case (default) */
/* -2 generate help message */
/* */
/* Uses stdin and stdout and may be redirected or piped */
/* call : uplow [option] */

#include <stdio.h>

221

#include <ctype.h>
#define FALSE 0

main(argc,argv)
int argc;
char *argv(];

l_o){
S++)

> 0 && (*++argv)[0]
argv(0]+1; *s 1= *\D
ch{*s) {

Y1t
makelower () ;
break;

lul:
makeupper () ;
break;

2.

help();

break;
ult:
printf("uplow:
help() ;

break;

())
pha(c))
islower(c))
toupper(c);

1= EOF){
1= FALSE)
1= FALSE)

()
pha(c))

isupper(c))
_tolower(c);

1= EOF){
I= FALSE)
{= FALSE)

{
char *s;
if (argc == 1)
makelower() ;
else|
while (--argc
for (s =
swit
case
case
case
defa
}
}
}
}
makeupper ()
int c,i;
while ((c = getchar
if ((i = isal
if ((i =
c = _
putchar(c);
}
}
makelower ()
{
int c,i;
while ((c = getchar
if ((i = isal
if ((1 =
c:
putchar(c);
}
}
help()
{

printf("uplow
printf("options
printf ("

convert text to all upper or lower\n");
-1 make lower case (default)\n");
-u make upper case\n");

222

illegal option %c\n",*s);

printf(" -? help message\n"};
printf("call uplow [option]\n"):
exit(0);

/* d utility 01,20

directory with pattern matching

/* lists current directory with one
/* entry per line.

/*

/* CoCo 0S-9 v01.00,00 Microware C Compiler

/*

/* Copyright (c) 1984 Tim Harris

/* 651 Pammel Court

/* Ames, Iowa 50010

/*

/* uses stdout
/* can be used

for output so it may be piped or redirected
with other utilities,

i.e., dl (delete)

/*

/* Options: -W wild card matching

/* ?2 - single char wildcard

/* * - multiple char wildcard

;: -7 help message

/* Calls: d lists current directory

/* d -Ww *, ¢ lists files ending in '.c'

/* d -2 generates help message

/* d -w c¥* lists files beginning with 'c'
/* d -w *c* lists files with a 'c' in them
/* d -w a?c lists files abc,aec,a.c,...

/* d -w 27222 lists files with four chars

/*

/* Calls with other utilities:

/* d -w *.c dl -z deletes all files ending in '.c'
/* d -w 22?2 we -1 counts number of 3 char filenames
/* d ! sort prints sorted directory

/*

finclude <stdio.h>
finclude <ctype.h>
#define DREAD 129
#define ENTSIZ 32
fdefine TRUE 1

§define FALSE 0

/* Types for pattype */

§define REG 0 /* regular exact match w/ ? wildcard */
$define BOL 1 /* match at Beginning Of Line */
§define EOL 2 /* match at End Of Line */

$define MID 3 /* match in MIDdle of line */

char dname[2] = {'.',"\0'};

int pattype = REG;
char pat[29];

/* default to exact or ? match */

main(argc,argv)
int argc:
char *argv|]|:

{

223

char c,fname{30),entry{32],*s;
int i,dp,woption=FALSE;

while (~-argc > 0 && (*++argv)[0] == '~')
for (s=arqv([0]+1;*s!='\0";s++)

switch(*s){

case 'w':
woption = TRUE;
getpat(*++argv);
break;

case '?2';:
help();

default:
printf(" d: illegal option %c\n",*s);
exit(0);

}

if ({dp=open(dname,DREAD)}==~1){
printf(* Can't open default directory\n");
exit(0);

1

while ({(read(dp,entry,ENTSIZ))!=NULL) {
if (entry(0])!=0){
i=-1;
dof{
c=entry(++il];
fname[i]=toascii(c);
}while(isascii(c)!=FALSE &k i<=29);
fnamef(++iJ="'\0";
if (fname[O0]1="*.")
if (woption)({
if ({(isin(fname))l= -1)
puts(fname) ;

Jelse
puts(£fname);
}
}
close(dp);
¥
help()
{ printf(™"\n d: directory utility\n™);
printf (" lists current data directory, one entry per line\n");
printf(" options: -w wildcard matching\n");
printf(” ? - single char wildcard\n");
print{ (" * - multichar wildcard\n®);
printf (™ -2 help message\n®);
prinlf(" call: d <=2 || -w pattern>\n\n");
exit(0);
i
getpat(s)
char s(1:
{

int 1ln,i,j=0;

ln=strlen(s);

In--;

if (s[0]=='"*'" && s[lnj=="*")
pattype=MID;

elsef
if(s{O]=='*")

224

pattype=EOQOL;
else
if(s[in]=="'*")
} pattype=BOL;
for(i=0;s[i)!="\0";i++)
if(s[i]i="*")
pat[j++]=sli];
pat[j]="\0"';

}
isin(s)
char s[];
{
int i,j,k,1n,pl;
switch(pattype){
case REG:
for(i=0;s[i]!="\0"&&(s[i)==pat[i] || pat[i]=='2");i++)
if(pat[i]=="\0"' && s[i]=='\0")
return(i);
else
return(-1);
case BOL:
for(i=0;pat[i]!1="\0"'&&(sl[i)l==patli] || patli]=="2");i++)
if(pat[i]=="'\0")
return(i);
else
return(-1);
case EOL:
pl=strlen(pat);
ln=strlen(s);
for(j=1n-pl,k=0;pat[k]I="\0"'&&(s[j]l==patl[k] V| patl[k]=="2");j++,k++)
if(pat[k])=="\0"' && s[jl=="'\0")
return(j);
else
return(-1);
case MID:
for (i=0;s[i]1="\0";i++){
for(j=i,k=0;pat[k]!='\0"'&a&(s[jl==patlk]) || patlk]l=="'2");j++,k++)
if(patlk]=="\0")
return(i);
return(-1);
}
1
F
/* £ utility: optional formatter for DynaStar */
/* formats with tm=6; bm=60; pl=66; 1lm=8 */
/* has optional page numbering (use -n) */
/* has no problems with double spacing */
/* sends to stdout so use redirection for /p */
/* */
/* CoCo 0S-9 C-Compiler 01,00,00 */
/* (c) 1984 Tim Harris */
/* Call: */
/* f <-n><filename> (> redirection) */

225

#include <stdio.h>
#define MAXLINE 80
#define PAGLEN 54

main(argc,argv)

int argc;
char *argvl(]:
{

FILE *fp,*fomen();
int linenum=1, numkwer=0, pageno=l;
char line[MAXLINE];

if (arwc>3 || argc==1)
error (“f: improper arguments®,NULL);
if (arec ==2){
if ((fp=fopen(argv(1l],"c"™)}==NULL)
error ("f: can't open %s",argv(1l]):
}
else{
if (argv(1l][0)=='~'" && argv([l](1l]=='n")
number=1;
else
error ("f: illegal option %c”,argv[1]{1]);
if ((fp=fopen(argv(2],"r"™))== NULL)
error ("f: can't open $%s",argv(2]);

}
printf(*"\n\n\n\n\n\n");
while (fgets(line,MAXLINE,fp) !=NULL){
printf(" %$s",line);
++linenum;
if (linenum>PAGLEN) {
linenum=1;
printf("\n\n\n*);
if (number)
printf(" 2d\n\n\n\n\n\n\n\n\n\",pageno++) ;
else
printf ("\n\n\n\n\n\n\n\n\n");
}

while (linenum <= PAGLEN){
++linenum;
printf(*\n");

}
print£(*\n\n\n");
if (number)
printf (" $d\n\n\n", pageno++) ;
else
printf ("\n\n\n");
fclosel(fp):
}

error(sl,s2)
char *sl,*s2;

{
printf(sl,s2);
printf("/n");
exit(l);

}

226

FREP

frep - file report utility for ascii files

shows:

o number of characters, words, sentences [.1?2:;]

o average number of characters per word, words per
sentence, characters per sentence

o largest word, sentence

o number of lines, pages

Although written for the Coco with the PBJ WordPak, this
program can be modified to run on any terminal. It's
written in "standard® C, if there is such a thing.

Compile it using the Microware/Tandy C-compiler:

ccl frep.,c -f=frep

Frep is fairly versatile. It is fastest when the report is
sent through the standard output. ©On a 1Mhz Coco, frep will
read a 10-page, single-spaced file in 65 seconds. If you
send the report to the screen it takes three times as long.
Syntax:

Example: frep <file>

Reads file, sending a report through the standard output.
You can redirect the report to the printer with:

Example: frep <file> >/p

or a disk file with:

Example: frep <file> >/<path>

You can also send the report to the screen with a rolling
number output. This demonstrates the use of cursor control
in C. Use the [-t] option.

Example: frep -t <file>

Don't redirect the output with the -t option, or you'll get
the cursor control codes sent to the file or printer.

Frep will accept multiple files on the command line. This
will give you a series of reports, one for each file,

Example: frep <filel> <file2> <filed>

You may also "pipe" the output of the list command through
frep to get a cumulative report instead of separate ones.

Example: list <file> <file> <file>» | frep
This also works with the [-t] option.
Finally, if you forget what the options are, use:

Example: frep -7

I hope you have fun with this, I know I did. I only wish

227

there were more commands and utilities availble in C for
the CoCo, in the public domain, and in source form, I
know I'm going to contribute. I'm excited and still
learning. How about you?

version 1.0 created 05/02/84
version 2.0 updated 07/23/84 standard input/multiple files
version 3.0 updated 08/10/84 terminal codes/rolling numbers

by: William H., Ball
90078 Saratoga Dr.
Indianapolis, IN 46236
(317) 897-2661

*/

#include <stdio.h>

#define PGLN 55 /* number of lines per printed page
¢define CLEARS 2 /* clear screen/home cursor B

$define CURSOR 20
$#define OFFSET 31

#define BACK 8
int term = 0;

/* (12) for Tandy

/* "T = lead-in for x/y control

/* (2) for Tandy

/* offset for row,col placement

/* (32) for Tandy

/* backspace "H same for Tandy
/* report to terminal switch (1)

main(argc, argv)
int argc;
char *argv(];

int i;
FILE *fp;
while (argc > 1 && argv[1l][0] == '=') {
switch (argv(1](1])) (
case '?': /* shows usage */
usage () ;
break;
case 't': /* send report to terminal */
term = 1;
break;
default:
fprintf(stderr, "$s: unknown arg %s\n",
argv([(0]), argv(l]);
usage();
exit(1l);
break;
i
argc--;
argv++;
}
if (argc == 1)
frep(stdin);
else
for (i = 1; i1 < argc; i++)
if ((fp=fopen(argv(il], "r")) == NULL) (
fprintf(stderr, "%s: can't open %s\n",
argvi0], argvlil]):
exit(l);
} else {
frep(fp);
fclose(fp);

228

exit(0);

}
frep(fp) /* actual report function */
FILE *fp;
{
float avgchar, /* avg # of chars per word */
avgword, /* avg # of words per sentence */
avgsen, /* avg # of chars per sentence * /
totchars, /* total # of chars in file */
totwords, /* total # of words in file */
totsents; /* total # of sentences in file */
int longword, /* # of chars in longest word */
longsent, /* # of words in longest sent */
pages, /* # of pages in file */
remain, /* remainder for modulo divide */
lines, /* #lines in a file */
wordsin, /* # of words in a sentence */
charsin, /* # of chars in a word */
C; /* character in text stream * /

/* initialize variables */
totwords = totchars = totsents = longword = longsent = avgchar =
avgword = avgsen = pades = remain = lines = wordsin = charsin = 0;

if (term == 1){
clrtrm(); /* clear screen/home cursor */
report(); /* print blank report page */
term = 1;
}
/* main algorithm begins here */
while ((c = getc(fp)) I= EOF) {
if(c == "' *) {
++wordsin;
totchars = totchars + charsin;
if(charsin > longword) { longword
charsin = 0;

it

charsin; }

}
else if(c == "',*" || c== "2" ||
c== '1'" |l c== "' || c==";"){
++charsin;

++wordsin;
totwords = totwords + wordsin;
++totsents;

totchars = totchars + charsin;
if(wordsin > longsent) { longsent
if(charsin > longword) { longword
wordsin 0;

charsin 0

wordsin;
charsin;

([]

}
}

Hon

~e ~

if (term ==) {
pffinit();
set_cur(3, 48);
printf("%.0f", totchars);
set_cur(5, 48);
printf("¢.0f", totwords);
set_cur(6, 48);
printf("%d", longword):;
set cur(10, 48);:
printf("%.0f", totsents);
set cur(ll, 48);
printf("%d", longsent);

229

}
else if(c == *\n'") { ++lines; }
else ++charsin;

/* £ill in rest of screen after computing averages */
if (term == 1){
avgchar = totchars / totwords;
set cur(7, 48);
printf("s.2f", avgchar);

avgword = totwords / totsents;
set_cur (8, 48);
printf("%.2f", avgword);

avgsen = totchars / totsents;
set_cur(l2, 48);
printf("%.2f", avgsen);

pages = lines / PGLN;
remain = lines % PGLN;

if(remain >= 1) { ++pages; }

set_cur (14, 48);
printf("%d",pages);
set_cur (15, 48);
printf("%4d", lines);
set_cur(24,1); /* clean finis
putchar(BACK); /* prevent scr
}/* inserted for (term) */
if (term ==) {

h */
oll */

pffinit(); /* this statement is necessary to print all */
/* floats or doubles variables, See pg. 4-20 */
/* of the Tandy C-compiler manual */

printf("\n\nFile report: \n\n");

printf(" Number of characters in file: %.0f\n", totchars);

printf(" Number of words in the file:; %.0f\n", totwords):

printf("Number of chars in longest word: %d\n", longword);

avgchar = totchars / totwords;

printf(" Avg word length in characters: %.2f\n\n", avgchar);

avgword = totwords / totsents;

printf(” Avg # of words per sentence: %.2f\n", avgword);

printf (" # of sentences in the file: %.0f\n", tots

ents);

printf("™ # of words in longest sentence; %$d\n", longsent);

avgsen = totchars / totsents;

printf(" # of chars in average sentence: %.2f\n\n", avgsen);

pages = lines / PGLN;
remain = lines % PGLN;

if(remain >= 1) { ++page
printf(" Number of pages in file: %d\n",p
printf(" Number of lines in file: $d\n",
}

}/* end of frep */

/*usage function -~ prints usage of the frep utility
usage(){

printf("Syntax:\n");

printf("frep <file> (report on single file)\n");

230

s; }

ages) ;
lines);

*/

printf("list <file> <file> | frep (cumulative file report)\n");

printf("frep (stdin)\n");

printf("frep [-2] prints usage\n");
printf("frep [-t] sends slow terminal report");
exit(0);

}

/* set_cur function - performs the cursor placement - needs

* two argquments: row, col, CURSOR is lead-in for X,y screen
* control. OFFSET is x,y offset (31,31)=row(0),col(0)

*/

set_cur (row, col)

int row, col;

{
}

/* report function - prints blank report page set_cur fills in */

printf("%c%ctc", CURSOR, row+OFFSET, col+OFFSET);

report() {

printf("File report:\n\n");

printf(" number of characters:\n");
printf("\n number of words:\n");
printf(" longest word:\n");
printf(" average number of characters per word:\n");
printf(" average number of words per sentence:\n");
printf ("\n number of sentences:\n");
printf (" longest sentence:\n");
printf(" average number of characters per sentences:\n");
printf("\n number of pages:\n");
printf (" number of lines:\n");

}

/* clrtrim function - clears screen/homes cursor */
clrtrm(){

putchar (CLEARS) ;
} .

Information about the Radio Shack version of OS-9 Pascal is
sketchy as this book goesto print. However, we wanted to give you
a brief overview based on our experiences with the Microware
original version of Pascal.

This Pascal is an example of the new breed of software tools
that were originally developed and perfected on large computer
systems. In addition to keeping all the features of the larger
mainframes, Microware has added features that increase your
productivity as a programmer and improve the reliability of your
programs.

The Radio Shack Pascal produces an intermediate code like
BASICO09. The Pascal intermediate code is called p-code. This p-
code can be run on three individual interpretersthat come with the
system. Then, once a program is debugged, you can use another
programto translate it into native 6809 code. You literally have the
best of both worlds.

231

0S-9 PASCAL

SUMMARY

The OS-9 Pascal package includes:

PASCALN — A p-code interpreter

PASCALT — A translator that converts p-code to native
6809 code

PASCALS — A virtual memory “swapping” p-code inter-
preter

PASCALE — A Pascal linkage editor

SUPPORT — A native code run time subroutine package

PASCALN is used to run small to medium size Pascal
programs. It is fast and efficient, and typically your programs will
run at about one-half the speed of native 6809 code.

PASCALS is used to run small — to very large — Pascal
programs using a transparent virtual memory code swapping
scheme. Youcan manage the tradeoffs between memory size and
execution speed when you run this program.

PASCALT is used once you have optimized your p-code.
When you use native 6809 code, you trade increased memory
requirements for programs that run faster. PASCALT does not
needtobeusedonanentire program either. You can just translate
the critical routines if you desire.

OS-9 Pascal is a nearly full implementation of the Pascal
language defined by the ISO 7185.1 level 0 specification. It
supports the BOOLEAN, CHARACTER, INTEGER, and REAL
data types.

In this chapter you have been introduced to three of the high
level languages that run in the OS-9 environment. In additiontoa
brief overview of each one, we have presented several program
listings to help you understand BASIC09 and C programming
under OS-9.

PartV of our OS-9tour guide begins in the next chapter. In the

next dozen chapters, you will move closer and closer to the pot of
gold that awaits you after you learn the inner workings of OS-9.

232

PARTV: TOWARD THE END OF THE RAINBOW

CHAPTER 20

managing your memory

In this chapter we discuss prudent management of memory.

Your system’s main memory (RAM) is a resource that is
alwaystooscarce.tcanseemthatOS-9hastaken memory alloca-
tioncompletely out of your hands, but, in fact, thereis alot you can
do about the way memory is used.

The mostimportantstep to take toward conserving memory is
to use reentrant modules whenever possible. It is often worth
considerable trouble to make a modulereentrant. Reentrancy isn’t
that rigorous a requirement. A reentrant program must base all its
variables off index registers orthe DP register. PC relative values
andabsolute (extended) addresses canonly be used as constants.
Programs that modify themselves are strictly out of the question.

The modules you are most likely to create will contain pro-
grams, either in intermediate code (like BASICO09 |I-Code), or in
6809 object code. BASIC09 always creates reentrant code, so do
allother higher level languages for OS-9. If you write in assembler,
you can do whatever you want, including writing non-reentrant
code.

The great advantage of reentrant modules is that any number
ofprocessescanshare them. Each process must have its owndata

233

REENTRANT MODULES

I
‘)

w XA

storage, but any number of processes can share the program
itself. Not having to store a separate copy of the program for each
process can save significant amounts of memory. As an example,
note that if BASIC09 weren’t reentrant, each process using it
would start by requiring a bit over 23,000 bytes just for its copy of
BASICO09. As it is, most systems can run at least three or four
BASICO09 programs concurrently.

Making a module reentrant is the easy part. Making a module
general enough that several processes might want to use it con-
currently is the real trick. Important system programs like the
Editor and BASICO09 have it easy. The designers knew those pro-
grams would be heavily used. People writing more specialized
programs have to be careful.

It isn’t likely that most full-blown programs will be used by
several processes unless the system is dedicated to the task per-
formed by the program. However, there are some operations that
many programs have in common: formatting output, math, validat-
ing input, formatting the screen and handling database files are
some examples. If all these functions are built into one module, a
program will have to incorporate the entire package if it needs to
use any of the functions in the module. If separate modules are
built to do each of these operations, some of them might make
useful parts of several different programs. OS-9 makes iteasy fora
program to collect a group of modules. You, the programmer, have
to design your system so that feature is useful.

MEMORY FRAGMENTATION

Memory fragmentation is a problem that more serious OS-9
Level One users will have to learn to deal with. Hardware included
in each Level Two system (the DAT) makes memory fragmenta-
tion irrelevant for them. Memory fragmentation becomes a prob-
lem whenthe available free memory is in so many little pieces that
0OS-9can’tfind enough memory in one block to satisfy a program’s
request. This is a serious problem, and is dealt with in more depth
in the “Over the Rainbow” section. The simple solutionto memory
fragmentation problems is to kill processes, startingwith the ones
you can spare most easily, and continuing until there is enough
contiguous memory to satisfy you. The MFREE command will tell
you how many blocks of free memory you have, and how big they
are.

CAREFUL USE OF MEMORY

There are some ways to waste memory that (I think) can only
bedoneintentionally. The bestexampleisthe SLEEP command. If
SLEEP s given extra memory, ittakesitoutof circulation.You<can
be certain SLEEP doesn’t run any faster or better with more
memory. If you want to waste memory for some reason, use:

SLEEP 10000 #48&

234

There go 48 pages (12K) of memory out of circulation until the
command terminates.

Aless obvious way to waste memory is to give a program more
memory than it needs. It is easy to allocate extra memory to a
program with the “#” shell option. Some programs make good use
of extra memory, some don’t even notice it. Even the other pro-
gramsrunning atthetimeinfluence how useful extra memory is. In
general, give a program extra memory only if you KNOW it will
help. The COPY command is a good example. Everyone knows
COPY runs better if it is given extra memory; no question, it does.
But just how much better it runs depends on your disk hardware
and what else is going on in your system. If you have a hard disk,
extramemory makes almost no difference. Onthe otherside of the
issue, the assembler really needs extra memory to assemble most
programs.

Some programs, like BASIC09 and Asm, make it very clear to
you when they need more memory. They don't care how much
memory they have, provided it is enough. You can prove this to
yourself by running the assembler with 10K and then with 32K. It
willruninthe sametimeifitrunsatall. Programs like BACKUP and
COPY will run faster with extra memory, but how much faster
depends on the details of your system. If you use the commands a
lot, and care about conservation of memory, it would be worth
your time to make some tests.

You can waste memory by writing non-reentrant modules, or
by giving programs unneeded memory from the shell without ever
writing a line of code. OS-9 is also able to waste memory without
any effort on your part. It can make your memory useless by
slicing it up too small foryour programs. This nasty habit is called
memory fragmentation.

If you don’t push your system, you probably won’t have trou-
ble with memory. Fragmentation only happens when several pro-
cessesrun simultaneously. If you don’'t dothatalot, you won't see
the problem. Similarly, if you don’t run several programs at once,
you don't care about a program taking up unused space —
provided it doesn’t keep itself out of that memory. Even reentrancy
is only an issue when there is more than one process using a
module.

CHANGING THE DEFAULT MEMORY ALLOCATION OF A MODULE

If your system is heavily used, especially by a large group of
people, you may want to predetermine the best memory alloca-
tions for each program. Microware has taken some guesses at
what memory allocations their programs should have, but they
were always careful. The programs are usually given the minimum
memory necessary for running them.

If youwanta program to have a default memory different from

235

DYNAMIC MEMORY ALLOCATION

SUMMARY

thatwhich Microware assigned, modify that module’'s header. The
header contains a field that determines the amount of memory the
program will request. | don’t recommend ever decreasing that
value, but it is often convenient toincrease it. Just use Debug, or
any other appropriate tool, to increase the value in the M§Mem
field, a two-byte field, twelve bytes from the beginning of the
module header.

If youresetmodulesto your preferred memory size, youwon't
havetoremember the correct figure for optimum performance for
each program. Real perfectionists won’t be happy with any stand-
ard memory allocation for a program. They can still give the pro-
gram a different memory allocation from the shell command line.

In one case, wasting memory is necessary. If a program,
running under OS-9 Level One, wants to call for additional
memory, it should do it as early as possible evenifitwon’tuse the
memory for awhile. Data memory for programs is allocated start-
ingin low memory and working upward. When a program calls for
extra memory, it will only get the memory if there is free memory
just above the current allocation. If another process has been
started, it may well have claimed that memory. So, in the case of
programs that increase their memory requirements dynamically,
ask for what you need early, and don't let it go until you know you
won’t need it again.

In this chapter we covered several of the common pitfalls and
problems OS-9 users encounter when dealing with memory allo-
cation. Important concepts are reentrancy, default memory allo-
cation and fragmentation.

236

CHAPTER 21

managing disk space

Disk space is another kind of memory the OS-9 user gets to
worry about. In this chapter we’'ll discuss how to avoid wasting
disk space — or at least know when you’re using it inefficiently.
We'll also discuss what can slow down access to disk files, and
some tricks for recovering damaged or deleted files.

There are two types of files that waste disk space, small files
and unexpectedly large files.

USING SPACE EFFICIENTLY

Small files carry a heavy overhead burden compared to their
size. The directory entry is a barely noticable 32 bytes. The file
descriptor takes a sector (256 bytes). The real overhead is the
minimum allocation OS-9 makes for each file. If the minimum
allocationis more thanonesector, very smallfiles can waste lots of
disk space. If you have a choice of many small files or fewer large
ones, chose larger files when efficient use of disk space is your
first priority.

Enlarginga file under OS-9is easy. Allyou havetodois write a
byte at a position past the end of a file and the file will be leng-
thened to include that byte. If you aren’t careful, that trick can
cause you to allocate more data for a file than it needs. You can
protect yourself from inadvertently lengthening a file by avoiding
I$Seek on a file when it is open for writing. If you don’t use the

237

AIMING FOR SPEED

I$Seek service request, you won’'t be able to write a byte way
beyondthe end of a file without writing all the bytes before it; if you
do use 1$Seek, be careful.

REPAIRING DAMAGE

0S-9 isn't known for its high-speed disk access, though
accesstoafile will seldom be significantly slower thanis usual for
the computer it's running on. The most common cause for siow
accesstofiles is the environment; that is, what other files are being
accessed and what processes are running. Another problem that
sometimes is important is disk fragmentation.

It takes time to move a disk drive’s read/write head from track
to track on a disk. Because of this, it is fastest to access a file with
the minimum movement of the heads. Before reading a file, OS-9
must read the directory to find the address of its file descriptor,
then it must read the file descriptor. The file descriptor contains a
list of address/length pairs that describes the location of the file on
the disk. In the best case, the file can be read with only two extra
reads: one for the directory entry, the other for the file descriptor. If
the file had to be scattered around the disk because disk memory
was fragmented, there will be several address/length pairs in the
file descriptor, and OS-9 will have to keep returning to the File
Descriptor to find the address of the next block.

The only way to deal with fragmentation is to copy the con-
tents of the disk, file by file, from one disk to another. Using
BACKUP doesn't help because BACKUP makes a mirrorimage of
the disk; each fragmented file will be just the same on the new disk
as on the old.

If optimizationis very important, a file's directory entry should
be placed earlyinthe directory; otherwise several sectors of direc-
tory may have to be read before the right entry is found.

This trick is mostuseful in the execution directory. There are
many entries in that directory, and most of the files are small
enough that a few extra reads to search through the directory
make a noticable difference.

For maximum speed, put your most-used files nearthe begin-
ning of the directory.

Torecoveradamaged or deleted file on disk, you must have a
way of reading and modifying selected sectors on disk. Several
programs are available to do this, including a program from the
0OS-9 Users Group and a sample BASIC09 program in the
BASIC09 Manual.

If asmallfile has been erased and you catch it soon enough,
youcan recover it.

238

e First, inspect the directory the file came from. You should
find adirectory entry that has the file name of the deleted
filein it minus the firstand last letters. The first letter was
changedto a $00to indicate that the file was deleted. The
last letter isn’t a standard ASCII character because the
high order bitin itwasset“on” to indicate thatitwasthe
last byte in the file name.

e When you have found the right directory entry, change
its first byte back to the first character in the file name.

e Now the file will show up in the directory and be reada-
ble. Don’'t write anything on this disk yet! The sectors that
make up the deleted file are still marked as free for use.
The next file that gets written to the disk may well use an
important part of the file you are trying to rescue.

e Copy the file to another disk — not another file on the
disk with the deleted file!

e |f the previous step doesn’t work, either an important
sector (the File Descriptor) in the file you are trying to
rescue was used by another file, or the file was too long
for this method. Give up unless you want to search
through all the sectors on your disk, pulling out those
that contain parts of the file.

e Put the directory back the way you found it.

e The disk is now usable. You may want to copy the
rescued file back to its original location.

This method only worksfor files that are one extent long. If OS-9
didn’t allocate the file in one contiguous block, recovering the file
will be much harder. Unfortunately, this means that often you'll
have to struggle to recover a file. OS-9 seldom allocates files of
more than a few hundred bytes in one extent. You can probably
reconstruct small files painlessly, but big files contain large
amounts of data in several extents.

If the consequences of losing a file are so dreadful that it's
worth hours of your time torecover it, you can retrieve the data the
hard way. Like the trick for recovering small files this requires two
disk drives. Unlike the trick for small files, it takes lots of time and
effort.

This isn't really a trick. It's just a brute force approach to the
problem. In essence, we're about to treat the disk with the deleted
fileasasinglefilethatincludes allthe sectors on thedisk. You look
through allthesectors, selectingones that look like part of the file
you want to recover, and build a file including all those sectors.
Then, using an editor, you put those sectors into the right order.

239

[T

BN

USING BRUTE FORCE

It's difficult to recognize a chunk out of the middleofan object
module, so lets assume the deleted file contained text. The
BASICO09 program “Scavange” runs through each sector on disk
/D1. It displays the contents of the sector on the screen with the
question “Keep?” Ifyoureply,'Y ' itwillcopythesectortothefile
“recover” in your data directory. Any other reply, even just a
return, will cause the program to go on to the next sector.

PROCEDURE Scavange

0000
0015
003F
0072
009B
oocc
00E9
OOF5
80FC
0103
0112
011D
0123
012F
0138
014F
0159
0168
0177
0187
0191
0193
01A7
01AB
01B6

DIM

sector (256),fsector(256):BYTE

(* sector is the buffer for put and get *)
(* fsector is used for data formated for display *)

DIM
DIM
DIM
DIM
DIN
DIM

diskname:STRING[10] \(* name of disk to recover *)
recname: STRING[10] \(* name of file for recovered data *)
recfile,diskfile:INTEGER \(* file numbers *)

yn:STRING([3]

done : BOOLEAN

i: INTEGER

recname="Recovery"
diskname="/D0@"

done=FALSE

OPEN #diskfile,diskname:READ
CREATE #recfile,recname:WRITE

RUN

getsector(diskfile,sector,done)

WHILE NOT(done) DO
RUN reformat(sector,fsector)
RUN display(fsector,yn)
IF LEFTS$S(yn,l)="Y" THEN

PUT #recfile,sector

ENDIF

RUN getsector(diskfile,sector,done)
ENDWHILE
CLOSE f#diskfile,ffrecfile

END

PROCEDURE getsector

PARAM diskfile:INTEGER
PARAM sector(256):BYTE
PARA!MN done:BOOLEAN

DIM errno: INTEGER

ON ERROR GOTO 100

GET f#diskfile,sector

0000
0007
0013
801A
0021
0027
0031
0033
0048
004B
0051
0058
0061
0065
007cC
007E

100

END

(* expect end-file

ON ERROR

errno=ERR

IF EOF(#diskfile) THEN

done=TRUE
ELSE

PRINT "Error "; errno; "on /DO"
ENDIF
END

240

PROCEDURE reformat

0000 PARAM in(256),0ut(256) :BYTE

0015 DIM i:INTEGER

001cC FOR i=1 TO 256

002D IF in(i)>=ASC(" ") AND in(i)<=ASC("~") OR in(i)=13 THEN
0054 (* in(i) is a printable character or a <CR> *)
0082 out (i)=in(i)

0091 ELSE \(* in(i) isn't printable *)

00B0O IF in(i)>=ASC("™ ")+128 THEN

00c4 out(i)=in(i)-128

00D6 ELSE

00DA out(i)=Asc(".")

00E7 ENDIF

00E9 ENDIF

00EB NEXT i

00F6 END

PROCEDURE display

0000 PARAM fsector(256):BYTE
000C PARAM yn:STRING[3]

0018 DIM work:STRING[256]
0024 DIM i:INTEGER

002B i=1

0032 work=""

0039 WHILE i<=256 DO

0046 IF fsector(i)<>13 THEN
0055 work=work+CHRS$ (fsector(i))
0065 ELSE

0069 PRINT work

006E work=""

0075 ENDIF

0077 i=i+l

0082 ENDWHILE

0086 PRINT work

008B PRINT

008D INPUT "keep? ",yn

009B IF LEFT$(yn,1)="y" THEN
00AB yn="Y"

00B3 ENDIF

00B5 END

Itiseasytoreject the lastsectorin a file by mistake. The last
sectorinafilewill contain thefile's last characters, but therestofit
will be filled with junk. To prevent the junk from deceiving you,
keep your eye on the beginning of each sector.

If you are certain you have retrieved all you want from a file
before Scavange has worked through the entire disk, abort the
program with a keyboard interrupt. You'll spend long enough
running Scavange without extending the pain!

You won't find a damaged file very often. If you use high-

quality diskettes and take good care of them, you may never see a
damagedfile. The only disks | have had any trouble with arethosell

a4

receive in the mail. The Post Office is the great destroyer of
diskettes. They (the diskettes) can only stand so much heat, cold,
andfolding.Evenwhen adiskette makesitthrough the Postal filter
intact, thereisachance fordisaster. Yourdrives may have trouble
reading disks writtenby someoneelse’'sdrives. Don’'tgive upatthe
first#244 error. If youcanread partofafile, thereisa good chance
you can get at most of it.

Ifthereisabadsectorsomewherein thefile, yourbestbetisto
try to read it several times. You mighteven try writing a program
that copies the file and retries many times if it gets a I/O error. If
that trick doesn’twork, you'll haveto giveup onthatsectorand try
to rescue the rest of the file.

HOW TO IGNORE ABAD SECTOR

You can eliminate a bad sector from a file by fussing with the
File Descriptor. The block of the file that contains the bad sector
must be split into two blocks, with neither containing the bad
sector.

Inspect the File Descriptor for the damaged file.

Decrease the byte count FD.SIZ by 256, the size of a
sector.

Look through the Segment List for the address/length
pair that points to the block containing the damaged
sector.

Divide that block into two segments:

The first having the same address as the origi-
nal, but a length that only takes it up to the
sector before the damaged one.

The second having an address one sector
beyondthe damaged sector and a length equal
to the original length minus one for the dam-
aged sector, minus the length of the first new
segment.

Copy thefile. It's all right tocopy ittoanother fileon the
same disk.

Delete the damaged file.

The damaged sector will still be marked as aliocated. This will
causethedisktoshowanerror when DCHECKisrunonit, butitis
easier than returning the file descriptor to its original form before
deletingthefile,and it prevents the bad sector from being used for
another file.

242

This method sounds complicated. Itis. Fortunately, thereisan
easier way. Skip over the bad sector while reading the file. Write a
programthat copiesthe file. Whenthe program getsaread error, it
should get the positionin thefile, roundit up tothe next multiple of
256 and seek to that position in the file. This trick jumps over any
bad sectors.

In this chapter you learned about clever and efficient use of
disk space. You also learned several ways to recover lost and
damaged disk files.

243

SUMMARY

CHAPTER 22

building a device descriptor

Device descriptors are OS-9's reference material for I/0O de-
vices. In this chapter we will talk about how they are constructed
and what they do.

WHY MAKE DEVICE DESCRIPTORS?

There is a device descriptor for every I/O device in an OS-9 Q
system. As the name implies, each descriptor describes the attri-
butes of a device. They each contain a description of the hardware
for a device and other information specific to it. A new terminal
port or graphics card will need a new device descriptor. Some-
times, just changing the type of terminal attached to a serial port
will require some changes to the descriptor for that port.

Device descriptors contain all that OS-9 needs to know about
adevice. However, they don't all contain the same set of informa-
tion. All device descriptors have some basic information in com-
mon: the address of the device, which file manager to use with it,
which device driverto use with it, whichaccess modes are valid for
the device and whatitis named. Also, there is always a placefora
table, called the initialization table, which contains information
that the file manager and device driver might find useful.

The contents of the initialization table vary from one kind of
device to another. Devices that use the Random Block File man-
ager (e.g., Disk drives) have information like the device’s stepping

245

rate and the number of sectors per track. The initialization table
for devices that use the Sequential Character File manager
contains a list of editing characters, Baud rate information, the
number of lines on a page and other similar information. The
PIPE device doesn’t have anything in its initialization table except
a byte indicating that it is a pipe.

HOW 0S-9 USES THE DESCRIPTOR

When you first open a path to a device, OS-9 (specifically
IOMAN) looks first at the device descriptor. It has to start there
because all it has is the name of the device you want to use. The
descriptor gives IOMAN the names of the file manager and device
driver that it should use. IOMAN builds a path descriptor for the
new path, copying much of the information contained in the
device descriptor into the path descriptor, then hands the request
off to the the appropriate File Manager with the address of the
Device Descriptor and the Path Descriptor.

A file manager has access to all the information in the device
descriptor, but it only uses the most generic part of it. There is no
rule governing what the file manager can use, but generally it
won't use data that is specific to the I/0O device, such as its port.
The file manager uses the device driver named in the device des-
criptor to do physical I/0 operations. It passes the driver the
address of the path descriptor, and (on the open call) the device
descriptor. The driver reads values that might vary between the
devices it is responsible for from the device descriptor and the
path descriptor. Some of the values device drivers read from the
device descriptor are the device address, Baud rate, stepping rate
and port initialization byte.

MANAGING DEVICE DESCRIPTORS

The device descriptors that come with your system should be
adequate to describe your hardware. If the company that sold you
thesystemis doingits job, you will find that your copy of OS-9 has
more device descriptorsthan you need. You may also find a direc-
tory of alternate descriptors somewhere on your distribution disk.

If the system comes with too many device descriptors in the
system boot, you may want to remove the extra ones. The most
common problem here is that OS-9 often comes with device des-
criptors for disks /DO through /D3. Few people have more than two
drives (/DO and /D1), so the space used for the /D2 and /D3
descriptors is usually wasted. If you need every last byte of
memory, remove unneeded descriptors by building a new boot-
strap without them. If you save the modules on disk you will be
able to load them later when you discover that you need them.

Unless a device is hardly used at all, it is best to include its

descriptor in the boot file. If you include a module in the boot file,
you can be certain that it will be packed into memory as efficiently

246

as possible and won't disappear if you unlink it by mistake. Also,
the error messages you get when you try to use a device whose
descriptor isn’'t in memory are sometimes hard to understand. |
always seem to have trouble with missing descriptors when | am
four or five hours overdue for bed. At times like that | only under-
stand the simplest error messages. Sometimes | have gotten
myselfinto a bit of a panic before | realized that the device descrip-
tor was sitting safe on disk.

MAKING AND MODIFYING DESCRIPTORS

It is sometimes a matter of judgment whether to generate a
new device descriptor or use one that you already have. If you have
a new serial card, disk controller or whatever, you will definitely
have to make a device descriptor for it. The device address isn't
something you can change after a file has been opened. If you just
want to turn on XOn/XOff support for your terminal, you have the
option of modifying that attribute on the fly.

Information in the initialization table can be changed with the
I$SetStt service request. The change isn’'t actually made to the
device descriptor, just to the path descriptor’s copy of the initiali-
zation table. If you aren’t certain you want to make the change a
permanent one, this is the way to do it.

If you choose to go the 1$SetStt route, you still have a few
choices. You can do it all by yourself with a piece of code like:

LSS RS2SRRSRttt R R R R R R RtRR2tRRRRRRRRRRRRtRts st

Ida #0 Standard input path number

Idb #SS.Opt Select the <Read option> getstat
leax OptBuff,U Point at 32-byte buftfer

0S9 I1$GetStt issue SVC

bcs I0Error If error; deal with it

Ak Ak A A hhkhhh

* Just by way of example let's turn on XOn/XOff

*

Idb #$11 XOn

stb PD.XOn-PD.OPT,X Save it in XOn slot of Opt area
Idb #$13 XOff

stb PD.XOff-PD.OPT,X Save it in XOff slot of Opt area
Idb #SS.0Opt Select the <Write option> setstat

AR AR AR A AR A AN

* Aand X are still set from the previous call

247

XMODE

0S9 I$SetStt issue the SVC
bcs IOError

1222222222222 22

* Allset

L2 2222222222222 2222222222222 22222222222 222 2222222222222 2222222222

If you mean to change the characteristics of a device in the
middle of a program, that is surely the way to do it; but, since the
change is only to the path descriptor, the change will go away
when the path closes. Even this isn’'t as simple as it seems. The
standard I/O pathsareall “dups.” The I$Dup call is used to give the
same path lots of path numbers. Allthree standard I/O paths often
use the same path descriptor. Since standard I/0O paths are inher-
ited when a process is forked, the change made in this programis
passed to the SHELL (or whatever program forked this one) and
perhaps back through several generations. Clearly, path descrip-
tors should be changed cautiously.

Still, the path will eventually be closed, and when that
happens your change will go away. If that’s fine with you, there is
an easy OS-9 command, TMODE, which does just this kind of
setstat for you. You can turn on XOn/XOff from the SHELL before
starting a program and not have to worry about writingthe SetStat
intoit.lassumethat you have used TMODE by now; if you haven't,
doitsoon. There are some valuesthat can be manipulated without
causing great trouble. Try turning ECHO off:

OS9:TMODE -echo

When you are convinced that its no fun typing without seeing
the results turn ECHO back on:

0S9:TMODE echo

It's also useful to experiment with PAUSE.

If you want to make the change a little more permanent, you
have to change the device descriptor. Some versions of OS-9
include the XMODE command. This command makes changes to
the initialization table in the device descriptor instead of the copy
in the path descriptor. Also, unlike TMODE, it can be used to
change the attributes of adevice thatisn't one of the shell's stand-
ard paths. The syntax of XMODE looks a lot like TMODE, but the
difference between the control blocks they act on means that
TMODE takes effect immediately, but may not have a permanent
effect. XMODE only takes effect when a new path to that device is
opened, but will continue in effect for every path opened to that
deviceuntilOS-9isrebooted, orsomething elseis done to alter the
device descriptor.

248

If youdon't have XMODE you can stillchange device descrip-
tors on the fly. DEBUG changes device descriptors as easily as it
changes any other type of module (though it would be hard to
change path descriptors with it). DEBUG can change anything
about the descriptor, including the device address and the access
mode — values that can’t be altered by XMODE.

You've gotto keep your witsaboutyouwhenyouuse DEBUG.
There is nothing to protect you from yourself. Ifyou feelany doubt
about it, plan out what you will do before you start. The following is
ascript for changing the device address for the device descriptor
T2

0S9:debug
DB: | t2 link to /T2
EA74 87 first byte in t2 module (sync byte)
DB: . .+e move forward to device address
EA82 OF
DB: m . .+3 take a peek
EA8031030FE0241A 000001000101000118081.
DB: <CR> just a carriage return
EA83 EO the second byte of the device address
DB: <CR> another <CR>
EA84 24 the last byte of the device address
DB: =34 change that byte
EA85 1A the number of bytes in init table
DB: - check the byte we changed
EA84 34 OK
DB: q
0s9:

Note: <CR>means the carriage return or enter key.

That is sufficient if you don’t want to save the descriptor for
another session. If you do want to save this modified version of
/T2,its CRC bytes will have to be updated. DEBUG changed a byte
in the module, and when it is next loaded OS-9 will reject it
because the CRC will indicate that the module is flawed. The
VERIFY command will fix the CRC:

0S9: save temp t2
0S9: verify u <temp >new.t2

249

One problem still remains. There are now two /T2 modules.
Onein the boot file, the other in the file “new.t2.” If we leave things
just the way they are there won’t be any way to use the new /T2.

The version of /T2 in the boot can’t be removed from memory
by unlinking it. All modules in the boot are protected from that. It
could be replaced by a module with a higher revision number, but
the new version of /T2 we made has the same revision number.

There are two approachs we can take. If we really meant to
change the address of /T2, the /T2 module in the boot file will have
to be replaced. This can be done with OS9GEN.

The usual reason for changing the device address in a device
descriptoris that there is a new port that needs a descriptor. In that
case, what we really needed was a device descriptor with a new
name as well as a new device address. DEBUG can be used to
change the name as well as the address, provided that the new
name is no longer than the old one. The following DEBUG state-
ments could have been included at the end of the debug script for
changing the address to change the module name from T2 to T5:

DB: . ea74 point at module start
EA74 87
DB: . .+4 point at module name offset
EA78 00 first byte of offset
DB: <CR> to next byte
EA79 2C second byte of offset
DB: . .-5 back to module start
EA74 87
DB: . .+2c to module name offset
EAAO 54 first byte in module name “T”
DB: <CR> next byte
EAA1 B2 a “2” with the high bit on
DB: =B5 reset to “5” with high bit
EAA2 53
DB: back up to check the change

EAA1 BS looks OK

If the module name needs lengthening this trick won’t work. In
fact, this methodis altogether too cumbersome for most purposes.
Theonly time |l use itis when | want to experiment with a modified
device descriptor without making any permanent changes. | put
DEBUG in my startup file something like this:

DEBUG <my.mods >/nl

My.mods is a file containing the DEBUG commands to make
the changes | have in mind. Make sure that the last command is
“Q” for quit. DEBUG doesn’t understand end-of-file. The redi-
rected standard output goes to the null device that appears in the
“Workshop” section of this book.

250

BUILDING A DESCRIPTOR FROM SCRATCH

The most powerful, and often the easiest, way to create a
device descriptor is with the assembler. There are several exam-
ples of device descriptors in the Workshop section of this book.
They form a good starting point for new descriptors. Take the
descriptor that is closest to what you need, type it in, making
whatever changes are necessary to fititto your needs, and assem-
ble it. You can test the new descriptor by loading it into memory
with the LOAD command and doing some /0 to it. If it doesn't
perform as you hoped it would, use UNLINK to remove it from
memory and try again. Don’t build a new boot file including the
new device descriptor until you are certain it is correct; it's much
harderto build a new boot than itis touse UNLINK and LOAD to
replace a module that isn’t part of the boot.

The valuesinthe device descriptorareall important variables.
They are covered several other places in this book, but perhaps it
would do no harm to run through them all together.

THE CONTENTS OF A DEVICE DESCRIPTOR

The device descriptor starts like any other module — with a
module header. The only special part of the module header is the
type/language byte. The type is $F0, a type set aside for device
descriptors. The language is $01 — 6809 object code — even
though the module doesn’t contain one executable byte.

Following the module header is the offset from the beginning
of the moduleto the name of the file manager for this device (SCF,
RBF, PIPEMAN, or IOPMAN). Next is the offset from the start of
the module to the name of the device driver for this device (ACIA,
CCIO, PIA, etc.). Then comes the mode byte for thisdevice. This
byte can have any of the values used as file access modes: read,
$01; write, $02; execute, $04; public read, $08; public write, $10;
public execute, $20; shareable, $40; directories, $80.

After the mode byte comes the initialization table. This table
starts with abyte containing the length of that table. The table can
be longer than 32 bytes, butany bytespastthe thirty-second aren’t
copied to the path descriptor's option section. The first byte in
everyintialization table indicates the class of device thedescriptor
is for: SCF, RBF, PIPE, or SBF (sequential block file). The initiali-
zation table for SCF-type files contains all the bytes setby TMODE
and XMODE. Thereis onevaluein theinitializationtable that can't
be set by TMODE or XMODE, the offset to the “2nd device name
string.” The second device is the device used to echo input. Most
terminal ports are setto echo to themselves. If you have a parallel
keyboard and a graphics display, the keyboard probably echos to
the display.

The initialization area for a RBF device contains information
about the type of disk drive attached to it.

251

e The drive number indicates which of the drives attached
to the disk controller this descriptor is for.

e The stepping rate of the drive is entered as a code. The
relation between codes and stepping rates changes for
different controllers, so check your OS-9 manual for
details. In the case of the device driver distributed by
Radio Shack for the Color Computer, this field is not
used; the device driver only uses one stepping rate.

e The device type field contains three significant bits:
bit 0 — 1 means the disk is eightinches
0 means the disk is five inches
There is no code for three inches
bit 6 — 1 means standard OS-9 format
0 means non-standard format
bit 7 — 1 means it’s a hard disk
0 means it’s a floppy

e [fthediskisafloppy, the media density field indicates the
recording density:
bit 0 — 1 means double density
0 means single density
bit 1 — 1 means single track density (48 tpi)
0 means double track density (96 tpi)

e The numberofcylindersis the numberoftracks recorded
on oneside of adisk. This numberis usually 35, 40, or 80.

e The number of sides is one for single sided floppies, and
two for double sided floppies. Hard disks can have many
sides.

e Verification is usually used. If the disk controller or drive
automatically verifies data it has written, verification
neednotbedone;otherwise, itis strongly recommended.
If you use good hardware you will seldom have data
incorrectly written, but it is worth the check just to be
sure. If the verify byte is zero, all writes will be verified.

e Thenumberofsectors pertrack affectshowmuchcan be
written on a disk. More sectors per track requires better
hardware, and may be unreliable. Find out what the
hardware manufacturer recommends.

e The number of sectorsontrack zerois special (excepton
the CoCo) because track zero is always written single
density. By recording the firsttrack at a standard density,
regardless of the density of the rest of the disk, we make it
easy for OS-9 to read enough of the disk to learn the
characteristics of therest of it. Since the density of track
zero may be different from the rest of the tracks, the
number of sectors on it may also differ.

252

® Sector interleaving is a trick to improve performance. If
sectortwo s written directly after sector one on the disk
there may be a serious performance penalty. After the
computer reads the first sector in a file there is usually a
tiny pause before it requests the second sector. If the
pause is longer than the amount of time it takes the disk
to cross the boundary between the first and second sec-
tors, the disk will have to spin all the way around before
the second sector can be read. By putting some other
sectors (say the eighth and 15th) between the first and
second, we give the program time to process the first
sector, and ask for the second, before it is under the head
and ready to read. The interleave factor specifies how
many sectors apart sequentially numbered sectors should
be located. The interleave factor doesn’t change the
actualnumbering ofthe sectors on the disk. It just makes
0OS-9 map the numbers on the disk to the numbers it
uses.

e The segment allocation size is part of another optimiza-
tion trick. Most files start small and grow as more data is
written to them. If the system is active with several pro-
cesses writing to the disk, little pieces of files may get
scattered around the disk. By making the segment allo-
cation size greater than one, files can be made to start out
with several sectors. If they are smaller than that, some
disk space can be wasted. If most files are roughly some
multiple of the segment allocation size, nice non-
fragmented files are the resulit.

SUMMARY

In this chapter you have learned a bunch of ways of making
new device descriptors, and reasons for going tothattrouble. You
also heard about eliminating extra descriptors.

253

CHAPTER 23

_adding a new device driver

In this chapter we discuss the reason for device drivers, then
move on to reasons for creating new drivers. The actual business
of writing a driver is left for the Workshop portion of this book.

Device drivers are operating system modules that deal with
the actual hardware of I/0O devices. Other parts of OS-9 deal with
an idealized device. All SCF devices seem to perform the same
operation in the same way from the point of view of every module
except the device driver. The driver does whatever is necessary to
make the real device look like the imaginary device that the rest of
the OS-9 world sees.

This philosophy has some important implications. It gives
OS-9 tremendous flexibility. Only one module has to be written to
permit the system to use a new device. The only limit on the
number of device drivers that OS-9 can support concurrently is the
memory that they all take. Eventually, the drivers and their asso-
ciated buffers and descriptors will use up more memory'than you
can tolerate. There is a hidden cost for this flexibility. When you
know the characteristics of the device you are working with, there
is a lot you can do to optimize your system. Isolating that knowl-
edgein devicedrivers prevents the rest of the system from taking
advantage of special features of a device.

255

WHY DEVICE DRIVERS?

O
O

On a system like the CoCo, positioning the cursor is a trivial
operation. The screen is mapped into a block of memory; the
cursor position is just an address. On a system with a terminal,
positioning a cursor is a harder task. OS-9 doesn’t concern itself
with cursor positioning, notbecauseit isn'timportant, but because
a method general enough to work on systems with very “dumb”
terminals would be fantastically wasteful on systems like the
CoCo.

Cursor positioning is an example of a device characteristic
that OS-9 hasn’t taken responsibility for, butthere areotherthings
like buffering and error handling that OS-9 hides in the device
driver at some cost in speed and power.

The actual design of a device driver will be taken up in the
Workshop. It isn’t difficult, but must be done carefully. OS-9
doesn’t include good facilities for debugging parts of the operat-
ing system. Any bugs you write intothe driver tend to have hairand
TEETH!

WHY CREATE NEW DRIVERS?

If you like to play with your operating system, device drivers
are a good playground. The operating system is meant to be
expanded by having drivers added to it, and there are many oppor-
tunities for improvement. The ACIA driver that appears later is a
version of the Microware version 1.2 standard that | modified to
include <break> support. | don’'t know of any disk driver that
includes a cache, but there isn’t any reason they shouldn’t. The
size of the input and output buffers maintained by ACIA driversisa
subject that gets a lot of discussion.

If this kind of thing excites you, study the drivers presented
here, and go improve your own. Two more warnings: Microware
considers device drivers part of the operating system. They don’t
feel obligated to maintain compatibility with their old drivers, and
especially not with your drivers. The other warning is also about
compatibility: make a special effortto keep your driver compatible
with Microware’s distributed drivers. If you add enhancements
that create a slight incompatibility, you may find that a program
you buy relies on the feature you changed. Look at my ACIA driver
for one way to add a feature without disturbing things too much.

Device drivers can be a particularly important part of a real-
time control system. Not only do they sometimes have special
devicestosupport, butdevicedrivers are entered only afew cycles
after an interrupt takes place. If you need to respond to an inter-
rupt with some almost-instant action, the device driver is the only
place to do the processing. Normal processes are run and put to
sleep atthe whim of the dispatcher; device drivers arerunassoon
as the source of the interrupt is discovered.

If, for example, you are controlling an outgoing voltage based

256

on an incoming voltage, the times required for A/D (Analog-to-
Digital) and D/A (Digital-to-Analog) conversion may be almost
more than you can afford. A device driver could be designed to
drive both devices and perform some simple computations. It
would pass information on to a normal program for low-priority
processing, but would respond almost instantly to each interrupt.

If you create a new device driver with a new name (say Null),
you must also build a device descriptor for it. No device can be
used without a descriptor.

If you build or buy a new device driver, you will probably want
toinstallitinyourbootfile. If youwantto experimentfirst,ordon’t
want to use space in the boot for a seldom used device, device
drivers can be loaded after the system is booted. Just make sure
thatboththe devicedriver andthe device descriptor stay linked as
long as they are being used. One good cause for inexplicable
errors is that the driver has come unlinked and disappeared from
memory. If this happens, unlink the descriptor and load and link
both the descriptor and the driver again. Since modules in the
bootstrap can’'t be dropped from memory no matter how many
timesthey areunlinked, the problemdoesn’tshow up there. Ifyou
load them separately, be careful.

In this chapter we discussed the philosophy behind device
drivers. | tried to show why you would want to write a new driver,
and finished with some practical issues about driver design and
installation.

257

SUMMARY

CHAPTER 24

processes

In this chapter you will learn what processes are, how to
create them and how to control them. There is also a discussion of
system tuning, the art of getting the best possible performance out
of your computer, and some information about signals.

Sometimes it seems that everything that isn’t a module in
OS-9 is a process. Processes do things. All programs involve at
least one process while they are running. Frequently the words
“process” and “program” are used interchangeably. All programs
use CPU time; processes arethings that use CPU time. The differ-
ence is that a program is a higher-level entity. A program might
involve several processes, butit certainly should DO something. A
process may sitaround doing nothing most of thetime. SYSGO is
a process that sits around waiting for the world to fall apart so it
can rescue you. OS-9 itself is an odd sort of process.

When you run a program from the SHELL.:
0S9: list /d0/defs/0s9defs

the shell “forks” a process to run the LIST program, then pauses
until it completes. If you change the command:

08S9: list /d0/defs/0s9defs >/p

you have some options. Just sit there and you will wait until the file
has printed before you can go on. Hit control-C and the shell will

259

WHAT IS A PROCESS?

FAMILY RELATIONSHIPS

THE INFAMOUS RABBIT PROGRAM

W

stop waiting. You get another prompt and can run another pro-
gram (start another process). You can do this because the list
program hadn’t done any I/O to your terminal. If it had, the control-
C would have acted as it usually does to abort the listing.

If you know in advance that you want the listing to run in
“background,”youcantellthe shell notto pause after starting the
process by putting an ampersand (&) after the command:

08S9: list /d0/defs/os9defs >/p&

You will get an “OS9:” promptimmediately, and the listing will
proceed without your attention. If you decide that cutting the list
process loose was a mistake, you can change your mind with the
(w) shell directive. Just type ‘w’ on the command line:

0S99 w

The shell will wait for a process it started (child process) to
terminate before continuing.

Processes arerelated by the same names as afamily. There is
a parent process (which used to be called a father), and child
processes (used to be sons). When a process forks a new child, itis
said to have “spawned” a child. Two processes spawned by the
same parent are said to be siblings (brothers).

Thismight be agood place for an example. In the early days of
mainframes, mischievous students would confound the computer
operators by starting programs called “rabbit jobs.” These pro-
grams would start at least two copies of themselves before going
away. Modern systems have some protection against this kind of
abuse, but OS-9 is helpless beforeit. There is no good purpose for
rabbit jobs, but it may be the only way you'll find out how many
processes your machine can run at one time.

Clean up your system before you run this. The Rabbit pro-
gram is as hard to kill as a family of real rabbits. You may have to
boot the system to stop them, but try KILL O first.

If you share a multi-user system, remember each of those
rabbits will have your user number.

Rabbit - Rabbit Program to demonstrate F$Fork SVC

00001
00002
00003

00005

nam Rabbit

ttl Rabbit Program to demonstrate FS$Fork SVC
IFP1

use /d0/defs/0S9Defs

ENDC

260

00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047

00000
00000
$003a
$00cCs8
$21ES

0011
o081
0000
000D
0013

Type set Prgrm+Objct

Revs set ReEnt+1
87CD003A mod ModLen,Name,Type,Revs,Entry,MemSize
52616262 Name fcs /Rabbit/
01 Version fcb 1

khkkkkhkhkhkhkhkkkkhkkk

* Variable Memory
*

0000 rmb 200 Stack space
00cs8 MemSize equ
0014 Entry
khkkkkkhkkkkkkkkkk
* This program runs so fast that if it 8oesn't pause for
* a while the system instantly floods with jobs. This sleep
* doesn't prevent the flood, but it does slow it enough that
* you can see what's hitting you,
*
0014 8EO0190 1dx #400
0017 103fr0A 0S9 F$Sleep
khkkkhkkkkkhkhkkhkkkk
* Prepare to fork a rabbit
*
001Aa 8611 lda #Type Type for forked module
001C C600 1db #0 Memory overide for forked modu
001lE 308DFFEB leax Name,PCR name of module to fork
0022 108E0000 ldy #0 length of parameter area
kkkkkkk*k
* Since there is no parameter area don't bother with a pointer
* to it,
*
0026 103F03 0S9 F$Fork
0029 2509 bcs Exit If error; don't fork again
*kkkkkkkk
* A and X have been changed by the F$Fork call
*
002B 308DFFDE leax Name,PCR
002F 8611 lda #Type
0031 103F03 0Ss9 FS$SFork
0034 Exit
0034 103F06 0S9 FS$Exit
0037 E10CE4 EMOD
003Aa ModLen equ *
error(s)
warning(s)

00058 program bytes generated
00200 data bytes allocated
08677 bytes used for symbols

Use the PROCS command to watch the number of rabbits
running around in your system grow. If you want an exercise in
frustration, letthem get started,thentry tokillthem off with thekill
command. When you give up, boot your system. If you want an
interesting challenge, write a rabbit-killer program. It can bedone,
though you may need to cheat. If you struggle with this program
and find that the rabbits get ahead of you, try increasing your
priority. If that doesn’t work, disable interrupts and use a shotgun
approach.

261

CHAINING NEW PROCESSES

Theshell starts programs by forking them. It can also be made
to chaintoanew program. The F§Chain service request eliminates
the calling process and replaces it with the process requested by
F$Chain. If you do this with the SHELL, you won't have a SHELL to
return to. With other programs it is a way to save memory. F$Fork
followed by F$Exit would act almost like F$Chain except that,
between the Fork and the Exit, memory would be allocated for
both the parent and the child process. Because of this, F$Chain is
sometimes the only way togowhen memory isvery tight. Thereis
also a small difference in the time required forthe Forkand Chain
requests. Chain is a little faster, but not enough to make a
difference.

ALLOCATION OF PROCESSOR TIME

There are plenty of ways for you to start several processes
running at once (Rabbit is an extreme case.). One of OS-9’s prim-
ary jobs is to divide system resources among however many pro-
cesses you choose to run. OS-9 distributes memory and 1/0 devi-
cesonafirstcome, first served basis. Time on the microprocessor
is distributed according to a combination of “demand” and time-
sliced rules. Some things can't be delayed: keyboard input, for
instance, has to be read before another character is typed. OS-9,
itself, provides time-critical services. It is able to interrupt any
process and take whatever time it needs.

All processes other than OS-9 have to wait for a “time slice.”
0OS-9 requires a system clock. It doesn’t necessarily have to keep
track of time-of-day or calendar information; it does have to
generate an interrupt at least every 10th of a second. OS-9 uses
these clock interrupts to tell it when to put the current process to
sleep and start the next.

Processes wait in aqueue (aline) forachance at the CPU. The
queueis arranged according to the “age” of the processes; that s,
how long they have been in the queue. The processes that have
been in the queue longest are at the front. There is, however, an
exception to this scheme.

When a process finishes its turn, it doesn’t necessarily go to
the end of the line. Each process enters the queue with an initial
age. If a process’s initial age is greater than the age of some
process that has beenin line for awhile, it gets to “cut in line.” This
may seem unfair to you. If it upsets you too badly, don'’t use the
feature. The initial age of a process is its priority. You can set the
priority of a process with the SETPR command. Raising the prior-
ity of a processjustalittle with SETPR is usually enough to make it
run substantially faster.

262

TUNING YOUR OPERATION

Careful adjustment of process priorities can increase the effi-
ciency of your work. OS-9 doesn’'t know what a process is sup-
posed to do, or how important it is to you. Without instructions it
will treat them all the same.

Some processes don’t need frequent access to the processor.
A processthatis running your printeris a good candidate for alow
priority. You may think that 160 characters per second is fast; the
computer doesn’t. A process that only has to send characters to
the printer at that speed will spend most of its time waiting. Even if
it isn’t right on the spot with a character to be written, it's no big
dealif the printer has to wait afraction of asecond. Set the priority
forthistype of process very low. It will get acrack atthe processor
every now and then. During its turn, the process will feed the
device driver for the printer a bufferful of characters, which the
driver will print until the process’s next turn.

A processthat you (the user) interact with needs high priority.
It probably won't use most of its turns because it will be waiting for
input from you. (Actually, it won't even get a turn if it's waiting for
input.) When you do give a process something to do, you want it
done fast. Editors usually sit around waiting for a keystroke, but it
would be annoying if a key took half a second to register, or the
screen updates took a few seconds. People need attention! Make
sure your computer knows this by assigning a high priority to any
programs you will be working with.

Programs like COPY, assemblers, and particularly the C com-
piler will take all the CPU cycles they can get. If you want to run
them together with something else, you will need to protect the
other processes by giving the CPU-intensive process a lower
priority than the others.

Asarule, programs that perform alot of computations need to
be interrupted and put at the back of the queue. Processes that do
a lot of I/0, particularly SCF style I/0, are already slowed by the
devicethey aredriving. They don’t needto be controlled artificially.

Process priority has several uses. Itcantame CPU hogs. It can
take a task that you aren’t impatient about and tuck it down where
it will get to the CPU so infrequently that you won’t notice its
impact on the system. If you want close attention paid to some-
thing you're working with, such as a text editor or real-time gra-
phics, a high priority will give it lots of attention.

You won't speed anything up by assigning all your processes
high priority. As the word priority implies, you have to rank pro-
cesses. If you assign all processes a priority of 250 they will run
just the same as if you gave them all 50.

263

SIGNALS

Processes are isolated from one another. Part of the concept
of processes is that each should appear to be running in its own
computer. There is a carefully constructed leak in this isolation.
Signals can be sent between processes. OS-9 sends signals: key-
board abort, and keyboard interrupt. There is alsc a system abort
signal that never gets to a process. It kills the process without
warning. Keyboard abort and keyboard interrupt will kill an
unprepared process, but asignal trap can be set up to catch these
signals and do whatever you like with them (including ignoring
them).

Signals can be sent by any process to any other process. The
only restriction is that only a process running under user number
zero can send system abort signals to processes running under
any user number. You can kill your own processes, but unless you
have special privileges you can't kill processes belonging to other
users.

Signals are the peep-hole that OS-9 leaves between pro-
cesses. It is such a narrow communication channel that it takes
ingenuity to use, but it is enough to build powerful systems of
processes. The building blocks are the F$Send system service
request, which will send a specified signal to a specified process;
the F$lcpt request, which sets up a signal-intercept trap; and
F$Sleep, which causes a process to wait for a signal.

Without an intercept trap, a process will be killed by the first
signal it receives. A trap doesn’t have to be very complicated. A
simple rti (return from interrupt) instruction is sufficient to prevent
the process from being killed by any signal it receives. It isn’t
necessary to put a process to sleep for it to receive signals, but
frequently processes will do everything they can find to do, and
then they’ll need to wait for a signal from another process before
continuing. A sleeping process doesn’t use any CPU time, and it
responds as quickly as possible to signals.

The Workshop section of this book contains several examples
of programs that use signals. Even the stripped-down programs
there are too big to stick in the middle of a chapter.

Merely ignoring signals isn’t so hard. The following program
segment sets up atrivial signal-intercept trap that saves the signal
code, but doesn’tdo anything about it. Other parts of the program
check the “Signal” byte from time to time and do something
appropriate.

SigTrapintercepts signals and that's all. It sets up a trap, then
waits until a signal arrives. When it receives a signal, SigTrap
writes a brief message explaining the signal and quits.

The Uregister only needs tobesetbefore calling F$lcpt under

264

exceptional circumstances. Itis so painful to have different offsets
from U in the main program and the trap, that the small perfor-
mance improvements that might come from adjusting U (smaller
offsets from U in the trap) are generally ignored. The only pro-
grams that adjust U are those that don’t use U as the base register
for global storage (C programs).

Sleeping with X set to zero means sleep forever. A signal will
wake a sleeping process, sothisactually meanssleep until asignal
arrives.

The F$PErr service request prints an error message based on
the number in B. This service request formats the error number.
Including codeto formatdecimal numbers in SigTrap would more
than double the size of the program.

00001 nam SigTrap
00002 ttl Display signals
00003 IFP1
use /d0/defs/os9defs
00005 ENDC
00006 0011 type set Prgrm+Objct
00007 0081 Revs set ReEnt+1
00008 0000 87CDO00OASB mod ModLen,Name,Type,Revs,Entry,MemSize
00009 000D 53696754 Name fcs /SigTrap/
00010 0014 01 Version fcb 1
00011 0015 0A Intl fcb $0A
00012 0016 57616B65 fcc /Wake up/ we won't see this one
00013 001D 0D fcb $O0D
00014 001E 0A Int2 fcb soa
00015 001F 4B657962 fcc /Keyboard Abort/
00016 002D 0D fcb $0D
00017 002E 0A Int3 fcb 1)
oools 002F 4B657962 fcc /Keyboard interrupt/
00019 0041 0D fcb $0D
00020 0042 0A Intx fcb $0A
00021 0043 4D697363 fcc /Misc, Signal/
00022 004F 0D fcb $0D
00023
00024 D 0000 SigCode rmb 1
00025 D 0001 rmb 200 stack
00026 D 00C9 MemSize equ .
00027
00028 0050 Entry
00029 0050 308DO0A4E leax Trap,PCR
00030 0054 103F09 0S9 FSIcpt
00031 0057 2546 bcs Error
00032 0059 308DFFBO leax Name,PCR
00033 005D 108E0007 ldy 7
00034 0061 8601 lda #1 std out
00035 0063 103F8A 0Ss9 ISWrite Token write
00036 0066 252D bcs End
00037 0068 B8E0000 1ldx #0
00038 006B 103F0A 0S9 F$Sleep wait for a signal
00039 006E D600 1ldb SigCode
00040 0070 clol cmpb #1
00041 0072 2606 bne S2
00042 0074 308DFF9D leax Intl,PCR
00043 0078 201B bra End
00044 007A C102 S2 cmpb #2

265

00045 007C 2606 bne S3

00046 007E 308DFF9C leax 1Int2,PCR

00047 0082 2011 bra End

00048 0084 clo03 S3 cmpb #3

00049 0086 2606 bne SX

00050 0088 308DFFA2 leax 1Int3,PCR

00051 008cC 2007 bra End

00052 008E 308DFFBO SX leax Intx,PCR

00053 0092 103FOF 0Ss9 FSPErr

00054 0095 End

00055 0095 108E0050 ldy #80 Max length
00056 00%9 8601 lda #1 std out
00057 009B 103F8C 0S9 ISWritLn

00058 009E 5F clrb clear carry
00059 009F Error

00060 009F 103F06 0s9 FSEXit

00061 0042 Trap

00062 00A2 E7CA4 stb SigCode,U

00063 00a4 3B rti

00064 08AS ACSO0ED EMOD

00065 00A8 ModLen equ *

00000 error(s)

00000 warning(s)

$00A8 00168 program bytes generated

$00C9 00201 data bytes allocated

$227B 08827 bytes used for symbols

SUMMARY

In this chapter you learned about processes. They are the
active objects in a computer. They are started with F$Fork, or
F$Chain. Adjustment of process priorities can pay off when sev-
eral processes are running. Processes are carefully isolated from
one another, but they can communicate with signals.

266

CHAPTER 25

file managers

This chapterisan overview of file managers. Each of the main

file managers is mentioned, and the role of a file manager in the
0OS-9 system is discussed.

WHAT'S A FILE MANAGER?

File managers are the level between the I/O manager and
device drivers. Like device drivers, they hide some aspects of the
I/0 system from user programs. Some requests are passed on to
device drivers with little intervention: SCF (Sequential Character
File) ISWrite requests would be an example. Other requests, such
as the Delete request to the RBF (Random Block File) manager,
are handled mostly in the file manager, with only incidental
requests going to the driver. The I$Seek request and some GetStat
and PutStat calls don’t go to the driver at all.

Much of SCFMan’s function relates to editing. All special
characters, like backspace and reprint-line, are handled here.
SCFMan also handles contention between several processes
wanting simultaneous access to a device.

RBFMan is the only part of 0S-9 that knows anything about

the structure of a disk. It handles directories, file descriptors and
the disk identification sector.

Pipeman does everything for pipes; the device driver for pipe
files does exactly nothing. The device driver is necessary because

267

IOMan wouldn’t tolerate a path without one, but there isn’t any
actual device associated with a pipe. Pipes are manufactured
entirely of mirrors.

Most devices can be fit into the SCF or RBF class. Devices in
these classes can be added to an OS-9 system with little effort. At
most, adevicedriver willneedto be written, and very likely, only a
device descriptor.

A few devices can benefit from an entirely new file manager.
OS-9's architecture permits new file managers to be added with-
out any disruption. Several ideas for alternative file managers
come to mind.

POSSIBILITIES FOR NEW FILE MANAGERS

A special file manager that has already been written is the I/0
processor file manager. Many of the functions of a file manager
can be pushed all the way down into a device if the device is
intelligent enough. Intelligent controller boards that support ter-
minals and printers have been made. The processor on the board
can handle line editing nicely without any help from the file man-
ager. When this function can be placed in the controller board, it
increases the I/0O capabilities of the computer substantially — if
the file manageris stripped down to just those funtions that can’t
be doneinthe devicecontroller. Each CPU cycle that can be made
the responsibility of the 1/0 processor becomes another cycle
available for user programs. Taking full advantage of anintelligent
SCF device requires a special file manager with line-editing func-
tions removed and possibly some additions to give the controller
the information it needs.

The Random Block file manager can benefitjustas much from
intelligent controllers as the SCF manager, perhaps more. At the
least, conversion of logical sector numbers to physical disk
addresses canbedonein the controller. Other functions like error
recovery, file and directory handling — in fact, most of the func-
tions of the RBF manager — could be moved to the controller. A
dedicated processor could handle these operations more effi-
ciently than the general purpose processor running the file man-
ager. Even if the microprocessor on the controller is slower than
the main processor, unloading functions onto intelligent peri-
pherals returns processor resources to other programs.

It is in the interest of the manufacturers of intelligent con-
troller boards to write special file managers, as well as device
descriptors, for their hardware. The special software makes their
hardware look a lot better.

Other file managers would add new features to OS-9. A suita-
ble file manager would add local area network support to OS-9.
This would permit several computersto be attached to each other.
Resources like disk space and peripherals could be shared

268

through the network. A single, large capacity disk could serve
several computers, saving money on disks and making public files
available to users of any computer on the network. Other high-
priced peripherals, like fast printers and graphics devices, would
also be easier to afford if they could be shared by several compu-
ters on a network.

It wouldn't be wise to make a network depend on some
particular hardware. So long as standard device drivers are used,
any device that supports the set of functions required by the
network file manager could be used. At this moment (winter of
1985), a network file manager for OS-9 isn't available, but when
one is written it should be possible to add it to any OS-9 system
with the required hardware.

A more generalized version of the pipe would be a useful
additionto OS-9. Features likethe ability tocommunicate withany
process by number would add significantly to the usefulness of
pipes.

There is nothing inherently difficult about writing a file man-
ager. The trickiest aspect to the job is that the debugger doesn’t
work for system modules.

A file manager has 13 entry points, each branching to a rou-
tine that provides a specific service. All the entry points must be
there, but the attached routines can be null procedures that just
return with carry clear, or routines that set an error code and return
with carry set.

If a new device driver will do what you want, don’t write a file
manager. A file manageris amuch bigger projectthanadriver; just
look at the relative sizes of the file managers and drivers included
with your system.

A newfilemanageris aboutthe mostimportantadditionthat a
user can make to OS-9. A new or modified file manager can add
new functionsto OS-9. A new file manager can be broughtinto use
by adding a device descriptor that references it. Clearly, this is one
of the directions in which OS-9 was meant to be expanded.

Inthis chapter you learned whatrole file managers play in the
OS-9 environment.

269

WRITING A FILE MANAGER

SUMMARY

CHAPTER 26

the i/0 manager

In this chapter we discuss the role of the I/0 manager in an
OS-9 system. The philosophical role of IOMan and many of its
practical duties are covered.

The Input/Output Manager, IOMan, does just the things you
would think a manager should do. It is called as part of system
startup, and makes itself responsible for all the I/O system calls. As
each call to an I/0 system service is made, IOMan catches it,
collects the necessary resources and hands it off to the approp-
riate file manager.

IOMan sits right at the top of the I/O hierarchy. It processes
every I/0O system service request and routes all I/O interrupts. For
most of them it only executes a handful of instructions before
passing off to a file manager. Only for the Attach, Dup, Detach,
Open and Close requests does it do any substantial work.

The Attach request is an oddball. It is almost never used
except by the I/O manager. It places a new device in the device
table and calls thedevice drivertoinitializeit. The device tableisa
quick reference table used by the I/O manager to determine
whether a device has already been attached. Knowing whether a
device has been attached prevents IOMan from wasting time at-

271

WHY IS THERE AN IOMAN?

ATTACH/DETACH

DUPING PATHS

taching it again. More importantly, it prevents IOMan from having
the driver reinitialize the device. All the facts that Attach collects
about a new device will be contained in the device table; these
facts can then be taken from the table whenever the device is
opened in the future.

Detachistheinverse operationfor Attach. It removes adevice
from the device table and calls the termination routine for the
device.

Users seldom attach a device; however, they often open files.
When a file is opened, IOMan attaches the device, if necessary. It
also creates a path descriptor for the new path and calls the file
manager to do anything it might need to do about a new file, e.g.,
find the location of a RBF file on disk.

When a path number needs to be changed, the Dup call is
used. IOMan is responsible for Dup. It assigns an additional path
number to a path descriptor and increments the use count of the
path descriptor. This sounds like a trivial operation, but it is the
only way to save the information about a path if you have to close
it. Say you want to open a path to the printer as standard output
without losing the current standard output file. This can be done
by:

dup path 1 <standard output>,
save the new path number <x>
close path 1

open the printer

The printer will appear as path 1 because IOMan always
assigns the lowest available path number, and path O is already
taken by standard input.

When you want to restore the original standard output file:

close path 1
dup path <x>

Path <x> is the dup of the original standard output. It will be
duped to the lowest available path number. Since we just closed
path one, releasing that path number, this dup will be to path 1.

close path <x>
... and that does it.

Close is another operation performed by the I/O manager. If
the use count of the path descriptor for the path being closed is
greater than one, the I/0 manager just decreases it by one. If the
usecountisone,there aren’t any other paths using the descriptor,
so IOMan returns the memory for the descriptor. If there are no
other paths using the device, IOMan will also detach the device.

272

The real working I/0 operations are passed right through the
170 manager to the file manager. IOMan wouldn’t know a directory
if it bit*“him” on the nose, and it passes on read and write requests
as fastas possible. Itsonly involvement with the bulk of commands
istogettheaddress ofthe path descriptorand passitalongtoa file
manager.

The I/0 Manager takes requests for services, arranges the
paper work and gets the right team of modules together. Its main
direct involvement is at the start and end of a project (Open and
Close). Sounds like the word “manager” was correctly included in
the name, doesn't it?

Inthis chapter you discovered that IOMan is a true executive-
type module. It seldom does anything but supervisory work, but its
organizational abilities hold the OS-9 1/0 system together.

273

SUMMARY

CHAPTER 27

disk formats

In this chapter we discuss the way OS-9 structures data on
disks. We take a low-level look at file allocation and directory
structures.

Formatting adisk changesitfrom a piece of uselessjunkintoa
carefully organized empty file structure. There are some features
of formatted disks that are common across all hardware and oper-
ating systems.

A disk’s surface is divided into tracks, which are concentric
circular paths around the disk reminiscent of the grooves in a
phonograph record. The number of tracks depends on the quality
of the disk drive. The more tracks the more data can be stored on
the disk, and the more precision the disk drive must have to
position the head over a track.

Each track is divided into sectors. These sections of the track
are the pigeon holes where data is stored. The data part of each
sector is surrounded by timing and identifying bytes. These bytes
help the disk controller find a sector it is searching for, leaving
some room for error. All OS-9 sectors are 256 bytes long, but the
number of sectors on a track varies widely depending on the size
of the disk and the recording density that is used. The smallest
number of sectors per track currently being used is 16 for single
density §%-inch disks. Eight-inch double density disks have 28
sectors per track.

275

PHYSICAL DISK FORMAT

THE IDENTIFICATION SECTOR

THE ALLOCATION MAP

THE ROOT DIRECTORY

After we get above the level of the physical disk all OS-9 disks
have the same characteristics. Information about the disk as a
whole is stored in its first sector, that is, the first sector on the first
track. The sector containing this information is called the “identi-
fication sector.” The information in the identification sector
includes the specifications for the way the rest of the disk is
written, the location and size of the bootstrap (if it's there), the
name and creation date of the disk, the user number of the owner
of the disk and a pointer to the root directory.

One of the fields in the identification sector is DD.BIT. This
fieldindicatesthe numberofsectorsin acluster. For most systems
this field will be one, but if your disk is exceptionally large, this
value can be made greater than one. Clusters of sectors are treated
like sectors for many purposes. In particular, when sectors are
allocated to a file, they are allocated a cluster at a time. If a disk
were so large that 0S-9 couldn’t keep track of all the sectors on it,
clusters could be formed of two sectors each; this would double
the size of the disk that could be handled. The number of sectors
per cluster can be set to any value necessary to permit OS-9 to
handle the disk.

Past versions of OS-9 could handle a maximum of only 2,048
clusters. With so few clusters available, even a double-sided,
double-density 8-inch disk needed to have two sectors per cluster.
More recent versions of OS-9 have increased the maximum
number of clusters to 524,288 (128 megabytes at one sector per
cluster). Thisenhancement was made by increasing the number of
sectors dedicated to the allocation map from one to a maximum of
256.

The sector right after the identification sector contains the
beginning of the disk allocation map. This is an array of bits that
indicates whether each cluster on the disk is allocated or free. If
the bit corresponding to a clusteris one, the clusteris allocated; if
it is zero, the cluster is free.

The disk allocation map is used whenever a file is created or
deleted, or when the size of a file is changed. In each of these
operations disk space is used or freed. The disk allocation map
contains the location of each free cluster on the disk.

One of the fields in the Identification sector is a pointer to the
root directory. Every disk, even one on which you never create a
directory, has aroot directory. If you do a directory command on
/D0, the result will be a list of the files in the root directory for /DO0.
This directory is called the root directory because if you view the

276

directories on a disk as forming a tree, the root directory is at the
base (or root) of the tree.

Outside its special position thereis nothing exceptional about
aroot directory. It is a file of directory entries, each entry consist-
ing of a 29-byte file name and the three-byte logical sector number
of the file descriptor for the file. Usually, a directory contains many
empty directory entries. The empty entries are distinguished by
the $00 in the first byte of the file name.

A directory file has a special purpose, but it can be read or
even written much like any otherfile. Directory files should only be
written to with great caution, but reading them is harmless. A
directory file can be examined with the following simple program:

00001 nam DirDump

00002 ttl Dump the working directory to standard ou
00003 IFP1

00005 ENDC

00006 0011 type set PRGRM+OBJCT

00007 0081 Revs set REENT+1

00008 0000 87CD0045 mod MEnd,Name,Type,Revs,Entry,lemsize
00009

00010 D 0000 DPathNo rmb 1 Directory path number
00011 D 0001 Buffer rmb 32 buffer for directory entries
00012 D 0021 Stack rmb 150

00013 D 00B7 Memsize equ .

00014

00015 000D 44697244 Name fcs /DirDump/

00016 0014 01 Version fcb 1

00017 0015 2EAQO Dirname fcs /. /

00018

00019 0017 Entry

00020 I E RS REREREE S X

00021 * Open working directory file

00022 * for reading

00023 *

00024 0017 308DFFFA leax Dirname,PCR

00025 001B 8681 lda #DIR.+READ.

00026 001D 103Fr84 0s9 ISOpen

00027 0020 251D bcs Error

00028 0022 9700 sta DPathNo Directory file path number
00029 ok kokok ok ok

00030 * Set up for copy loop

00031 *

00032 0024 108E0020 ldy $32 length to read and write
00033 0028 3041 leax Buffer,U

00034 002A CpyLoop

00035 002A 9600 lda DPathNo

00036 002C 103F89 0s9 ISRead

00037 002F 2509 bcs TestEof error; test for EOF

00038 0031 8601 lda #1 std output

00039 0033 103F8A 0s9 ISwrite write a directory entry to std
00040 0036 24F2 bcc CpyLoop no error; copy next entry
00041 0038 2005 bra Error error; abort

00042 003A TestEof

00043 003A C1D3 cmpb #ESEOF if the error isn't EOF
00044 0u3Cc 2601 bne Error it's a real error

00045 003E 5F clrb otherwise it's not an error so
00046 003F Error

00047 003F 103FO06 0s9 FSExit return

00048 0042 7EC002 ENOD

00049 0045 MEnd equ *

277

[— 3

THE FILE DESCRIPTOR

SUMMARY

00000 error(s)

00000 warning(s)

$0045 00069 program bytes generated
$00B7 00183 data bytes allocated
$223F 08767 bytes used for symbols

Dirdump is best used with a pipe to DUMP:
0S9: DirDump ! DUMP

The result will be a dump-format listing of the working direc-
tory. DirDump can be used without a pipe to DUMP, but the
non-printable characters in the directory may well drive your ter-
minal berserk.

Directory entries don't point directly at files. They point at file
descriptor sectors which give all the information about a file
except its name and the directory it’s in. The most interesting
result of keeping most of the information about a file out of the
directory is that a file can be renamed, moved about and even
given aliases without special effort.

Think about what would happen if two directories had entries
pointing to the same file descriptor. That file could be accessed
under two names from two separate directories. This kind of
trickery upsets some OS-9 commands, notably DCHECK, but in
most cases OS-9 handles it smoothly. There is even a field in the
file descriptor that can be used to give the number of directory
entries pointing to it. A file's space allocation won’t be returned
until that counter is zero.

Inthis chapter you learned about the physical organization of
a disk and the logical organization OS-9 imposes on it. You read
aboutthe datainthedisk identification sector, the allocation map,
tile descriptors and directory files.

278

CHAPTER 28

interrupts

Inthischapteryouwilllearnwhatinterruptsare and what they
have to do with I/0 and multitasking.

INTERRUPTS

Interrupts are what make OS-9tick. As you will discoversoon
that is something of a pun.

The 6809 microprocessor can deal with three different types
of hardware interrupt: IRQ, interrupt request; FIRQ, fast interrupt
request; and NMI, non-maskable interrupt. Frequently, the hard-
ware OS-9is running on can produce all three types of interrupts.
There areversions of 0S-9 that make some small use of FIRQ and
NMI interrupts, but the IRQ interrupt is the primary hardware
interrupt in OS-9 systems.

All interrupts (including software interrupts) do about the
samething. They push the MPU registers, fetchan addressfroma
speciallocationinmemory and jumptothataddress. Each type of
interruptgetstheaddressitjumpstofromadifferentlocation. This
makes it easy to handle different types of interrupt with different
routines.

The FIRQ interruptis a little special. It is meant to be used for
devices that need exceptionally fast service. FIRQ just pushes the
program counter (PC) and condition code (CC) registers. Other
interrupts push all the registers. Saving fewer registers makes
servicing a FIRQ request faster than the other interrupts.

279

Tk
Tiek

POLLING

The hardware interrupts enter the microprocessor on special
lines. Thereis a pinonthe 6809 chip foreachofthethree hardware
interrupts (plus one for reset, which acts a little like an interrupt).
The 6809 instruction set includes three instructions that cause
software interrupts (SWI, SWI2, and SWI3). These instructions
push the registers and jump through a vector just like hardware
interrupts. The OS9 instruction used in assembly language pro-
grams is actually shorthand for a SWI2 instruction followed by a
byte with the SVC number.

THE ALTERNATIVE

MULTITASKING AND THE CLOCK

Some operating systems (e.g. CP/M) use a technique called
polling. In this type of system each piece of hardware that might
need attention is polled (or checked) at frequent intervals. In a
system with a printer on a parallel port and a terminal on a serial
port the overhead involved in polling the I/O devices isn't too
much. The serial port willneed to be checked afewthousandtimes
per second; the printer (being a slow output device) can be polled
much less frequently — 200 times per second should be enough.
When a program is running, it must take responsibility for any
polling. There is noautomatic way for the operatingsystemtotake
over at intervals.

Under OS-9, interrupts are precisely a way for the operating
systemtotakeoverwhenitis required.1/O ports are programmed
to produce an IRQ interrupt every time they need attention. When
the IRQ is received, OS-9 is given control of the machine so it can
handle the event. Since aninterruptis only generated when some-
thing actually needs doing, there is no constant need to watch for
devices that need service. Neither user programs nor OS-9 need to
do any polling.

Themostimportantresultoftheuseofinterruptsisthat1/Ois
simplifiedfor users. 0S-9deals withalll/O hardware. If a program
isn’t ready for input when a byte arrives, OS-9 holds it in a buffer
untilthe programrequestsit. Similarly, OS-9 will maintain a buffer
of characters ready for output if a program is producing output
faster than the output device can take it.

0OS-9 multitasking capability is also based on interrupts. 170
hardware may produce frequentinterruptsinan OS-9system, but
they can't be relied on. Minutes might pass without a single 1/0
operation. To ensure that OS-9 gets control at frequent intervals,
every OS-9 system has a special device that produces interrupts.
These interrupts, called timer interrupts, come 10 times per
second on a Level One system, and 100 times per second under
Level Two. OS-9uses thetimerinterruptasatriggerforits house-
keeping operations. When several processes are running, OS-9

280

switchesthe current process off and startsanother every few clock
ticks (different numbers of ticks for different systems).

Switching from one process to another several times per
second makes it possible for OS-9 to appear to run several pro-
grams at the same time. If you were a very fast-moving house
painter, you could work on all four walls, moving quickly around
the house. If you moved fast enough, a spectator might think that
four painters were working slowly, one on each wall.

Ifyouarethinkingaboutthehuge amountoftimethat painter
would waste running from wall to wall, you are right. OS-9 uses
important time servicing timer interrupts and switching context
from one process toanother. The more frequentinterrupts in Level
Two systems are one of the reasons programs run a little faster
under Level One. Still, the problem isn’t that bad. A 10th of a
second is a long time for a computer. Executing a hundred or so
instructions to start a new process every 10th of a second isn't a
heavy burden for a processor that executes hundreds of thou-
sands of instructions per second. In summary, supporting multi-
tasking has some cost, but it isn’t a large price to pay.

THE POLLING TABLE

When anIRQinterruptcomesin, OS-9 only knowsthat some-
thing needs attention. It has a list, called the IRQ Polling Table, of
every device that might cause an IRQ. For each interrupt, OS-9
runs through the table checking the status register of each device
in the table to see if it sent the interrupt. This is classical polling
andinvolves overheadinthat it doesn’t go directly to the source of
the interrupt. The advantage OS-9 has over other operating sys-
tems that use polling without interrupts is that OS-9 only needs to
poll when something needs attention.

The first entries in the table get slightly faster service than
later entries. Devices that need extra fast service can force them-
selves to the beginning of the table by requesting a high priority
when they enter themselves in the table. The F$IRQ service
request is used to update the table. Check the example device
drivers in the workshop section of this book for samples of the
F$IRQ SVC in action.

Sometimes it is important to execute a block of instructions
without interruption. This is almost never a concern for regular
programs, but for parts of OS-9 it is a real issue. When a device
driverisinthe middle of updating a queue, it can’ttolerate another
version of itself messing with the same queue. If you write a system
with two or more processes writing into the same data module, you
will need to prevent interruptions during some blocks of code.

281

MASKING INTERRUPTS

SUMMARY

The most elegant way to protect a sequence of instructions is
with the 6809 instructions that read, modify and write memory all
inoneinstruction. These instructions can'tbeinterrupted even by
a separate processor or DMA device. They are inc, dec, com, asl,
asr, neg, rol and ror. | usually use the inc/dec pair. They change
memory and set the condition codein a convenient way. Noitemin
the list of instructions that read, modify and write as a unit will
mask interrupts, but these instructions do modify memory without
leaving an opening for an interrupt.

If you need to protect several instructions you can mask inter-
rupts by setting two bits in the condition code register. The
sequence is:

orcc #IntMask
a.;'idcc #intMask

The ellipses represent instructions that can’t be interrupted
except by a NMI or reset. If you must use this trick, keep the
number of protected instructions to a minimum. Don'’t use any
OS-9servicerequests; they are likely tounmask interrupts for you.
When interrupts are masked, OS-9 can’t service interrupts. 1/0
comes to a halt. In some systems, even the clock falls behind.

In this chapter you have learned something about what inter-
rupts are and why they are important to OS-9. The underlying
mechanism for multitasking came to light, and tricks for protect-
ing “critical sections” of code from interruption were discussed.

282

PART VI: POT OF GOLD

CHAPTER 29

modules

TN

In this chapter we go into considerable depth about OS-9
modules.

WHY THERE ARE MODULES

One of the first things OS-9 does while it is booting up is to
check through memory for ROM (Read Only Memory), RAM
(Random Access Memory) and, in some systems, damaged
memory. Undamaged RAMis distinguished by being able to store
data. A bytecan be saved into RAM andread backintact. To make
certain the byte isn’t ROM that just happens to contain the test
value, OS-9 does this test twice with different values.

ROM always contains the same data regardless of what is
written intoit, but locations that don't have RAM or ROM can act
just the same way. The problem that faced OS-9’s designers was
how to distinguish ROM from non-memory. Module structure
makes useful memory distinct from junk. Thatisthe firstuse OS-9
makes of modules, but they are also an important part of the
overall design of OS-9

HOW MODULES ARE IDENTIFIED

Verifying that a block of memory contains a module has to be
done accurately. It would be catastrophic if OS-9 were inclined to
find modules where there was only randomness. Since it is
frequently employed to identify modules, the process must run
fast. The process OS-9 uses is something of a compromise. It

283

THE HEADER CHECK

verifies a module in stages. The first two stages will quickly reject
almost anything that isn't a module. The last stage is slow, but
careful.

The beginning of a module is marked with a special two-byte
code, Hexadecimal 87CD. It is possible that this code could occur
somewhere otherthanthestartofamodule. To make certain that it
has identified a module, and to learn more about the module (if
that's whatitis), OS-9 verifies that the module fits a specified form.

The first nine bytesina module are called the module header.
The header contains the sync bytes ($87CD) and information
about the module: its length, name, use, type, attributes, and
revision level. After these values comes the second check on the
validity of the module, the Header Check byte. The Header Check
byte contains the one’'s complement of the vertical parity of the
other eight bytes in the module header.

The Header Check is a simple form of CRC (Cyclic Redun-
dancy Check). The vertical parity is taken by exclusive or’ing
together the first eight bytes. The effect of an exclusive or opera-
tion on two bytesistoleave ‘on’ (the value ‘1') only those bits which
are on in only one of the two bytes. For example, if the binary
numbers A=%01101010 and B=%10101010 were exclusive or'd
together, the result would be %11000000. Working from the most
significant (leftmost) bit to the least significant bit:

The first bit in A is 0 and the first bit in Bis 1.
Since one of them is 1 the result is 1.

The second bitin A is 1 and the second bit in B is 0.
Since only A’s second bit is 1, the result is 1.

The third bit in A and B are both 1
so the result is 0.

The fourth bit in A and B are both 0
so the result is 0.

The last four bits in A and B are identical, %1010 in both,
so the result is 0 for each bit: %0000.

The 1'scomplement operation reverses the state of each bitin
a number. Each 1 becomes a 0, and each 0 becomes a 1. If a
numberis exclusive or'd (XOR) withits 1’'s complement, the result
is all 1’s.

A =9%11001101
1’'s complement of A = %00110010
A XOR Complement of A = %11111111

Because of this trick, itis easy to check the correctness of the
Header Check. All the bytes in the header, including the Header
Check, are exclusive or’d together. If the result isn’t %11111111,
something is wrong. Actually the easiest way to do this is to take

284

the 1’s complement of the vertical parity (XOR) of all nine bytes in
the header. This is the same operation that was used to generate
the Header Check, except that we include the Header Check with
the rest of the header in the calculation. If the result isn’t 0, the
check fails.

The type of CRC used to calculate the Header Check is only
able to catch one-bit errors in the header. If the Header Check is
being verified over random data there is one chance in 256 that it
will accept the data as a valid header. If it is run on a damaged
header, it will be able to detect some problems, but, if two bytes are
damaged, verification of the Header Check can miss the problem.
If the third and fourth bytes in the header are %01111000 and
%01010011, their exclusive or would be %00101011. There are
many other pairs of binary numbers that can be exclusive or’'d with
each otherto give the same result: %00000000 and %00101011 are
asimple example. If only one byte is changed, the Header Check
will not verify, but if two numbers are changed, there is a chance
the damage will go undetected.

THE MODULE CRC BYTES

Itisn't likely that the Header Check and the sync bytes will be
correct by chance, but, even if they are, there is one more check
which will be made before a block of memory is considered a
module. OS-9 keeps a much more sophisticated three-byte CRC
check of the entire module. The check is run, from the sync bytes
on, for the length given in the module header. The CRC algorithm
used will detect any reasonable form of damage, and the chances
of it checking out over random data are one in about 16 million.
Taken togetherwiththe chances ofthe Header Check verifying on
random data, the probability of mistaking junk fora moduleis only
about one in four billion.

There is no need to know the CRC algorithm. It is always best
to use the code in OS-9 to generate and check CRCs via the
F$CRC and F$VModul system service requests. However, the
mark of a good systems programmer is curiosity about just that
kind of trivia; so, here are some details about CRC calculation. For
those of you who are content to let OS-9 handle this stuff, it is
perfectly safe to skip ahead.

HOW THE MODULE CRC WORKS

Cyclic Redundancy Checking (CRC) is an algorithm for error
detection in blocks of information. It is more effective for detecting
errors than for simple parity checking, but substantially harder to
do. In the CRC algorithm, the entire module to be checked is
treated as one continuous stream of bits, a large binary number.
First,the number is shiftedto the left enough to leave space forthe
CRC code at the low-order end (in the case of OS-9 modules, a
three-byte left-shift). The CRC code is the remainder after this
number is divided by the “generating polynomial” using mod-2

285

division. (All operations are in base two, no borrowing or carry-
ing.) The check bits are appended to the end of the module when
the module is generated.

When the CRC algorithm is run on a bit stream including the
CRC code, the resulting code will be zero. Perhaps an example
using standard decimal arithmetic would help (though, in fact,
CRC is trickier in decimal).

If the generating polynomial is the number 13, the CRC code
for the number 275,101,712 is 5.
275101712 must be shifted left two decimal digits giving
2751017200.
Dividing by 13 gives 2116167015 remainder 5.
Subtracting 5 from the original number gives 27510171195.
Running the CRC algorithm on 27510171195 gives a CRC
code of
0 because 2721017119500 is perfectly divisible by 13.

You probably noticedthat theresult of the CRC calculationin
the decimal case wasn’tthe original number followed by the CRC
code. When the operation is done in binary mod-2 everything
works out smoothly. One important thing to notice about mod-2
arithmetic is that addition and subtraction give the same result.
Since there are only the digits 0 and 1, and there is no carry or
borrow:

1+1=0 and 1-1=0
1+0=1 and 1-0=1
0+0=0 and 0-0=0

Because of this peculiar behavior, subtraction is a useless
operationin proper CRC calculation. Bearing thisin mind let's go
a little deeper into the math:

Let the module be represented by M
Let the generating polynomial be represented by G
Let the number of bits in the CRC code be k

X = M shifted left k bits

X=Q+R

G G

where Q is the quotient from the division and R is the
remainder.

R=X-Q'G

or, since addition and subtraction are the same,
R=X+Q*G

The module with the CRC code attached is
V=X+R

286

Since
X+R=Q'G
V is evenly divisible by G.

Thealgorithm actually used in OS-9is slightly different from
thestandard CRC algorithm. First, sincedivision oflarge numbers
is slow, OS-9 uses a special trick for finding the remainder of
mod-2divisionthat uses mostly shift and exclusive orinstructions.
It also differs from the normal CRC algorithm in that the initial
value forthe CRC accumulator is $FFFFFF in OS-9 instead of the
normal $000000, and the CRC code is complemented before it is
used. The result of all the changes is that the CRC code for an
intact module including CRC should be $800FE3, the CRC gener-
ating polynomial, instead of $000000.

The algorithm used for CRC generation in OS-9 is as follows.
Initialize the CRC accumulator:

CRC[1] = $FF
CRC[2] = $FF
CRC[3] = $FF

Foreach byte from the beginning to the end of the module
Let B =the byte
Let D =B XORed CRC[1]

/* shift left 8 bits */
CRC[1] = CRC|2]
CRC[2] = CRC|[3]

E = D shifted left six (E is a two byte quantity)
/* add E to CRC using mod-2 addition */
CRC[2...3] =CRC[2..3] XOR E

/* Calculate the mod-2 sum of bits 8,7,5, and 1inD */
D = (D shifted left 1) XOR D
D = (D shifted left 2) XOR D
D = (D shifted left 4) XOR D
/™ If the result of the additionis 1 */
If the high order bit of D is 1
CRC[1]) =CRC[1] XOR $80
CRC[3] = CRC[3] XOR $21

GETTING AROUND CRC PROTECTION

Every module in memory is validated once before it is placed
in the module directory. The validation takes place during boot-
strap for ROMed modules, and while a module is being loaded
from disk for other modules. It is fortunate that OS-9 doesn't
reverify the validity of modules once they are in the module direc-
tory because there are many occasions when you will want to
modify a module in memory, and generating anew CRC each time
a modification is made might be slow work.

287

Debug may be used to modify a module in memory. It is
commonly usedto apply patches, and make ad hoc modifications
to various modules. Changes made by Debug cause the CRC
value for a module to change without actually altering the CRC
bytes. If the CRC for modified modules were reverified, the
changes would cause the module to be rejected for bad CRC.

Since a moduleis safe onceitis in the directory, modules can
be modified, either because of special circumstances (Debug-
ging) or as a matter of course, as is sometimes done with data
modules.

WHAT TYPES OF MODULES ARE THERE?

The high-order nyble (four bits) of the type/language byte in
the module header can be used to specify any one of 15 module
types. The low-order nyble specifies one of 16 languages. These
values are used by the OS-9 kernel and the shell to place the
module in the right place and do the right things with it.

Only seven of the available 16 module languages have been
defined. Of those seven, only four represent languages that are
actually used; and of those four, only two have any real effect on
the function of the module. The language specification doesn’t
necessarily reflect the programming language used to generate
the module. It indicates the actual language in the module. If
someone ever comes out with a C compiler that generates
BASICO09 |-Code, the module will be tagged as [-Code, not
C-Code.

The primary use of the language specification is by the shell.
When the shell prepares to execute a program, it checks the
module’s language. If the language is Object code it forks the
module, but if it is BASICO09 I-Code, it forks RunB to run the
I-Code. This makes it appear that the I-Code file is being directly
executed.

The Type specification might be better named Usage. The
type nyble tells what the module will be used for. Most non-system
modules are programs, but not all. If you write a floating point
package as a module that programs can link to when they need
floating point services, the floating point module would probably
be of the Subroutine type.

Subroutine modules are a feature of OS-9 that hasn’t caught
on as well as it deserves. The better programming languages
permit a programmer to build a program a piece at a time. These
pieces are combined by the language or a link editor to form one
program which can be loaded and executed. The reasons for
modular design have been exhaustively discussed in the Comput-
er Science literature. Let's just say that most people agree that it is
a good way to create software. If the pieces (called modules) used
to build a program are written generally enough, they can be

288

collected until programs can be built largely from existing modules.
In OS-9, modules need not be passed through alink editorin order
tobeused. The linkages between the modules can be made as the
programis executing by using the OS-9 F$Link and F§Load SVCs.

If a program is written as one large module, changes to that
program will require that the entire program be recompiled. If the
programiswritten using modules that are bound to one another by
alink editor, then only the modules containing changes will need
to be recompiled. The link editor, however, will need to be run
again. If the modules are bound while the program is executing,
thenonly the modules that need changes needberecompiled, and
no link edit need be done. The old modules mustbereplaced with
the new ones on disk or in memory, and that’s that. Sometimes,
modules in a running program can be replaced without stopping
the program. | don’t know of any way to rig a program so that
modules actually being executed can be replaced; but with careful
(slightly inefficient) programming, a program can be designed so
that any module other than the one being executed can be
replaced on the fly.

Four special module types are used for OS-9itself. The OS-9
kernel modules, OS9P1 and OS9P2, together with IODMAN, are
System modules. The file managers, Pipeman, SCFMan and
RBFMan, are all File Manager Modules. Modules like ACIA, PIA,
G68, and CCDisk are device drivers, and device descriptors like
TERM and DO have their own type.

The system module types inform OS-9 that those modules
belonginthe system area, and give an extracheck thata moduleis
the right one.

Two module type/language combinations are special in that
they can’t be executed. The device descriptors don’t contain any
executable instructions, just lots of information. There is a provi-
sion for non-executable modules other than Device Descriptors.
The Data module type can be used for any module that you don’t
intend to have executed. They are used to store global data and
configuration information for user programs. They have even
been used as an exotic way of making the 1/0O address range
available to user programs in OS-9 Level Two.

THE MODULE REVISION NUMBER

The byte afterthetype/language byteinthe module headeris
theattributes/revision byte. Therevision number has noinfluence
on what is done with the module onceitisloaded —revisiontwois
treated just like revision one. Itis only important during the actual
loading process. A module already in memory can’t bereplaced by
another module loaded from disk unless the new module has a
higher revision number.

289

REENTRANT MODULES

a

-

LALRE ™

Few modules under OS-9 are not reentrant. All the operating
system modules are, and all the high level languages generate
strictly reentrant code. A reentrant module can be used by several
different processes at the same time without any of them knowing
that they are sharing the module. The only requirement for this
(under OS-9) is that the module must not alter itself or reference
any fixed memory locations. Even referencing fixed locations can
be done if you are careful.

Reentrant modules are atool which can save large amounts of
memory, but only if they are well used. Some modules, like
BASICO0S9, are frequently used by more than one process at atime.
This saves about 24K foreach process, after the first, because only
one copy of BASICO09 needs to be loaded for all the processes.
Most modules aren’'t as widely used as BASIC09. Most single
module programs are too specialized to be of general interest.
These programs are probably full of code that would be useful to
other programs, but there is no way to share it.

A well-designed modular program is built of aset of modules,
each as independent of the others as possible, and each perform-
ing one task or a closely related group of tasks. Modules that are
part of a well-modularized program are very likely to be useful to
other programs. If the modules are reentrant, there will only need
to be one copy of a module in memory, regardless of the number of
programs using the module.

It would be nice if 0S-9 came with a well-developed library of
service modules. Perhaps, by the time this book is available, that
kind of library will be available. There is room for a module —
perhaps several modules — for floating point support, for conver-
sions and print formatting, and for string functions.

A module called GoToXY is oftenusedto interface a program
to a terminal. Each person using a program that needs GoToXY
must find or write a GoToXY that fits histerminal. If he changes to
a new brand of terminal, only the GoToXY module need be
changed.

Several types of service modules are already supplied by
Microware —the operating system itself. OS-9 is built of modules.
The services offered by these modules are accessible through the
Supervisor Service requests.

Modules are the way OS-9 stores program code, operating-
system static tables, and anything programmers want to stuff into
data modules. The module header tells OS-9 enough about a
module’s contents so that OS-9 is able to treat them as rather-solid
objects, distinguished from its fluffy treatment of data areas allo-
cated by processes. You can get the location of any module in
memory from OS-9. Thereis nowaytofind out from OS-9 where a
process’s data is located.

290

THE MODULE DIRECTORY

0OS-9 maintains a list of all the modules in memory, with
information about each one, called the Module Directory. In OS-9
Level Two each entry in the Module Directory is eight bytes long.
The Module Directory entries each contain a pointer to a DAT
image for the home address space of the module, the size of that
address space, a pointertothe moduleheaderinitshome address
space, and a link count that records the number of times the
module has been linked minus the number of times it has been
unlinked. Each of these fields is two bytes long.

The Module Directory entries in OS-9 Level One are only four
bytes long. They contain a two-byte pointer to the module, and a
one-byte link count. The fourth byte is unused.

The Module Directory entries for OS-9 Level One are shorter
and simpler than the entries for Level Two because of Level Two’s
memory management features, and because Level One is expected
to run fewer processes. Each address space in OS-9 Level Two is
described by a DAT pointer, which controls the way the DAT
(Dynamic Address Translator) will map blocks of memory for that
address space. The DAT pointer also controls the number of bytes
in the address space. Each module directory entry contains the
DAT pointer and length fields to describe the home address space
of the module. An address space can contain more than one
module; so, the entry also contains the address of the module
within the address space. The link countin a Level Two directory
entry is twice as long as the link count in a Level One directory
entry partly because it is more reasonable for a link count to
exceed 256 in Level Two, and partly because the algorithm for
finding Module Directory entries requires that their length be a
power of two.

The ability to use an address space as home address space for
more than one module is an important memory-saving feature of
0S-9 Level Two. Since memory must be allocated in blocks that
can be mapped with the DAT hardware, OS-9 is usually forced to
hand out memory in blocks oftwo or four kilobytes (depending on
the DAT hardware). An address space must contain at least one
block of memory. If each module had to have its own address
space, each module would consume at least four kilobytes on
most systems. Thirty-two small modules would require at least
128K. The DAT pointer is used by OS-9 Level Two to maintain
clusters of modules. If you load a group of modules from one file,
they will all be in a cluster and share an address space. As longas
the link count for any module in the block is not zero, the entire
block will remain in memory.

This is a useful feature that must be used with care. |f several
small modules are collected in a file and loaded together, they can
all share an address space, but, of course, there is no way to
release part of the address space; so, thereis no pointin removing

291

any module in the address space from the Module Directory until
the entire address space can be freed. If a process links to any
module in the group, the entire bunch comes with it. OS-9 maps
the entire address space containing the desired module into the
requestor’s address space. The best way to cope withbothofthese
difficulties is to moderate the size of clusters of modules. The best
sizeisone DAT block of memory (two or four kilobytes, depending
on the DAT).

HOW MODULES ARE GENERATED

The easiest and most common way to generate modules is
with a programming language. The BASICO09 pack instruction
turns BASICO09 procedures into subroutine modules of BASIC09
I-Code. Languages that compile to native code produce program
modules of 6809 object code. Assemblersare also used to produce
program modules, but, assemblers being what they are, you can
produce any type of module with them.

There are two directives in Microware’s standard assembler
that are responsible for generating modules. The MOD directive
generates the module header, and must come before any con-
stants or operations in the program. The EMOD directive gener-
ates the CRC code for a module. It must be the last statement in a
module. Other assemblers, such as Microware’s RMA (Relocating
Macro Assembler), have similar mechanisms for generating mod-
ule headers and CRC codes.

The MOD statement accepts as arguments the values of the
fields in a module header:

1) The firstargumentis the length of the module. It is possible
to figure out this number yourself and insert it here, butit'sa
lot of work and not necessary. The length needed here is the
number of bytes in the entire module, including the header
and CRC bytes. The easiest way to find this number is to
include an EQU statement right after the EMOD statement,
something like this:

EMOD
ModLen equ *

The * *'in the EQU statement is replaced with the program
address counter for that location in the program. Since the
program address counter counts from zero at the beginning
of the module header, its value after the EMOD statement is
the length of the module.

2) The second argument is the offset to the name of the
module. This value can also be calculated by the assembler.
The way to do it is to define the name of the program as a
constant somewhere in the program, and put the name
assignedtothat constantin the MOD statement. For example:

292

MOD ModLen,ProgName...
ProgName fcs /Example/
Edition fcb 1

The assembler will use the address of ProgName in the MOD
statement. The program name should be defined using aFCS
statement, ratherthanan FCC, so OS-9 will be able to find the
end of the name. The Edition byte following the name isn’t
necessary, but it's a convention. If you don’t put a one-byte
field here, indicatingtheversion ofthe program (or whatever
else you like), commands like IDENT that print the edition
number will use whatever falls in that spot as the edition.
Nothing important relies onthis value, butitis easy to include
and it makes your programs consistent with most other OS-9
programs.

3) The third argument is the value to use for the type/lan-
guagebyte. Thereisn’t any shortcut for filling this field in. Itis
bestto usethe names assigned to types and languages in the
0OS9Defs file. A module statement like:

MOD ModLen,ProgName,$11,...
will work fine, but it is easier to understand if it's written like:
MOD ModLen,ProgName,PRGRM+OBJCT,...

If you elect to use names for languages and types, be sure to
include the OS9Defs file in your program.

4) The fourth argumentisthevalueto useforthe attribute/re-
vision byte. The only attributes now supported are Reentrant
and write protected — on most systems only Reentrant. The
revision is a number that permits you to create a module that
will replace a module already in memory. The MOD statement
so far looks like:

MOD ModLen,ProgName,PRGRM+0OBJCT,
REENTH1,...

5) The next two arguments differ according to the type of
module being assembled. Some types of module don’t use
them at all. For program and subroutine modules these argu-
ments are execution offset and permanent storage size. The
assembler can calculate both values with a little help. The
execution offset is the offset to the first instruction in the
program. It can be found by assigning a label to the first
instruction in the program and using that label here. The
permanent storage size needs a trick similar to the one we
used to find the program length. A skeleton program includ-
ing all the statements and tricks needed to generate a module
header and CRC would look something like:

293

IFP1

use /DO/DEFS/0OS9Defs

ENDC

MOD ModLen,ProgName,PRGRM+OBJCT,REENT+1,Start,MemSize
ProgName fcs /Example/
Edition fcb 1

W I I o o ok ok
*

Memory and stack space

*

MemSize equ .
Startequ *
... The program is here
EMOD
ModLenequ*

MemSizeisequatedto‘.’,whichrepresentsthecurrentvalue
of the program data counter. Since the programdata counter,
like the program address counter, starts at zero at the begin-
ning of the module, and unlike the program address counter
is incremented only for RMB instructions, the

MemSize EQU.

instruction will assign the size of the data memory allocated
so far to the symbol MemSize. Another trick | slipped in this
example is the way | used the

use /DO/DEFS/0OS9Defs

statement. By putting it between IFP1 and ENDC, | prevented
the assembler from looking at the OS9Defs file during its
second pass. Notonly does thisspeed up theassembly, it also
prevents the contents of OS9Defs from being printed out with
the program, or even being assigned line numbers.

SVCs THAT DEAL WITH MODULES

The FSLOAD SVCreads modules from a disk file. It needs the
pathlist of the filetoread from. The documentation maysaythatit
also needs thetype/language byte for the module you are looking
for, but it is ignored. It loads all the modules in the specified file
into memory and puts them into the module directory, but only the
first module in the file has its link count incremented. The FSLOAD
servicerequest returns the samevaluesinits registersas a FSLINK
on the first module in the file would have; that is, the Module
type/language byte of the first module loaded in accumulator-A,
the Module attributes/revision byte in B, a pointer just past the
path list in X, the address of the module entry point in Y and the
address of the module header in U. Note that this service request
alters U; in most programs you’ll have to push U on the stack
before this call and pop it off afterwards.

294

There are fourSVCsthatreturnthe address of amodulewhich
is already in the module directory.

The most commontool used to locate a module in memory is
the FSLINK SVC. Ittakes, asinput, the address of astring contain-
ing the name of the module you want to link to and the type/lan-
guage of the module. The name of the module must startwitha“/’
or an alphabetic character. It can be terminated with the OS-9
standard ending — high-order bit on in the last byte (use fcs to do
this) or with any non-alphanumeric character. If a type/language
is specified by loading its value into the A register before calling
FSLINK, link will only find a module that matches both the
requested name and the requested type/language. If you don’t
want to specify one of these values, then leave it as zero in the A
register. For example, the hex value $10 will match a program
module in any language.

The type/language and attribute/revision bytes for a module
found by the FSLINK SVC are returned in the A and B registers.
The X register is advanced past the module name it pointed to
before the SVC. The address of the Module’s header in your
address space is returned in U, and the entry address in your
address space in Y. All that fuss about address spaces is only
important if you have Level Two. Under Level One all processes
share the same address space.

F$ELINK is a system mode service request that is only availa-
bleunder OS-9 Level Two. Itis meant to be used from within OS-9.
It needs a pointerto the module directory entry forthe module you
want to link to. It also needs the attributes/revision value for the
module — the System Programmer’s Manual says it needs the
Module type, but it is incorrect. The attributes/revision byte is
used only todetermine whetherthe moduleisreentrant. Thevalue
passed to FSELINK in register B overridesany value inthe module
itself.

FSELINK maps the module into the address space of the
process that is currently activeaccordingtothe D.Procfieldinthe
system direct page. Sometimes this field will point to some pro-
cess descriptor other than the one you want. This problem can be
overcome by temporarily changing the process descriptor pointer
in D.Proc. For example, D.Proc can be saved and D.SysPrc used.

F$FMODUL is also a system mode service request for Level
Two systems only. It is meant to work with the FSELINK SVC.
FSMODUL searches the module directory for the entry for a given
module name and type. The module name s specified by a pointer
tothe name, and a pointertothe DAT image forthe address space
the name stringisin. Like the FSLINK SVC, it treatszero nybles in
the type as wild cards. FEMODUL returns the actual language/
typeand attribute/revision bytes of the module it finds, a pointerto
the Module Directory Entry, and a pointer just past the module
name.

295

F$SLINK is another Level Two system mode service request.
It acts like FSLINK, except that it allows a DAT image pointer for
the module name string to be specified with the address for the
name. It links a module into the current address space, but expects
to find the name of the module in another address space. It uses a
pointer to the DAT image of the addess space containing the
module name string and the offset of the string within that address
space to find the module’s name string. See the chapter on Level
Two Memory Mangagement Internals for details on DAT images.

The FSUNLINK SVC is used to remove a module from an
address space, decrement its link count, and, if its link count and
the link counts of all other modules in its home address space are
zero, release the address space’s memory and the Module Direc-
tory entries for the modules in the address space. This SVC only
requires the address of the module header for the module to be
unlinked. Since that address isn't useful for much other than
unlinking the module, it is important to remember to save it when
the module is linked.

F$SUNLINK has the same effect under Level One that it does
under Level Two. It reduces the link count of a module, and
removes it from RAM if the link count goes to zero.

FSUNLOAD is a user mode service request that is only availa-
ble under OS-9 Level Two, though | expect it will be added to OS-9
Level One some day. It has the same effect as FSUNLINK, but it
uses the module’s name and language/type to locate the module,
instead of using a pointer to the module’s header. FSFMODUL is
used to find the Module Directory entry for the module, so the
language/type byte can contain zero nybles as wild cards.

F$CRC is used to calculate the CRC for a module, or, for that
matter, anything else you want a CRC for. It needs the address of
the block of data you'd like a CRC for, the length of the block, and
the address of a three-byte variable to put the CRC code in. If it
isn’t convenient to calculate the CRC on an entire module at once,
F$CRC can be used on the module in sections, provided that the
sections are in order, starting with the first part of the module. The
CRC variable will be used to accumulate the CRC value, so it
should be initialized to $FFFFFF before the first call to FSCRC, and
then left alone until the entire module has been passed through
F$CRC.

If you are using FSCRC to validate a module, accumulate the
CRC through the entire module, including its CRC bytes. The
accumulator will contain the generating polynomial if the CRC
code checks out.

If you want to generate a CRC code, run FSCRC over what you
have (that is, everything but the CRC) and complement the gener-
ated CRC before storing it at the end of the module. Use the COM
6809 instruction on each byte of the CRC code to complement it.

296

The service request that verifies a module and places itin the
module directory is FEVMODUL. It is a system mode request with
significant differences between Level One and Two. If you are
using Level One, F§VModul only needs one parameter. It takes the
address of the new module in X. If you are using Level Two, you
need to give it both the DAT image pointer for the address space
containing the new module and the offset of the new module
within the memory covered by the DAT image.

297

CHAPTER 30

memory management

In this chapter you will learn about the mechanisms that sup-
port OS-9 memory management. The memory management
mechanisms used under Level Two represent a substantial exten-
sion beyond Level One, so in this chapter we’ll concentrate on
issues relevant to Level One. The DAT and other issues that only
apply to Level Two are mentioned in this chapter, but an in-depth
treatment is saved for the next chapter.

Any operating system that permits more than one program to
run atatime needs away of dividing the system’s memory between
the programs. Both OS-9 levels one and two use rather sophisti-
cated memory management schemes. Instead of jumping right
into OS-9 in this chapter, I'll start with some simpler memory
management schemes and work up to OS-9's techniques gradually.

Managing a computer’'s memory is a lot like managing on-
street parking. A system’s memory, like curb space, must be
divided up among users. It is good to use memory (or curb space)
as efficiently as possible, but keeping the amount of supervision
required to a minimum is also important.

Of course, the simplest way to handle system memory is to
ignore the problem. Operating systems that only deal with asingle
process don’t needto concernthemselves with memory. Thereare
many examples of operating systems that don’'t provide any
memory management facilities, including PC-DOS, CP/M, and
FLEX.

299

THE THEORETICAL BASE

2

FIXED PARTITION MEMORY

DYNAMIC ALLOCATION

Another simple way to allocate memory is to divide it into
several regions called partitions and allocate a partition to each
process. The partitions are set up when the computer is started
and not changed except by restarting the operating system.
Because of the permanent nature of the partitions, this method of
memory managementis called Fixed Partition memory allocation.
This is analogous to the most common way of allocating parking
space — marking off parking places with lines on the pavement
and placing one car in each place.

It is simplest if each partition is the same size, but each parti-
tion can be different. If they are all the same size, a process can
either fit in any partition, or none of them. Since each partition is
equally useful, the operating system can assign them any way
that’s simple. Partitions of a variety of sizes allow processes that
require lots of memory to be accommodated without having to
make all the partitions big enough to hold them. The analogy in the
parking world would be to have several different sized spaces.
Some suitable for cars, others for trucks.

This enhancement to the partitioned memory system causes
lots of trouble. If all the small partitions are full, can a process use
onethat’s fartoo large forit, or should it wait for a small partition to
free up? How many different sizes of partition should be used to
get the best possible use of memory? Think of the parking situa-
tion again. If all the car slots are full, should a car be permitted to
use a truck place? Is it a good idea to have special motorcycle
places? How about compact car parking spaces? Remember that
small spaces are efficient ways to store small vehicles, but they will
be entirely wasted if small vehicles don’t need to park.

An operating system that uses partitioned memory is easy to
write, but it tends to waste memory. Attempting to fix the problem
makes this method complicated without fixing anything.

There are some special cases where partitioned memory is
fine. Many operating systems set aside a special area in memory
for small utility programs. That is a trivial example of partitioned
memory. It is wasted space much of the time, but it isn’t a large
partition so the waste is minimal. And, it is especially useful for
running programs like print spoolers that are meant to be tucked
out of the way.

If fixed partitions aren’t good enough, memory can be allo-
cated in suitable chunks asitis needed. Thisisagoodidea, butit’s
not as easy as it might sound. Let’'s move right to the parking
problem. This system is like having a parking attendant who
directs vehicles to the right spot without any lines on the pave-
ment. If there are a variety of different sized vehicles, the attendant

300

should be able to pack them much more efficiently thanthey could
be with pre-marked places.

Things look very good as the first batch of cars and trucks are
parked, but after a few leave and others arrive trouble starts to
appear. Say the street is filled up end to end, then five small cars
leave from five separate locations. Now a small truck arrives. Itis
small enough to fit in much less than the amount of space just
vacated by the five cars, but, since the five empty slots are in five
different places, they are useless to the truck, which needs to wait
foranother truck, or afew cars parked next to each other, to leave.
Ifatruckleaves and a car getsto the place first, it will take up some
part of the space. That uses up a space big enough for a truck.
Most of the space is still there, but it isn’t any good for the next
truck to come by.

There are two standard ways of managing memory whenitis
isn’'t partitioned in advance. They are called first-fit, and best-fit.

First-fit allocation is the simplest method. The operating sys-
tem chooses thefirstblock of memory atleastas bigas theamount
requested. It allocates as much of the block as required leaving the
rest as a smaller, unallocated block. Unfortunately, this tends to
use up big blocks of memory, leaving lots of little chunks that can
only be used to satisfy small requests.

FIRST-FIT ALLOCATION

BEST-FIT ALLOCATION

Best-fitrequires the operating system to do more work, but it
does a better job of keeping large blocks of memory for programs
that really need them than first-fit allocation does. In best-fit allo-
cation, the operating system scans through all its available
memory looking for the block that fits the request with the least
memory left over. This method leaves slivers of unallocated
memory around, but it preserves large blocks of memory by refus-
ing to use them as long as any smaller blocks will do the job.

There are othermethods. The oddest onel know of is worst-fit
allocation. In this method, allocations are always made from the
largest block of storage. The reasoning is that the fragment of the
large block that is left over after the allocation is made will be
larger, and therefore more useful, thanitwould be if the allocation
were made out of a smaller block. My intuition is that this policy
amounts to punishing large blocks of free memory. The result
probably is a lot of roughly equal-sized blocks of free memory.

Most people use first-fit to manage on-street parking when
thereis no attendant. Those whose parallel parkingskillsaren’tso
good lean toward a worst-fit method — perhaps that's why on-
street parking is usually partitioned. If drivers park in the first
space they see that is long enough for their car, they are using

301

first-fit. Those who willgo outoftheirway to find alarge space are
using a modified worst-fit algorithm.

Best-fit probably wouldn’'t work withoutan attendant. It would
require each driverto check each empty parking place in town and
pick the spot that most precisely fit his car.

OS-9 LEVEL ONE MEMORY MANAGEMENT

To bring reality in fora moment, OS-9 Level One uses first-fit
allocationto manage its memory. Microware added a special twist
by having module storage and system memory requests start from
high memory, and data storage allocated in low memory. You can
watch it in action by starting several programs running in back-
ground. The easiest program with which to use up spaceis SLEEP.
MFREE reports on where free space is located, and MDIR can list
the addresses where modules reside. There is no command in
0OS-9 Level One that directly reports the data space associated
with each process, so this must be inferred from MFREE’s output.
Try this with a OS-9 Level One system:

First use the MDIR E command. Look through the first
column in its output for the second-lowest module
address. On my CoCo the lowest address was B300 for
MDIR. The next lowest address was BEOO for CCDISK.
As likely as not the addresses will be different on your
system.

Next use IDENT to collect information about a few
modules. The examples below may not match your
results exactly because you may have more recent ver-
sions of these modules than | do.

OS9:IDENT MDIR -X

HEADER FOR: MDIR

MODULE SIZE: $01A6 #422
MODULE CRC: $C459BC (GOOD)
HDR PARITY: $8F

EXEC. OFF: $0066 #102
DATA SIZE: $0127 #295
EDITION: #03 #3
TY/LA AT/RV: $11 $81

PROG MOD, 6809 OBJ, RE-EN

OS9:IDENT SHELL -X

HEADER FOR: SHELL

MODULE SIZE: $04FA #1274
MODULE CRC: $59ECC8 (GOOD)
HDR PARITY: $D6

EXEC. OFF: $003D #61
DATA SIZE: $02B5 #693

302

EDITION: $14 #20
TY/LA AT/RV: $11 $81
PROG MOD, 6809 OBJ, RE-EN

OS9:IDENT SLEEP -X

HEADER FOR: SLEEP
MODULE SIZE: $004D #77
MODULE CRC: $610935 (GOOD)
HDR PARITY: $65

EXEC. OFF: $0013 #19
DATA SIZE: $0200 #512
EDITION $01 #1
TY/LA AT/RV: $11 $81

PROG MOD, 6809 OBJ, RE-EN

OS9:IDENT MFREE -X

HEADER FOR: MFREE
MODULE SIZE: $176 #374
MODULE CRC: $65997C (GOOD)
HDR PARITY: $5F

EXEC. OFF: $006A #106
DATA SIZE: $021F #543
EDITION: $05 #5
TY/LA AT/RV: $11 $81

PROG MOD, 6809 OBJ, RE-EN

We're going to be using MFREE, MDIR and SLEEP a
good deal; so, to save time and prevent some confusion,
load them into memory:

0S9:load mfree
0S9:load sleep
0S9:load mdir

Now, have a look at the system’s current memory
distribution.

OS9:MFREE

ADDRESS PAGES

BO0-AEFF 164
B400-B5FF 2

TOTAL PAGES FREE = 166
GRAPHICS MEMORY NOT ALLOCATED

MFREE is displaying the free memory in a system run-
ning the sysgo, shell and mfree. The OS-9 System Pro-
grammer's Manual shows that OS-9 uses memory from
$0000 to $03FF. Sysgo uses one page from 400 to 4FF.

303

The shell needs 694 bytes for data, which rounds up to
three pages (from $0500 to $07FF). MFree needs 543
bytes for data, which also rounds up tothree pages (from
$0800 to $0AFF). From 0B00 on up to AEFF is one free
block of memory. It appears that LOAD used a page of
system memory (allocated from the top of available
memory) in addition to the page needed for the LOAD
module. It grabbed the memory from B400 to BSFF while
| was loading modules into memory, and returned it in
time forittoshow up as free memory for MFREE. If that
memory had been available formodule storage when the
modules were being loaded, they would haveusedthose
pages and wouldn’t be free now.

The SLEEP module is already in memory, so each invo-
cation of it will only allocate data memory startingin low
memory. To start, try:

OS9:SLEEP 1500 #20&
OS9:MFREE

ADDRESS PAGES

1F00-AEFF 144
B400-B4FF 1

TOTAL PAGES FREE = 145
GRAPHICS MEMORY NOT ALLOCATED

First, notice that something allocated another page of
system memory from B500 to B5FF. Perhaps it was
neededtostorethe overflow of various descriptors, since
| was running a total of four processes (SYSGO, SHELL,
SLEEP, and MFREE). There are also another 20 pages
allocated from 0B00 to 1EFF — the pages | request in the

SLEEP 1500 #20

command. If you wait awhile for SLEEP to end, you will
notice that the memory from 0B0O0 to 1EFF is returned,
but the page at B500 remains allocated. The operating
system tables are designed to expand when necessary,
and haven't been able to shrink back down yet.

Now, let's confuse issues by startingabunch of SLEEP’s
for different lengths of time and with different memory
requirements. The best way to do it is to build a file with
the list of commands in it and then execute it.

0S9:BUILD TMP

? SLEEP 1000 #50&
? SLEEP 10000 #2&
? SLEEP 1000 #40&

304

? SLEEP 10000 #2&
? <ESC>

0S9:TMP
&004
&005
&006
&007

The memory allocation now is:

0000-03FF System

400-04FF SysGo

0500-07FF Shell

0800-0AFF Free memory where shell(2) was
0B00-3CFF Sleep

3D00-3EFF Sleep

3F00-66FF Sleep

6700-68FF Sleep

6900-AEFF Free memory

OS9:MFREE

ADDRESS PAGES
6900-AEFF 70

TOTAL PAGES FREE =70
GRAPHICS MEMORY NOT ALLOCATED

<wait a while>
OS9:MFREE

ADDRESS PAGES

0B00-3CFF 50
3F00-66FF 40
6900-AEFF 70

TOTAL PAGES FREE = 160
GRAPHICS MEMORY NOT ALLOCATED

The actual memory allocation is now:

0000-03FF System
0400-04FF SysGo
0500-07FF Shell
0800-0AFF MFree
0B00-3CFF Free memory
3D00-3EFF Sleep
3F00-66FF Free memory
6700-68FF Sleep
6900-AEFF Free memory

305

FRAGMENTATION

It might seem strange that there are 50 pages of free
memory starting at 0B00, even with MFree running.
Remember that running a shell file requires a special
invocation of the shell — called shell(2) in the chart of
memory allocation — which needs three pages of data
space. MFree fits into the space that shell was using.

There are 163 pages free, but if you try torun a program
that needs more than 70 pages, the program will not be
able to find sufficient memory. Try it.

OS9:SLEEP #75
ERROR #207

Errornumber 207 is the “insufficient contiguous memory”
error. It is telling us that OS-9 can’t find enough memory
in one block to satisfy our request.

To verify that OS-9 is using first-fit, try
OS9:SLEEP 600 #40&

Thiscouldfitinany of the three blocks of free memory. If
OS-9isusing best-fit,itwilllandin the40page slotin the
middle. ifitis using first-fit, it will land in the 50 page siot
or the 70 page slot, depending on the direction from
which it is searching. Using a worst-fit algorithm, OS-9
would pick the 70 page slot. Another MFREE command

OS9:MFREE

ADDRESS PAGES

3300-3CFF 10
3F00-66FF 40
6900-AEFF 70

TOTAL PAGES FREE =120
GRAPHICS MEMORY NOT ALLOCATED

tells us that OS-9 used the memory from 0800 to 30FF for
the 40 pages SLEEP needed (the memory from 3100 to
32FF is used by MFREE). This proves that OS-9 uses
first-fit allocation.

Every method of allocating system memory on the fly can be
pushed into a situation where there is plenty of memory available,
but the memory is divided into so many small blocks that it is
useless. If it were only possible to shift the allocated blocks of
memory around until all the free space between them was
squeezed out to one end, fragmented memory could be made
useful again. The process of rearranging memory to make large

306

blocks of free space is called “garbage collection.” BASiC and LISP
usually have built-in garbage collection — they pause fromtime to
time and organize their storage. OS-9 doesn’t do garbage collec-
tion. If you usually run just one or two processes at a time, you
probably won’t have any trouble with memory fragmentation.

Memory fragmentation is caused by dynamic memory de-
mands. If OS-9 only has to deal with one or two blocks of memory
atatime, it can keep things in good order. But if you allocate and
release memory frequently, there is real potential for trouble.

One cause of fragmentation is hard to control. The firsttime a
device is opened, OS-9 will allocate static memory for it out of
system memory (high memory). If high memory is crowded when
you open the device, the static storage could be located in an
inconvenient spot. Killing processes and unlinking modules won'’t
make the static storage go away. The bestway toavoid the prob- d U
lemistoopenyour devices early, evenif youdon't plantousethem =———

until later.

Inthe example we just went through, the fragmentation took
place in data storage, but module storage can have the same
trouble. If you use modules heavily — loading them when you
need them and unlinking them when you don’'t — you can frag-
ment memory.

Starting lots of processes (as we did with SLEEP) can frag-
ment memory. Each process allocates some data space. If all
processes retain their memory for about the same length of time,
any fragmentation tends to heal eventually; at least, itseems under
control. The worst situation is caused by a long-running process
that has a chunk of memory right in the middile.

There is only one way to de-fragment memory: kill some
processes so they release their memory. Then restart them. The
restarted processes willget memory atthe farends of memory and
leavethe prime locations in the middle free. In theexampleweran
through with SLEEP, the fragmentation situation would have been
much improved if we had KlLLed the second two-page sleep
(process seven). If we had KlLLed both of the sleeps with two
pages of memory, free memory would have been contiguous.

DYNAMIC ADDRESS TRANSLATION

Memory fragmentation can be a serious problem under OS-9
Level One. Level Two of OS-9is meant to handle several users and
many processes. It also can use far more than the 64 kilobytes of
memory that OS-9 Level One can manage. To make more than 64
kilobytes accessible to a 6809 microprocessor, and to handle
memory fragmentation, computers capable of running Level Two
need Dynamic Address Translation hardware.

Take an imaginary computer with 1024 kilobytes (One Meg-

307

abyte) of memory and a typical DAT (Dynamic Address Transla-
tor). Without the DAT, the 6809 could access the bottom 64K of
memory. With the DAT, the 6809 can access any 64K, selected 4K
at atime, out of the 1024K and arrange itin any order. |f there are
several processes running, each can have access to a different
part of memory.

Most 6809 programs don’t need the entire 64K “address
space” of the 6809. The DAT can be set up to give a program as
little as 4K of memory. This cuts down on wasted memory.

A 6809 uses 16-bit numbers as addresses. The low-order 12
bits give the address within a 4K block. The high-order four bits
selectthe 4K block. The low-order bits are used directly to address
memory, but the top four bits are sent through the DAT first. The
four-bitnumberis used by the DAT toindex into atable of eight-bit
numbers (called the translation table). The eight-bit number found
inthe table comes out of the DAT and is used as the top eight bits
of a20-bit address. The processor generates 16-bitaddresses. The
DAT takes the 16-bit address and generates a 20-bit address. The
20-bit address is used to access memory, giving the CPU/DAT
combination the ability to get at 1M (Megabyte) of memory.

A 64K *“address space” is made up of sixteen 4K blocks. A
minimal DAT only needs to keep atable of 16 bytes of information.

For the simplest systems, all that is required for a DAT is
enough very fast memory to store those 16 bytes. The high-order
four bits of the address coming out of the 6809 are used as an
address in this tiny memory. The number read from the memory
thatis serving as a DAT is used to extend the low-order 12 bits of
the address into a 20-bit address.

The problem with a DAT this simple is that every time you
want to change the set of 4K blocks accessible to the processor
you have to writenew valuesintothetranslationtable.Inasystem
running several processes, the translation table hasto be changed
100 ormoretimes persecond. Finding theright “map” to loadinto
the DAT, andloadingit 100 times per second, can siow a computer
down noticeably. The better DATskeep 16 translationtables. They
have atask-selectregisterthatis used to choose therighttable. As
longas no morethan 16 address spaces are active, all 0S-9 needs
to do to switch translation tables is to write the correct numberin
the task-select register. If there are more than 16 address spaces
active, OS-9 has to remember which translation tables are loaded
inthe DAT, and replace one of them when an address space that
isn't represented in the DAT needs to be accessed by the
processor.

Itisnotagoodideato fool withthe DAT directly if you're using
0OS-9. If you change a DAT register without going through the
proper procedures, OS-9won’t know what youdid. The effectcan

308

be chaos. It is, however, good to know what the DAT is doing and
how to take advantage of it.

The DAT maps blocksof memory intothe appropriate address
spaces. Normally, the blocks mapped into each address space are
“disjoint”; thatis, each address space has its own memory with no
overlaps. This protects processes from interference. No process
can read or write memory belonging to another process. If it is
important for a process to have access to blocks of memory
mapped into another process’s address space, this protection can
be frustrating. Although the DAT is usually used to protect pro-
cesses from each other, it can map a block of memory into more
than one address space. The block of memory can even appear at
adifferent address in each address space. A block of memory can
also be made to show up at several locations in the same address
space, or even moved, rather laboriously, from placeto placeinan
address space. All these things can be done with OS-9 service
requests. Most of these service requests are system-mode requests,
but, for the determined user, the services are there.

As | write this, there is no virtual-memory version of 0S-9. The
0S-9, 68K Level Three system that Microware has been talking
about will implement virtual memory, so it falls just barely within
the scope of this book.

Virtual memory is the next step beyond a DAT. It is needed
when programs require more memory than is available on the
computer. Virtual memory makes the machine appear to a pro-
gram to have more memory than it does. The trick is done by
keeping some of the blocks (or pages) of memory that appear to be
addressable as main memory on secondary storage, usually disk.
To oversimplify, the DAT contains the address of a page in main
storage, if it is there, or it calls attention to the fact that it has been
saved on disk, if that is the case. When the processor tries to
access a page that isn’t in memory it gets an error called a page
fault. The operating system then finds the necessary page on disk,
loads it into memory, and allows the process that required it to
continue.

In user mode there is only one system service request that
directly effects memory management: F§Mem. This request is
used to set the memory allocation of a process. When F$Mem is
called the D register must contain the number of bytes you would
likethe processto have. If the amount of memory requested is less
than the current allocation, OS-9 will decrease the allocation to
the amount requested. If additional memory is required and the
memory is available, OS-9 willincrease the process’s allocation. In
both cases, the request will return the amount of memory allo-
catedto the process in D, and the upper boundary of the region in

309

VIRTUAL MEMORY

LEVEL ONE SYSTEM SERVICE REQUESTS

Y. The actual size is useful because OS-9 always allocates memory
in pages. Your request will be rounded up to the nearest page. If
the amount of memory requested is zero, OS-9doesn’t change the
memory allocation; it only returns the size and high bound of the
process’s memory.

The F$Mem request has several possibilities for error. First,
thememory may not be available. Under OS-9 Level One, memory
for expansion must be availableright above the current allocation.
If some other process hasthat memory, there is no way to get more
memory until the other process terminates. Even decreasing the
memory allocation can cause trouble. If youtry to release memory
including the page containing the top of the stack (wherethe stack
pointer “S™ is pointing), OS-9 will accuse you of a suicide attempt
and return an error.

There are four system-mode system calls that allocate, or free,
memory. The OS-9 kernel usually allocates memory using the
F$SrgMem system call. This call allocates memory starting in high
memory. Unlike the F§Mem call F§SrgqMem only allocates new
memory. The parameterpassedtoit in the D registeristhe amount
of new memory required. The only value returned is a pointer to
the beginning of the new allocation. The caller is responsible for
remembering that memory is allocated in pages. That F§SrgMem
makes no attempt to allocate memory that is contiguous with other
memory allocated to this process is another important difference
between the F$SrqMem and F$Mem.

Memory allocated with F$SrgqMem must be returned with
F$SRtMem. This call takes the starting point and size of the
memory to be returned and returns that memory to the pool of free
memory.

Many of OS-9s memory requirements are for blocks of
memory smaller than a page. The F$AII64 and F$Ret64 system
calls manage dynamic tables of 64-byte blocks of memory. The
parameter for F§All64 is the base address for the table. If thisis the
first call for a table, the base address won't be known, so zero can
be used. The call returns the block number of the new 64-byte
block, the address of the base of the table and the address of the
newblock. A block canbedeallocated with the F§Ret64 call, which
takes the base address of the table and the block number as
parameters. Memory for the blocks managed by F$AIll64 and
F$Ret64 calls is allocated by F$AII64, using the F§SrgMem call. It
comes from high memory.

The set of service requests including F$A1164/F$Ret64 is
completed by the F$Find64 request. It doesn'’t affect the amount
of memory allocated; it locates a block allocated by F$A1164
based on its block number. This combination of three service
requests is enough to completely hide the operation of the 64-
byte block-management algorithm from a programmer.

310

For the curious, this is how it works. The base block for the
table contains a list of one-byte pointers. If a pointer is zero, that
indicates that no page is allocated for that pointer, yet. If it is
non-zero, the value is part of the address of a 256-byte page. The
address of each page is a multiple of 256, so the low-order byte of
each page address is zero. Only the high-order byte of a page’s
address needs to be stored.

The algorithm for finding a block is a little wasteful of space,
but fast. The 64-byte base of the table contains up to 64 one-byte
pointers, each pointing to a page containing up to four blocks. A
block is located by its block number. The high order six bytes of its
number are used to select a pointer from the base table. If that
pointer is non-zero, it is used to generate a pointer to the page
containing the target block. The low-order two bytes of the block
number, multiplied by 64, give the offset in the page of the target
block.

This is fast because a block can be found without any search-
ing, but potentially wasteful of space if blocks are allocated and
freed in a pathological way. By allocating many blocks, then free-
ing allbut numbers 5, 9, 13, and so forth, the memory allocated for
the blocks can be left only one-fourth full. This isn't likely to
happen in ordinary usage, and the speed F$Find64 gains from this
choice of algorithm is worth the possible wasted space.

Awarning: Don’'t mess with the page table or the first byte of a
block!

311

CHAPTER 31

memory management
— level two

In this chapter we will dig right down to the lowest levels of
0S-9 memory management. The details of Level Two privileged
service requests are pretty tough going. Don’t bother to slog
through them unless you need the information or can’t stand the
suspense.

The most important difference between OS-9 Level One and
OS-9Level TwoisthewaylLevel Two manages memory.Level Two
uses Dynamic Address Translation (DAT) hardware. Dynamic
address translation gives a system a way to use lots of memory,
evenifits processor canonly address 64K. It permits each process
to run in its own memory (address space) isolated from all other
processes. It would seem that, with extra memory and dynamic
address translation to handle, OS-9 Level Two’'s memory man-
agement would be much more complicated than Level One’s. In a
way, it is; but from the average user’s standpoint, Level Two is
much simpler than Level One.

The only exposure most users get to memory management is
through memory requests by the shell:

OS9:asmtest#100 * allocate 100 pages of data storage
and application program memory reconfiguration, e.g., the

BASIC09

313

ERROR MESSAGES

B:mem

statement. In both cases (and to the underlying programs) the
commands look the same under Level One and Level Two. From
this point of view, the only ways Level One and Level Two differ are
in errors that can be returned from a memory allocation request,
and in the amount of memory available to each process.

After operating system memory requirements have been sat-
isfied, there are about 44 kilobytes of memory left for user pro-
gramsunderLevel One. Ifyouwanttorun more than one process,
they must divide the memory between them. The OS-9 Level Two
operating system draws most of its memory requirements from a
special system address space. Depending on a system’s DAT
hardware, each process can get from 60K to 64K of memory. Most
Level Two systems have at least 128K of memory; 256K or more is
typical. ltisn’'tunusualtohave 16 or more processesrunning atthe
same time, making the amount of money you can spend on
memory the real constraint on memory-per-process.

USER MODE REQUESTS

Under Level One there are two reasons for a failure of a
memory request; either you asked for more memory than was
available, or memory fragmentation didn’t leave a large enough
block to satisfy your request. Under Level Two there are also two
reasons fora memory allocation failure: either you asked for more
memory than was available, or your process has asked for more
memory than it could address (more than 64K). Of these, the
hardest problem to understand and correct is found only under
Level One — fragmentation.

MEMORY MANAGEMENT SYSTEM SERVICE REQUESTS

The F$Mem service request is, by a large margin, the most-
used memory management service request for application pro-
grams. It works identically under Level One and Level Two.

The F$Link service request isn’t a memory management ser-
vice in the same sense as F$Mem, but under Level Two it has an
important effect on memory management. Under Level One, link-
ing to a module doesn’t effect memory allocation in any way;
mostly, it returns a pointer to the module header and a few values
taken from the module header. Under Level Two, linking to a
module appears to work just the same way; therequest returns the
address of the module header and some information from it. A lot
is hidden behind this. A reentrant module can be shared by several
address spaces. This means that a module can’t simply be copied
intothe address space of each process that wants to useiit. In order
to conserve memory (and maintain compatibility with Level One),

314

0S-9 uses the DAT to map the memory containing a module into
the address space of each process that links to it.

The F$Load service request loads a module (or group of
modules) into the address space of the caller, and also into a
special “secret” address space just for that group of modules.
Each time a F$Link request for a reentrant module in that group is
done, the memory forthe entire group is mapped into the reques-
tor’'s address space. This trick for mapping blocks of memory into
several different address spacesis anespecially useful one. Inthe
Workshop section (the Daemon program) we illustrate a tech-
nique for using shared modules as a path for interprocess
communication.

There are four user-mode service requests that are used to
cross the boundaries between address spaces. These commands
areused by OS-9 commands to display the state of the operating
system. One of them is a general-purpose tool for reading any
memory in the system.

The MFREE command uses F§GBIkMp to gain access to the
memory block map. This control block, like allother OS-9 control
blocks, is kept in the system address space where it is normally
inaccessible from any user program. It needs a 1024-byte buffer
—enough for two megabytes of 256-byte pages. The actual
amount used forthe mapisreturnedintheY register. This request
also returns the size of a memory block, which can vary from
system to system depending on the type of DAT being used. In
additiontobeing the approved way to read the memory block map,
this is the only “front door” way of getting the memory block size.
F$GBIkMp should be chosen over other ways of getting at the
memory map because it is a “front door” access.

The MDIR command uses F$GModDr to get a copy of the
module directory. F$GModDr works very much like F§GBIkMp in
thatitcopies asystem controlblockinto a useraddress space, but
it returns a pointer to the end of the directory instead of a length
(asreturned by F§GBIkMp). This service request also returns a bit
of arcane knowledge: the address of the module directory in the
system address space.

The manual says that the F§GModDr service request doesn'’t
return anything in a register, but takes some strange arguments.
The program GetMDir gives an example of the use of F§GModDr.
Ittakes the address of your buffer asan argument, and returns the
end of the directory in your buffer and the address of the module
directory inthe system address space. GetMDir copies the module
directory to standard output. The best way to use the programiis:

0S9:GetMDir ! dump

Dump will put the outputof GetMDirindump format. This will

315

00001
00002
00003
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033

0011
0081

0000 87CD0034
000D 4765744D

0014 01

Fedededededrdeod o okokok

let you see what’s in there and protect you from strangeness on
your screen.

tti Get Module Directory

nam GetMDir

IFP1

ENDC
Type set
Revs set

Prgrm+Objct
ReEnt+1

MOD GetMEnd,Name,Type,Revs,Entry,MemSize
Name fcs /GetMDir/

fcb 1

* Local Storage

*

D 0000
D 0800
D 08Cs8

0015

0015 30C4
0017 3440
0019 103F1A
001C 3540
001E 250E
0020 1F20
0022 3410
0024 A3E1
0026 1F02
0028 8601
002A 103F8A
002D 5F
002E

002E 103F06
0031 A75C6E
0034

Buffer
Stack
MemSize
Entry

rmb 2048
rmb 200
equ .

leax Buffer,U
pshs U

0S9 F$GModDr
puis U

bcs Error

tfr Y,D
pshs X

subd ,S++

tfr D,Y

lda #1

0S9 I$Write
cirb

Grab Module Directory

end of MDir in buffer
address of start

calc length

length to Y

std out

clear carry
Error

0S9 F$Exit

EMOD
GetMEnd equ *

F$GPrDsc copies the contents of a designated process des-
criptor from the system address spaceto a bufferin auseraddress
space. PROCS uses it to getinformation about processes. It would
also be a way for a process to discover its priority. This service
requestdoesn’t return any values inregisters; it just places a copy
of the requested process descriptor in the buffer.

If these “front door" methods of reading system memory
aren’t enough to meet your needs, OS-9 provides a generalized
tool. F$CpyMem has access to any non-protected byte in the
system. Like the other user-mode cross-address space requests,
F$CpyMem can’t change anything in another address space, but it
can look. This service request needs a lot of information. The
number of bytes you want to copy and the address of the buffer
you want the data placed in are pretty straightforward. The “DAT
image pointer” and “offset in block to begin copy” require a littie
more thought.

316

Theoffsetis an offsetinthe address space defined by the DAT
image. Since this may not correspond with a real address space,
the offsets may need to be adjusted from true addresses. If the
DAT image you are using is an exact copy of the DAT image of a
real address space, then the offset is the address within that
address space. If the contents of the DAT image you use differs
from the DAT image of the address space you want to raid, you
may need to make some adjustments to addresses.

You'll see the phrase “block offset” often in the OS-9 System
Programmer’s Manual. This phrase reflects the fact that you'll
seldom bothertocreate morethanoneblockof DAT image. Itisn't
necessary to define blocks in the DAT image that you don’t wantto
access. There aren't many reasons to want more than a block of
data from another address space. Since DAT images for these
calls usually contain only one block, the offset within the block is
equivalent to an address in the address space defined by the DAT
image.

Each block in a DAT image is specified by a two-byte number
inthe DAT image. If, for example, you want to see the contents of
the system direct page (which is located in the first 256 bytes of
realmemory), you could constructa two-byte DAT image contain-
ing zeros, and use an offset of zero. |f you wanted a copy of the
lowest and highest memory in the system (allowing for a one-
megabyte system with 4K blocks), you could use the following
assembler statement to allocate a DAT image:

DATImage fcb 0,0,0,$FF

By using an offset of zero and a length-to-copy of 8K, you
could get the data copied into your buffer.

After the four meaningful bytes in the two-block DAT image
above, the system will find 28 bytes (60 bytes on systems that use
64 bytes for a DAT image) that just happened to be there. That’s
fine. There'llbelots of bytesinthe DAT imagethat you didn’'t want,
but they’ll be out beyond the area you are goingto copy from, so
no harm is done.

GetSysMem is a simple program that uses the F$CpyMem
service request to get a copy of the first 4096 bytes in the system
address space. If you have a system that doesn’t use 4096 as its
DAT block size, you'll have to lengthen the DAT image or decrease
thelength of the copy in GetSysMem. The output of the command
makes interesting studying, but it's hard to understand as it flies
by. Hardcopy output is crucial. The command line is:

0S9: getsysmem ! dump >/p

00001 tti Get low system memory
00002 nam GetSysMem
00003 IFP1

317

0005

00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035

0011

0081

0000 87CD0039
000D 47657453
0016 01

0017 0000

L2 222222222 2
*

*

1000

D 0000

D 1000

D 10Cs8
0019
0019 308DFFFA
001D 1F10
001F 108E1000
0023 8E0000

*

0026 103F1B
0029 2508
002B 8601
002D 30C4

Local Storage

* Y already = BufferS

002F 103F8A
0032 5F
0033

0033 103F06
0036 980CSA
0039

use /d0/dets/os9defs
ENDC
Type set Prgrm+Objct
Revs set ReEnt+1
MOD GetMEnd,Name,Type,Revs,Entry,MemSize
Name fcs /GetSysMem/
fcb 1 edition
DAT fcb 0,0
BufferS set 4096 Buffer size
Buffer rmb BufferS
Stack rmb 200
MemSize equ
Entry
leax DAT,PCR
tfr X,D
Idy #BufferS
Idx #0
U already points to the start of local memory (the buffer)
0S9 F$CpyMem
bcs Error
Ida #1 std out
leax Buffer,U point X at buffer
0S9 I1$Write
cirb
Error
0S9 F$ExIt
EMOD

GetMEnd equ *

On some systems the F$§MapBlk service request is a user-
mode request. It is more powerful than the F$CpyMem request
because it actually maps blocks of memory into the caller's
address space. Since the blocks are made addressable, data in
them canbe changed. The F$CpyMem request protects data out-
side a process’s address space from damage. The F$MapBIlk
request leaves all memory in the system open to damage.

F$MapBlk takes two arguments: the number of the first block
you want, and how many blocks you want. Some blocks, like block
zero (for most system static storage) or the block containing
memory mapped |I/O, are easy to to find. Outside these special
blocksit’s a nice piece of work just finding out what block number
you want. The trick | like best gets at the block number through
some process’s process descriptor.

Most of the time, the block of memory you want willbein some
process’s address space. If you want access to some other pro-
cess’'smemory and you knowits processid, youcanfind the block
number by requesting a copy of that process’s process descriptor
(with F§GPrDsc) and picking the block number out of the pro-
cess’s DAT image in the process descriptor.

318

CHAPTER 32

level two
memory management
internals

All versions of OS-9 use a memory block map as acrucial part
of their memory management scheme. Pointers to the beginning
and end of the memory block map are found in the system direct
page. The map contains a byte corresponding to each memory
block thatthe system could contain. Atleastthree bitsin each byte
have significance. Theblock can be “notRAM,” “RAMin use,” orit
can contain amodule. Itisimpossible for ablockof memorytobe
*not RAM” and"RAM in use,” but any other combination is possi-
ble. When a memory request is made, the memory block map is
searched for memory to satisfy it. The memory block map also
protects memory that contains a module from being freed while
the module is still in the module directory.

Dynamic Address Translation (DAT) hardware typically
requires twotypes of information: Task numbers, and associated
DAT images. OS-9 Level Two’'s memory management rotates
around those values, particularly the DAT image. Each address
space requires a DAT image. An address space also needs a task
number before it can be accessed, but a task number need not be
assigned until it will be used.

Each process's Task number is stored in the P$Task field in
the process’s Process Descriptor. The Process Descriptor also
contains the entire 64-byte DAT image for the process.

MODULE MEMORY

319

Modules are stored by slight-of-hand. They are mapped into
the address space of each process that uses them, but they are
maintained in a special address space that only has a DAT image
— notask number. A task numberisn’t needed because thespecial
address space is never accessed. It is strictly a way to keep the
modules around whenthey aren’tin any process’s address space.
Each module directory entry contains a DAT image pointer and
the length of the memory block (address space) containing the
module. If several modules were loaded together, all the modules
will share a DAT image and have the same memory block size. This
is reasonable in that they all reside in the same address space.

When a process terminates, it normally releases all the
memory thatwasallocatedtoit. The memory allocated to modules
isreleased from the address space, but itis marked in the system
memory map as being occupied by a module. Memory occupied
by a module can only be freed by unlinking all the modules in it
until their link counts are zero.

DAT images and module directory entries share an area in the
system address space. The module directory entries work their
way up from the low end of the block. The DAT images run from
thetop down. These are special control blocks in that the module
directory entries aren’t pointed to by anything except temporary
pointers within OS-9, and the only lasting pointers to the module
DAT images are in the module directory entries. Garbage collec-
tion is done when the block of memory used to store these two
data structures becomes too fragmented. The garbage collection
algorithm compresses all the module directory entries at the bot-
tomoftheareaandthe DAT imagesatthetop. The DAT pointersin
the module directory entries are adjusted to point to the new
locations of the DAT images as they are moved about.

SYSTEM-MODE MEMORY MANAGEMENT SERVICE REQUESTS

The Level One system-mode memory-management service
requests are duplicated in Level Two. The 64-byte memory block
management requests are included in that list. They work just the
same under both versions of OS-9. The system memory request
and return calls also behave like the Level One equivalents.

Things get interesting when we look at the large number of
memory management system service requests added to Level
Two. The requests can bedividedinto five groups of requests and
two that don't fit into any classification.

The OS-9 System Programmer’s Manual refers to a “DAT
image offset.” Thisterm s alittle confusing. The DAT image offset
isn’tliterally the offset withina DAT image. Since block numbersin
a DAT image take two bytes each, blocks in an address space
wouldbenumbered0,2,4,... if offsetsinthe DAT image were used.
The offset referred to in this service request is the position of the
block in the address space. I'll try to call this value a relative block

320

number whenever | can. The “block offset” is an offset from the
beginning of the block specified in “DAT image offset.”

CROSS MEMORY SERVICES

This group of service requests provides ways of getting infor-
mation from any address in the system. This process is inherently
slow; time gets spent fussing with the DAT in the process of
transferring each byte. A system with memory-to-memory DMA
hardware canmovedatabetween address spaces quickly, butthat
is cheating. Memory-to-memory DMA includes special hardware
that can reach any address in the system without using the DAT.

The FSLDABX/F$STABX pair works like the 6809 instructions
LDA and STA. Specifically they mean:

FSLDABX
Load A with the byte at offset ,X in the address space of
process B.

F$STABX
Store A into the byte at offset ,X in the address space of
process B.

Theycanbeused fromthe system address spacetogetimpor-
tant bytes (say a buffer of data to output). The program fragment

Idb Task1

Idx X

0S9 FSLDABX
Idb Task2

OS9 F$STABX

would get a byte from address X in the address space of Task1 and
put it at the same address in the address space of Task2.

The FSLDAXY command is for use when you aren’t concerned
with tasks. It doesn't require you to know which task owns the
block you want to access. It takes an offset and a pointer to a
one-block DAT image. The one-block DAT image is just the two-
byte block number of the block you want data from. The offset
must, of course, be to an address within the block specified in the
DAT image.

F$LDDXY is a more complicated version of FSLDAXY. It can
deal with larger offsets formed by adding D to X:

leax D,X

This address can be greater than the size of a DAT block.
F$LDDXY can handle DAT images that define more than one
block, but be sure to give it a large enough DAT image to include
the offset given by the sum of D and X.

321

DAT IMAGE CONTROL

The FSLDABX and F$LDAXY families use different tricks.
FSLDABX uses the task-switching featureof aDAT. It setsthe DAT
to the task in B, loads the byte you want and switches the DAT
back to the system task. This has tobe done from the top 256 bytes
of memory, which are mapped into every address space; other-
wise, when the task was switched, the code doing the FSLDABX
would be mapped out of the address space. FSLDAXY works by
altering the map in the DAT without changing the task number.
The block you want is mapped into the first slot in the system
address space, the byte you want is recovered and the original
blockis mappedbackintothe first position. Thistrickrelies onthe
factthat OS-9 always usesblock zero in the firstslotin the system
address space. Since only one block in the DAT is changed, and
that block doesn’t contain the code or any of the data being used,
the code for FSLDAXY does not have to be located in the top 256
bytes of each address space.

The final cross-memory service request is F$Move. This ser-
vice request requires that every available register be loaded with
information. It needs the source and destination task numbers,
addresses in each address space to start the move, and the
numberofbytesto move. It moves data from one address spaceto
another. This could be done with repeated FSLDABX/F$STABX
requests, but, by staying in high memory and moving bytes with-
out the overhead of lots of service requests, the F§Move request
moves blocks of data as quickly as possible. If a system has
memory-to-memory DMA hardware, the F$§Move request is par-
ticularly efficient.

Three service requests are dedicated to managing DAT
images. The F$Alllmg request is used to increase the number of
blocks of memory ina DAT image. A DAT image isn’t normally full
of live memory. Unless a full 64K of memory is allocated to the
address space controlled by a DAT image, several blocks in it will
be marked as “Free memory.” Free memory is indicated by a
special block numberthat is used for DAT blocks that aren’tin use.
F$AIlllmg is given a pointer to a process descriptor. It modifies the
DAT image in that process descriptor such that the image has the
requested number of blocks of memory starting at the specified
relative block.

Letmetakethe F$Allimgrequesta little more slowly. F$AIlllmg
isgiven a pointer to a process descriptor. Itisalsogiven a starting
relative block number (A) and a number of blocks (B). OS-9 runs
throughthe DAT image starting at the specified block (A), making
certain that the next (B) blocks are allocated. Ifany of the blocks
are “Free memory,” F$Alllmg gets an unused block from the sys-
tem memory maptofillthatblock. Ifallthe DAT image blocks that
F$AIlllmg scans through are allocated, it doesn’t do anything.

322

In a system with 4K DAT blocks, the program fragment

Idx D.Proc
Ida #8

Idb #2

OS9 F$Allimg

would make certain that memory from $8000 to $A000 was allo-
cated in the address space of the process who's process descrip-
tor was pointed to by D.Proc.

F$Dellmg releases blocks of memory from a process’s DAT
image. It takes the same arguments as F$AIllimg, but has the
opposite effect. It runs through the specified blocks in the
process's DAT image and returns them to the system’s free pool.

F$Setimg copies a block of memory into a process’s DAT
image. You give it a pointer to the process descriptor, the starting
relative block number in that DAT image where copying begins,
and the number of blocks to copy. The purpose of this requestis to
merge two DAT images. If you want to map two blocks from one
address space, A, into another, B, you must find two contiguous
free blocks in address space, B, and use F$Setimg to copy the
selected two blocks worth of DAT image from A's DAT image to
the free space in B’'s DAT image.

Allthree DAT image-management service requestsseta bitin
the process descriptor’'s P$State field indicating that the DAT has
been changed. This indicates that the DAT will have to be updated
with a new DAT image for this process. Changes made to a DAT
image aren’t effective until they are loaded into the DAT hardware.

TASK NUMBER CONTROL

Task numbers are used to tell the DAT hardware which of the
preloaded DAT images it should use. There is an array of service
requests that deals with task numbers.

F$SetTsk copies the DAT image from a selected process
descriptor into the DAT hardware and clears the ImgChg flag in
P$State.

F$ResTsk finds a free task number in the system task table
(pointed toby D.Tasks in the system direct page), reserves it, and
returns it to the caller. F$AIlITsk uses F$ResTsk to reserve a task
number and stores that number in the P$Task field in the selected
process descriptor.

F$RelTsk returns a task number to the free pool. F§DelTsk
uses F$RelTsk to free a task number in the task table, and also
clears the task number out of the P$Task field in the process
descriptor.

323

ADDRESS SPACE MANAGEMENT

Two commands are used to find contiguous free blocks in a
DAT image. F$FreeHB starts its search from the high end of the
DAT image. F$FreelLB starts from the low end. OS-9 allocates
stack memory from low memory and system memory from high
memory. This measure prevents memory claimed by OS-9 for
modules from colliding with any expansion a user might want in
his stack memory.

MEMORY MAP MANAGEMENT

The nexttwo service requests are pretty tenuously related, but
they both deal exclusively with the system memory map. F$AlIRam
searches through the memory map for a block of contiguous
memory blocks. The DAT makes contiguous memory less impor-
tantthanitisin Level One, but it is nice to be able to find it when
you need it.

Those who had early versions of Level Two will remember that
there were strange problems with the FORMAT command. The
cause of those problems was that FORMAT requires a block of
continuous memory; there was no way to request contiguous
memory from OS-9, so FORMAT had to take what it could get and
return an error message if what it got wasn’t contiguous. The CPU
has noway of knowingwhethermemory is contiguous, buta DMA
disk controller does. The disk controller doesn’'t have access tothe
DAT.It needstousefull extended addresses, and gets upset when
a buffer isn’'t in contiguous memory.

The documentation seems to say that FSAIIRAM doesn’t do
anything but verify the availability of the required number of con-
tiguous blocks. | believe the documentation is in error here. The
service request actually allocates the memory if it finds the
requested contiguous space, and returns the starting block
number in D.

The F$DelRAM service request also works on the system
memory map. It marks a range of blocks as not in use.

MISCELLANEOQUS SERVICE REQUESTS

Two service requests that don't fitinto any class are F$CIrBlk
and F$DATLog.

The F$CIrBlk request removes memory from the DAT image
of the process who's id is in D.Proc in the system direct page. The
blocks removed from the DAT aren’t marked as free in the memory
block map. F$CIrBlkis very fussy about the starting address of the
memory it’s instructed to free. The address must be the start of a
DAT block; for most systems that means it must be an address like
$1000 or $E000. F$CIrBlk will also balk at removing memory being

324

used by the process’s stack from the address space.

F$DATLogis animportant call inside OS-9 because the size of
DAT blocks can differ from one type of hardware to another. The
DAT-plus-offset to logical address conversion depends on the
size of the DAT blocks. By putting the conversion in one place,
Microware made it easier to write code that will work with any DAT
block size. This service request takes a DAT image offset and an
offset within the block. Tricky point: the offset doesn’t have to be to
an address within the block. Any positive offset is fine. On a system
with 4K pages, F§DATLog just shifts the DAT image offset to the
left by four bits and adds it to the high-order byte of the “block
offset.”

325

WORKSHOP 1

cookie monster

Programming can only be properly learned through practice.
There is nothing quite so useful to a practicing programmer as a
proven program that does something similar to that which he is
attempting. This section of the book is full of working programs.
Most of them are the husks of useful programs. There is enough
here to learn from, but little enough to leave room for you to
expand on the ideas.

In some of the programs you will notice what appears to be
superfluous code or inconsistency between two sections. It's
probably intentional. These programs are set up as illustrations of
0S-9 programming techniques. They go out of their way to illus-
trate a variety of techniques.

The Classic Cookie Program

Cookie is a program with a long (painful) history. It has been
written in many forms by college students. The idea is that an
unsuspecting user will log onto the computer, and, without doing
anything out of the ordinary, be greeted with the message:

| WANT A COOKIE.

This initself should be enough to send him running for help,
butthe program doesn’t stop there. Well written Cookie programs
won't go away. They resist all kill, break, abort, interrupt and
whatever other trapdoors a system offers users who find them-
selves caught in a program. The art of the programmer who
created Cookie is pitted against the knowledge of the user. A good
Cookie is impossible to kill. The only way to make it go away is to
offer it a cookie.

327

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
0o00le
00017
oools
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033

pococoocT o

oT o

000D
000A
0011
0081
0000
0000
0001
0002
0004
0006
ooos
000A
000cC
0006
0050
000E
005E
0126

000D
0013

0014
0015
0018
9008

Reply, “Cookie,” to any of the program’s ravings and it will
peacefully go away.

Cookie is an interesting program to study because it must
catch signals in orderto survive in a hostile environment. If a user
could type control-C and have Cookie vanish, there’d be no fun in
itatall. Itwould be possibletoremovetheinterrupt and abort keys
with a SETSTAT, but then Cookie wouldn’t know that they had
been used. With a trap, Cookie can catch signals and choose to
ignore them.

The proper waytoinvoke Cookieisin alogin commandline or
startup file.

| left one easy loopholein this program; end-of-file. You might
want to see about closing it.

Note: | have a file called defslistin my DEFS directory. This file
is a list of USE command for all the OS9 definition files that came
with the system. | routinely run the assembler with over 16K to
leave space for the large symbol table that results from all those
names, but it prevents me from worrying about where a system
name is defined.

The USE /D0/DEFS/DefsList command would normally be
suppressed by the IFP1/ENDC that surroundsiit. | edited the listing
created by the assembler to put it back in.

nam Cookie
ttl The classic "Cookie" program

IFP1
use /d0/defs/defslist
ENDC
CR equ $OD
LF equ SOA
Type set Prgrm+Objct
Revs set ReEnt+1l
87Cb0159 mod ModLen,Name,Type,Revs,Entry,MemSize
SigCode rmb 1
indx rmb 1 Index into STable
STable rmb 2 Table of response addresses
Table2 rmb 2
Table3 rmb 2
Table4 rmb 2
Table5 rimb 2
Tableb rmb 2
TableL set 6 Number of entries in the table
BufLen set 80
InStr rmb BufLen Input buffer
rmb 200 stack
MemSize equ .
436F6F6B Name fcs /Cookie/
01 Version fcb 1
ddddhkkkhkhkhkkih
* Messages to the user, Pointed to from STable
*
08 Msqgl fcb MsgllL
436F6F6B fcc /Cookie/
()] fcb CR
MsglL eyu *-t1sgl

328

00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
ooo83
00084

00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095

001c
001D
0024
0009
0025
0026
0037
0013
0038
0038
0049
0048
0014
004c
004D
0074
0075
008B
0040
008cC
008D
0094
0095
0U9E
009F
00AA
0oAaB
0038
002D
00B9
00B9
00BA
ouBB
00BC
00BD
0005
00RE
00BE
00co

00c2
00C4
00cCe
ooca
0oca
oocc
00CD
00CF
00D1
00D3
00D5

00D5

00D9
00bpC
00EO
00E2
00E2
00E4

09
436F6F6B
0D

13
49207761
0D

140A0A
436F6F6B
0AOA

0D

40
596F7520
oA
2020202A
0D

2D
436F6F6D
oA
2020436F
oA
20202020
0A
20202020
0D

0F01
O0FO00

C606
3142
308DFF4A

AFAl
5A

2706
A684
3086
20F5

(2SS S S EE]

Msg2

Msg2L
Msqg3

Msg3L

Msg4

Msg4l
Msg5

Msg5L
Msg6

Msg6L
Sequence

SeqLen

Entry

TInit

TInitX

* Set interrupt trap

*
308D0009

* intercept local

103F09
10250073
2003

E7C4
3B

Trap

/I want a Coookiel/

o w/

/You can't get rid of me that easily

/ *** COOKTIE ***/

L/

ietl/

After
after
after
after
after

S w N O

comes
comes
comes
comes 2

(Sigmessage) comes 3

w N~

length of string
point at next string

go get a cookie

save the signal code

fcb Msg2L

fcc /Cookiel/
fcb CR

equ *-Msqg?2

fcb Msqg3L

fcc

fcb CR

equ *-Msqg3

fcb Msqg4L,LF,LF
fcc /Cookie N
fcb LF,LF

fcb CR

equ *-Msqg4

fcb Msg5L

fcc

fcb LF

fcc

fcb CR

equ *-Msg5

fcb Msg6L

fcc /Cookiel/
fcb LF

fcc / Cookiet/
fcb LF

fcc / Cookie
fcb LF

fcc / Cook
fcb CR

equ *~-Msg6

fcb 1

fcb 2

fcb 3

fcb 2

fcb 3

equ *_-Sequence
clr Indx

clr SigCode

1db §TableL
leay STable,U
leax Msgl,PCR
stx y Y+

decb

beq TInitX

lda ' X

leax A,X

bra TInit

leax Trap,PCR

is the same as main storage
0Ss9 F$Icpt

lbcs Error

bra MainLp

stb SigCode, U
rti

329

and return to 0S-9

00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107

00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120

00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148

00149
00150
00151
00152
00153
00154
00155

00ES
00ES
00E7
00E9
00EB
00EF
00F1

00F4
00F6
00F8
00FA

00FC
00FC
00FD
00FF
0101
0103
0104
0106
0108
010B

0l10cC
010cC
010E
0112
0114
0l1le6
0118
0l1la
0llp
Ol1lF
0121
0124
0126
0128
0128
012D
012E
012F
012F
0130

0131
0131
0133
0135

MainLp
D601 1db Indx
8D13 bsr GCookie send a complaint to the termin
304E leax InStr,U
108E0050 ldy #BufLen
8600 lda #0 Standard input Path
103r8B 0S9 IS$ReadLn get some data
* bcs Error
8D16 bsr Food Is this a Cookie?
2456 bcc Dene If yes; done
8D37 bsr NextMsg
20E9 bra MainLp

khkhkhkhkhkhkhkkkkkkk

* Pick a message and send it
* Message number is in B

GCookie
58 l1slb multiply B by two
3042 leax STable,U
AE85 1dx B,X get pointer out of the table
EG80 1db P X+ get string length
4F clra
1F02 tfr D,Y length to Y
N601 lda #1 standard output
103F8C 0Ss9 ISWritLn
39 rts

khkkhkkhkkhkhkkhkkhkkkk

* Compare InStr to "Cookie"
* We use the name of the program "Cookie" as
* the sample Cookie word.
* To compensate for the high order bit in the last "e"
* set the high-order bit in the sixth byte of the input string
* This will match if the input is Cookie.
*
Food
304E leax InStr,U
318DFEFB leay Name,PCR
A605 lda 5,X
8A80 ora #$10000000 set high bit
A705 sta 5,X
EC81 1dd , X+t
10A3Al1 cmpd ,Y++
2610 bne NotFood
EC81 1dd) X++
10A3A1 cmpd ,Y++
2609 bne NotFood
EC84 1dd X
10A3A4 cmpd ,Y
2602 bne NotFood
5F clrb clear carry
39 rts
NotFood
53 comb set carry
39 rts

khkkkkkkkhkhkkkkkkk

* Choose the successor to the last message.
*

NextMsg
9600 lda SigCode
2612 bne SigMsg
9601 lda Indx

330

00156 0137 8105 cmpa #SeqlLen Length of sequence table
00157 0139 2409 bhs Tolisgl
00158 0138 308DFF7A leax Sequence,PCR
00159 013F A686 lda A, X
00160 0141 9701 sta Indx
00161 0143 39 rts
00162 0144 ToMsgl
00163 0144 OFO1 clr Indx
00164 0146 39 rts
00165 0147 SigMsg
00166 0147 8604 lda $TableL-2 Signal Message
00167 0149 9701 sta Indx
00168 014B OFO0O0 clr SigCode
00169 014D 39 rts
00170 014E Done
00171 014E C605 1db #TableL-1 last message is thankyou
00172 0150 8DAA bsr GCookie
00173 0152 5F clrb clear carry
00174 0153 Error
00175 0153 103F06 0Ss9 FSExit
00176 0156 370AS5F EM®D
00177 0159 ModLen equ *
00178
00000 error(s)
00001 warning(s)
$0159 00345 program bytes generated
$0126 00294 data bytes allocated
$241F 09247 bytes used for symbols
A Daemon

According to my New World Dictionary, a daemon is “. . . a
guardian spirit.” Every computer needs a guardian spirit. The
Daemon that follows will sit in your system, running programs for
you. He can be told to run a program every so many seconds, or at
set times and dates.

If you want to be reminded to dump your hard disk on the first
of every month (too seldom), tell the Daemon to:

echo BACK UP /HO NOW!! >/term

at the time:

YY/MM/DD HH:MM:SS
//117:01:01

That will tell him to give you the message at five in the after-
noon on the first of each month. The asterisks are wild cards that
tell the deamon that any value of that variable is OK.

The basic operation of the Daemon isn’t too interesting. He
sleeps forsomelengthoftime (I chose 10 seconds), then wakes up
and sees if there is anything he should do. He does his business
and goes tosleep again. Allthe commands the Daemon executes
aresimple shell commands. He forks ashell tointerpret each one.

Theinterestingpartofthe Daemon is hiscommunication with

331

the rest of the world. There needs to be a way to send instructions
to him. Signals are a good way to joggle a process’s elbow, but a
signal doesn’'t have much information content. A disk file can
contain plenty of information, but it wouldn’t be good for the
Daemontoopenadisk fileevery 10 seconds. Someone might want
to remove the disk with the Daemon’s communication file on it.
Pipes are a good tool for inter-process communication, but they
can only run between closely related processes. The process
talkingtothe Daemon might be a very distant relative. The solution
is a shared data module.

A shared data module can be tricky. If more than one process
mightwant toupdate it ata giventime, you have to build alocking
system to prevent them from wiping out one another’s updates. In
this case we have to handle any number of processes that simul-
taneously attempt to send requests to the Daemon; so we've got
problems.

The solution is to limit communications through the data
module to a bandwidth almost as narrow as signals offer, and pull
signals and communication filesintotheact. The processid ofthe
Daemonis stored in adata modulethat has aknown name. Whena
process wants to send a request to the Daemon it opens the
Daemon’s command fileand concatenates thenew commandtoit,
thenclosesit. Itisimportantto close the file immediately, because
the file has the non-sharable attribute. The daemon cannot get at
his own file if another process has it open. Next, the process links
to the data moduleand gets the processidinit. Italsosetsaflagin
the data module. If other processes also set the flag, no problem,
it'seithersetornot. The process thensends a “wake-up” signal to
the Daemon; this terminates his sleep. The first thing the Daemon
doesischeck the flag in the data module. If it's set, he clearsitand
reads the command file.

The problem of multiple writers is shoved off on OS-9.
RBFMan can deal with contention for a non-sharable file. The
problem with frequent accesses to a communication file is elimi-
nated becausethe Daemon will only accessthe file when he knows
something is there for him. That won't cause any trouble because
the program that sent the request to the Daemon already forced
the user to load the correct disk.

The Daemon is a single program (two files), but a usable
system includes three other programs and the data module. The
data moduleis called Daemon.com, you'll find it exceptionally dull
reading. There is a program called Then (Some people would
prefer At — go ahead and change the name), which sends new
commands to the Daemon. PeekDaemon formats and displays the
commands in the Daemon’s command file.

Daemon MUST have Daemon.com in memory. The best way

to do this is to merge both modules into one file in your execution
directory. The following script will do the trick:

332

0OS9:shell

0S9:chd /d0/cmds

0S9:merge Daemon Daemon.com >temp
0S9:del Daemon

OS9:rename temp Daemon

0S9:attr Daemon pe e

0S9:<eof>

ﬁi*i***tioaemon.h i 2222222232224
#define ECMDLEN 150
struct EventRecord
{
int intv;
struct sgtbuf settime;
char cmdLine[ECMDLEN];

}

#define ifilen “/SYS/TimeT”
#define Com_datamod “Daemon.com”

L1313 22282222222 d s d Rl s Daemon c Je g de e dr dede de e de e e de e dede e e b
.

¢define LEVEL2 /* if running under 0S-9 Level Two */

#include <module.h>
$include <stdio.h>

$include <time.h>

$include "Daemon.h"

§define MAXEVENTS 50
$define tick 1l0*tps /* ten seconds */
§define ifilen "/SYS/TimeT"
$define TRUE 1

¢define FALSE 0

$define DataType ‘'\x40'
$define DataLang '\0’

struct Events

{
int interval;
long lastHit;
struct sgtbuf Set_Time;
char *CmdLine;

}:

struct Events Event Table[MAXEVENTS];
int Event_Count=0;

static int sig=0;

main{)

{
int intf();

InitEvents(Event_Table, &Event_Count);
intercept(intf);
GetDHMod ()}

while(sig == 0)
{
UpdEvents(Event_Table, &Event_Count);
DoEvents(Event_Table, Event_Count);
tsleep(tick);

DropMod() ;

333

exit(0);
}

InitEvents(Table, Ct)
struct Events Table(];
int *Ct;
{
char *defdrive();
char NamelInitFile[50];

struct EventRecord FileEntry;
struct sgtbuf tbuffer;

FILE *IFile;
char *malloc();
long toseconds(), thisSec;

strcpy(NameInitFile,defdrive());

strcat(NameInitFile,ifilen);

if ((IFile = fopen(NamelnitFile,"r")) == NULL)
{

fprintf(stderr,"Init file can't be opened. Error %d\n", errno);

exit(1l):

}
getime(&tbuffer);
thisSec = toseconds(&tbuffer):
while (fread(&FileEntry, sizeof FileEntry, 1, IFile) 1= NULL)
{
Table[*Ct].CmdLine = malloc(strlen(FileEntry.cmdLine) +
strcpy(Table[*Ct]).CmdLine,FileEntry.cmdLine) ;

Table[*Ct].interval = FileEntry.intv;
Table[*Ct].lastHit = thisSec;
_strass(&Table[*Ct].Set_Time, &FileEntry.settime,
sizeof FileEntry.settime);
if((*Ct)++ >= MAXEVENTS)
break;
}
fclose(IFile);
return;

static char *dMod = Com_datamod;

static mod_exec *modlink(), *mod_ptr=-1;
static char *flagptr;

static int *TaskPtr;

GetDMod()
{
if((mod_ptr = modlink(dMod, DataType, DataLang)) == -1)
{
fprintf(stderr, "Can't link to %s.", dMod);
exit(l);
}
flagptr = mod_ptr + mod_ptr->m_exec;
TaskPtr = flagptr + 1;

*TaskPtr = getpid();
return;

}

DropMod()
{
if(mod_ptr 1= -1)
munlink (mod_ptr);
return;

334

1)

.
’

107 }

109 UpdEvents(Table, Ct)

110 struct Events Table[];

111 int *Ct;

112 {

113 while(*flagptr 1= 0)

114 {

115 *flagptr = 0;

116 *Ct = 0;

117 fprintf({stderr,"Daemon update request\n");
118 InitEvents(Table,Ct);

119 }

120 return;

121 }

122

123 DoEvents(Table,Ct)

124 struct Events Tablel 1:

125 int Ct;

126 {

127 struct sgtbuf tbuffer;

128 register int i;

129 long now;

130

131 getime(&tbuffer);

132 now = tosecond(&tbuffer);

133 for(i=0;i<Ct;i++)

134 {

135 if(Table[i].interval >= 0)

136 {

137 if (Table[i]).interval <= (now - Table[i].,lastHit))
138 {

139 system(Table[i]l.CmdLine);
140 Table[i].lastHit = now;
141 i

142)

143 else

144 if (match(stbuffer,&Table[i].Set_Time,&Table[i].lastHit))
145 system(Table[i]}.CmdLine);

146 }

147 return;

148]

149

150 long toseconds(b)

151 struct sgtbuf *b;

152 {

153 return{b->t_second + 60*(b->t_minute + (60 * b->t_hour)));
154)

155

156 match(t,pat,lastHit)
157 struct sgtbuf *t, *pat;
158 long *lastHit;

123 if({pat->t_year > 0) && (pat->t_year l= t->t_year))

igé els; if({pat->t_month > 0) && (pat->t_month l= t->t_month))

igi els; if({pat->t_day > 0) && (pat->t_day != t->t_day))

}22 elsé if({pat->t_hour > 0) && (pat->t_hour != t->t_hour))

igg elsé if({pat->t_minute > 0) && (pat->t_minute I= t->t minute))
igg els; if({pat->t_second > 0) && (pat->t_second -~ 5 > t->t_second ||
i;% : pat->t_second + 4 < t->t_second))

335

173 else

174 {

175 if(*lastHit > 0)
176 return(FALSE) ;
177 else

178

179 *lastHit = TRUE;
180 return(TRUE) ;
181 }

182 }

183

184 *lastHit = FALSE;

185

186 return(FALSE);

187 '}

188

189 intf(signal)

190 int signal;

191 (

192 if(signal > 1)

193 sig = signal;

194 return;

195 1

khhhhhhhhhhhhhhhhd Daemon, Com Fedeodededededrdrde ke ok dd koo
N

00001 nam Daemon,Com

00002 ttl Data Module for Daemon
00003 IFP1

00005 ENDC

00006 0040 Type set Data

00007 0081 Revs set ReEnt+1

00008 0000 87CDOO1E mod Size,Name,Type,Revs,Start,0
00009 000D 4461656D Name fcs /Daemon, com/

00010 0017 01 fcb 1 version
00011 0018 Start

00012 0018 00 Flag fcb 0

00013 0019 0000 DTask fdb 0

00014 001B 930A0A ENMOD

00015 001E Size equ *

00016

kbbb bbb bbb hhhd Then.c I Z 2222222222222 R R
1 #include <stdio.h>
2 #include <module,h>
3 #include <ctype.h>
4 #include <time.h>
5 #include <modes.h>
6 #include <errno.h>
7 #include <signal.h>
8 #include "Daemon.h™
9

10 #define DataType '\x40'
11 #define DataLang '\0'

12

13 static char *usage[] =

14 |

15 "The format of the Then command is:",

16 " Then <shell command line>",

17 "If the command line must contain shell operators:",

18 "(;><8s)",

19 "don't put anything on the command line, Then will prompt*®,
20 "for a command,",

21 uw’

22 "Then will always prompt for directions on when to execute the®
23 "shell command."*

24}

336

30

static struct EventRecord FileEntry;

main(argc,argv)
int argc;
char **argv;
{
int i;
char c;

FILE *IFile, *QOpenTimer();

argv++;

if(argc == 2 && **argv == '2')

directions();

exit(0);

setbuf(stdin, NULL); /* unbuffered input */

setbuf(stdout,

NULL); /* unbuffered output */

FileEntry.cmdLine{0] = '\O0';

if(argc < 2)
{

printf ("SHELL CMD: ");
fgets(FileEntry.cmdLine,ECMDLEN,stdin);
printf(*\n");

}

else

for(i=2; i<=

{

argc; i++)

strcat(FileEntry.cmdLine,*argv++);
strcat(FileEntry.cmdLine, " *);

* Select set

| Ny ———

do

time or set interval *

___________ ~____________-_______i/

printf("Execute the command at a set time? (Y,N): ");
c = toupper(getchar());

} while (c
print£("*\n");

FileEntry.intv

1= "Y' && c 1= 'N');

= -1 /* Initialize FileEntry */

FileEntry.settime,t_year = -1;

if(c == 'Y")
Time();

else
Interval();

/* Set time for execution */

/* Set interval for execution */

IFile = QOpenTimer();

fwrite(&FileEntry, sizeof FileEntry, 1, IFile);

flagbaemon() ;
fclose(IFile);
exit (0);

}

Time()

/* release the timer file */

337

112
113
114
115

156

}

int 1i;

printf("Enter time YY/MM/DD HH:MM:SS\n");
printf{®"Use * as a wild card\n");
printf(™"YY/MM/DD HH:MM:SS\n");

FileEntry.settime.t_year = getnum();
putchac('/"');
FileEntry.settime.t _month = getnum();
putchar('/"');

FileEntry.settime.t_day = getnum();
putchar (' ');

FileEntry.settime.t_hour = getnum();
putcharc(':");
FileEntry.settime.t_minute = getnum();
putchar(':');
FileEntry.settime.t second
printf(*"\n");

n

getnum() ;

return;

getnum()

{

}

char cl, c2;

do
cl = getchar();
while (lisdigit(cl) && (cl I= '\n') && (cl 1= '*'});

if(cl == '*' [| cl == '\n"')
return(0) ;

do
c2 = getchar();
while (! isdigit(c2) && c2 I= '\n');

if(c2 =='\n")
return(cl - '0');
else
return({(c2 - '0') + ((cl -~ '0') * 10));

Interval()

}

printf{™Interval:\n");
printf("HH:MM:SS\n");
FileEntry.intv = getnum()*60*60;
putchar(':");

FileEntry.intv += getnum()*60;
putchar(':');

FileEntry.intv += getnum();
printf{"\n");

return;

static char modname[] = Com_datamod;

flagDaemon()

{

mod_exec *modlink();
mod_exec *mod_ptr;
char *flagptr:

int *DaemonTask;

338

158 if ((mod_ptr = modlink(modname, DataType, DataLang)) == -1)
159

160 fprintf(stderr, "Can't link to $s, Error $d\n", modname, errno);
161 exit(l);

162

163 flagptr = mod_ptr + mod_ptr->m_exec;

164 DaemonTask = flagptr + 1;

165 (*flagptr)++;

166

167 fprintf(stderr,”"Signaling task %d\n",*DaemonTask);

168 kill(*DaemonTask,SIGWAKE); /* joggle the Daemon's elbow */
169

170 munlink(mod_ptr);

171

172 return;

173 }

174

175

176 FILE *OpenTimer ()

177 |

178 char NamelInitFile[50];

179 char *defdrive();

180 char new;

181 FILE *1IFile;

182

183 strcpy(NameInitFile,defdrive()); /* Build timer file name */
184 strcat(NameInitFile,ifilen);

185

186 new = access(NamelInitFile,0);

187 if((IFile = fopen(NameInitFile,"a")) == NULL) /* Open timer file */
188 {

189 if(errno == E_BPNAM)

190 fprintf(stderr,"$s %$s.\n",

191 "A disk containing the SYS directory must be in",
192 defdrive());

193 fprintf(stderr, "Init file can't be opened. Error %d\n",
194 errno);

195 exit(l);

196 }

197 if(new)

198 chmod(NameInitFile,S IREAD+S_IWRITE+S_IOREAD+S_IOWRITE+S_ISHARE);
199 return(IFile);

200 1}

201

202 directions()

203 {

204 register int i;

205

206 for(i=0; i < sizeof usage / sizeof (char *); i++)

207 puts(usage[i]);

208

209 return;

210 }

211

IERA SRS RS R SRS R PeekDaemon.c LS AR RE R RS RE SR

1 #include <stdio.h>
#include <time.h>
#include "Daemon.h"

static struct EventRecord FileEntry;
main()

{

2
3
4
5
6
7
8
9 FILE *IFile;

339

char NamelnitFile[50],
char Datestr(20i];
char *nstr();

*defdrive();

strcpy(NamelnitFile,defdrive());

strcat(NameInitFile,ifi

if((IFile = fopen(NameInitFile,"“r"))

fprintf(stderr, "Init file can't be opened.

exit(1l);

len);

NULL)

Error %d\n",errno);

while (fread(s&FileEntry, sizeof FileEntry, 1, IFile) != NULL)

if(FileEntry.intv == ~1)
{

printf("%s/%s/%s $s:%s:%s",

nstr(FileEntry.settime.t_year),
nstr(FileEntry.settime.t_month),
nstr(FileEntry.settime.t_day),
nstr(FileEntry.settime.t_hour),
nstr(FileEntry.settime.t_minute),

nstr(FileEntry.settime.t_second)};

reset();

}

else

printf(®%d",FileEntry.intv);

printf(" ==> %s\n",FileEntry.cmdLine);

}
exit(0);
}

static char wildcard(2]) = {'*',*\0'};

static char s(6)[3];
static int sptr=0;

char *nstr(n)

int n;
if(n <= 0)
return(wildcard);
sprintf(s|[sptr],"sd"
: return(s{sptr++]);
reset()
{ sptr = 0;

/n);

340

WORKSHOP 2

a notepad

The Daemon uses a data module to store a few important bits
ofinformation. Larger data modules also have their uses. One way
to think of them is as global storage that persists even between
programs. Fortran programmers might find the metaphor of com-
mon storage useful. A simple use of this kind of global storage is
notepad storage. A Notepad can be kept on disk, but then you'd
have to load the disk containing the notepad every time you
wanted a look at it. | wouldn’tuse a notepad if it involved switching
disks. Forthoseofuswith extralarge disks thisis no problem. For
others . ..

A notepad kept in a data module will have to be small, but
that’s in the nature of notepads. If you want to record large
amounts of data, use a file.

This system of programs includes a set of BASIC09 modules.
Note is a master program that invokes most of the others. NoteS is
away to see the contents of the Notepad without going through
the menus in Note.

GetNote is a set of assembly language subroutines meant to
be called from BASICO09. They link to the Notebook data module
and unlink it; they also copy a block of data to and from the data
module. These modules are interesting both as examples of the
use of a data module, and as assembler subroutines for BASICO09.
In the first one, | test the length of a parameter. That's an example
ofsomethingthrown in just because it seemedtoneed demonstrat-

ing.

341

122222222223 222 2222222 BAleog Procedures 1222222222}
PROCEDURE note

0000 (*

0003 (* Driver program for notebook maintenance

002D (*

0030 DIM workstring:STRING{500] \(* Data copied from the notebook *)
005F DIM module:INTEGER \(* The address of the notebook data module *)
0093 DIM Selection:STRINGI[1]

009F (*

00A2 (* Prompt for a command

0089 (*

00BC REPEAT

00BE REM You might want to insert code to clear your screen here
00F8 PRINT \ PRINT \ PRINT

00FE PRINT TAB(10); "NotePad Menu"

0112 PRINT \ PRINT "A Load NotePad from disk (file NotePad)"
0142 PRINT "B Save NotePad to disk (file Notepad)"

0l16E PRINT "C Edit NotePad”

0183 PRINT \ PRINT TAB(10); "Selection: "

0198 INPUT Selection

UNTIL Selection >= "A"™ AND Selection <= "C" OR Selection >= "a" AND
Selection<="c"

01Cl (*
01C4 (* Correct Selection to upper case
01E6 (*
01E9 IF Selection>"Z" THEN
01F6 Selection=CHRS$ (ASC(Selection)-32)
0203 ENDIF
0205 RUN GNoteB(module) \(* Link to the notebook data module *)
0235 (*
0238 (* run a procedure to execute the selection
0263 (*
0266 IF Selection="A" THEN
0273 RUN LoadNote(workstring,module)
0282 ELSE IF Selection="B" THEN
0292 RUN SaveNote(workstring,module)
02A1 ELSE IF Selection="C" THEN
0281 RUN EditNote(workstring,module)
02CO ENDIF
02C2 ENDIF
02cC4 ENDIF
02C6 RUN DNote(module) \(* Unlink the notebook data module *)
02F5 END
PROCEDURE LoadNote
0000 PARAM S:STRING[500]
ooacC PARAM Module:INTEGER
0013 DIM i,7j:INTEGER
001E DIM NoteFile: INTEGER
0025 ON ERROR GOTO 100
002B OPEN #NoteFile,"NotePad" :READ
003D GET #NoteFile,S
0047 RUN PNote(Module,S)
0056 CLOSE #NoteFile
005C END
00S5E 100 ON ERROR
0064 S=CHRS$(13)
0o0e6ecC END
PROCEDURE SaveNote
0ooo PARAM S:STRING[500]
000cC PARA!M Module:INTEGER
0013 DIM NoteFile:INTEGER
00la CREATE #NoteFile,"NotePad":WRITE
002C RUN GNote(Module,S)

342

0038
0045
0048

PUT #NoteFile,S
CLOSE #NoteFile
END

PROCEDURE EditNote

0000
0003
0037
0047
0081
0084
0090
0097
00A2
00AE
00DA
0113
0144
015F
0166
0180
0182

0184
01B5S

01BA
01BD
0lE3
0lE6
01F3
0200
0202
0205
021B
021E
0244
0261
0286
0290
0223
02CB
02CF
02DE
02EE
0306
030E
031B
031D
034B
0367
036F
0387
038B
0346
03cCB
03D7
040A
040E
0419
0425
042C
042E
0439
0453
045E
0462
046F

(*
(* EditNote is a very simple editor for the notes in
(* the notebook.
(* It only can list single lines, and add and delete lines
(i
PARAM S:STRING[500]
PARAM Module:INTEGER
DIM start,last:INTEGER
DIM Selection:STRINGI[1]
DIM Line:STRING[80] \(* Input buffer for new lines *)
DIM temp:STRING[500] \(* Work space for insert-delete operations *)
RUN GNote(lModule,S) \(* Get notes from Notebook in S *)
GOSUB 100 \(* Give Help Message *)
last=0
GOSUB 90 \(* Parse out a line *)
PRINT
REPEAT
PRINT MIDS(S,start,last-start); " ->": \(* Print line, prompt *)
INPUT Selection
(*
(* Ensure that Selection is upper case
(*
IF Selection>"Z* THEN
Selection=ClRS$(ASC(Selection)-32)
ENDIF
(*
(* Execute the command
(*
IF LEN(Selection)=0 THEN \(* Input was a return *)
GOSUB 90 \(* Parse out next line *)
ELSE IF Selection="A" THEN \(* Add a new line *)
INPUT ": ",Line
IF LEN(Line)+LEN(S)>500 THEN
PRINT "Notepad overflow, Addition rejected"
ELSE
temp=LEFTS$(S,start~-1)
temp=temp+Line+CHRS$(13)
temp=temp+RIGHTS$(S,LEN(S)+1l-start)
S=temp
last=start+LEN(Line)
ENDIF
ELSE IF Selection="D" THEN \{(* Delete the current line *)
temp=LEFTS$(S,start-1)+RIGHTS(S,LEN(S)-last)
S=temp
ELSE IF Selection="H" OR Selection="2" THEN
GOsuB 100
ELSE IF Selection="Q" THEN \(* Quit *)
ELSE IF Selection="-" THEN \(* Back up a line *%*)
IF start=1 THEN
PRINT "***** Note can't be backed up past first note.,"”
ELSE
last=start-1
IF last<l THEN
last=1
ENDIF
start=last-1
WHILE start>=1 AND MIDS$(S,start,1)<>CHRS$(13) DO
start=start-1
ENDWHILE
IF start<>last THEN
start=start+l

343

047A ELSE

047E GOSUB 90

0482 ENDIF

0484 ENDIF

0486 ENDIF

0488 ENDIF

048A ENDIF

048C ENDIF

048E ENDIF

0490 ENDIF

0492 UNTIL Selection="Q"

049E RUN PNote(Module,S) \(* Copy data back into notebook data module *)
04DB END

04DD 90 REM Parse out a line

04F3 IF last+1<LEN(S) THEN

0504 start=last+l

050F ELSE

0513 start=1l

051A ENDIF

051cC last=start

0524 WHILE MIDS$(S,last,1)<>CHRS$S(13) AND last<LEN(S) DO

0540 last=last+l

0548 ENDWHILE

054F RETURN

0551 100 REM Help Message

0563 PRINT "Return to see the next line."

0583 PRINT °D to delete the current line."

05A9 PRINT ™A to add a line before the current line."
05DA PRINT " - to see the previous line."

05FE PRINT "Q to quit editing the Notepad."

0625 PRINT "H to see this help message.”

0649 RETURN
PROCEDURE notes

0000 (*

0003 (* Just list the notes in the NoteBook

0029 (* Don't prompt for options

0044 (*

0047 DIM start,last:INTEGER

0052 DIM temp:STRING[500] \(* storage for the data from NoteBook *)
0086 DIM Module:INTEGER \(* The address of the NoteBook data module *)
00BA RUN GNoteB(Module) \(* Link to the data module *)

00E1l RUN GNote(Module,temp) \(* Copy notebook data to temp *)
0110 last=0

0117 GOSUB 90 \(* Parse out a line *)

0131 PRINT

0133 REPEAT

0135 PRINT MIDS(temp,start,last-start) \(* Print one line from the notebook
016B GOSUB 90 \(* Parse out a line *)

0185 UNTIL start=l

0190 RUN DNote(Module) \(* Unlink the notebook data module *)
01BF END

01C1 90 REM Parse out a line

01p7 IF last+l1<LEN(temp) THEN

01ES8 start=last+l

0lF3 ELSE

01lF7 start=1

01FE ENDIF

0200 last=start

0208 WHILE MIDS(temp,last,l)<>CHRS$(13) AND last<LEN(temp) DO
0224 last=last+l

022F ENDWHILE

0233 RETURN

************************GetNote khkhkhkhkhkhkhkhkhkhhkhkhkhhkhhhkhkhdh
00001 nam GetNote

344

00002
00003

00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056

00057
00058
00059
00060
00061

[sMvlvlvlvlvivlvivlvielvlw]

0021
0081
0000

0000
0000
0002
0004
0006
0008
oooA
000cC
000E
0010
0012
0014
0016

000D
0013
001B

001cC
g01c
001E
0022
0024
0026
002A

0o02c
002E
0032
0035
0037
003A
003B
003C
003C
003E
003F
003F
0040
0043

0000
000D

ttl Get Information from NoteBook for Basic09

IFPl
use /D0/DEFS/defslist
ENDC
type set Objct+Sbrtn
Revs set ReEnt+1
87CD0043 mod GNoteBS,Namel,Type,Revs,GNoteB,0
* ok ok ok ok ok ok
* Parameter area
*
org 0
RetAddr rmb 2 return address
ParimnCt rmb 2 number of parameters
V1 rmb 2 address of module address
V1L rmb 2 length of V1
V2 rmb 2
V2L rmb 2
V3 rmb 2
V3L rmb 2
V4 rmb 2
V4L rmb 2
V5 rmb 2
V5L rmb 2
* End of parameter area
474E6F74 Namel fcs /GNoteB/
4E6F7465 NoteBook fcs /NoteBook/
01 fcb 1
% %k dk ok ok k ok ok ok k ok ok
* Link to NoteBook data module. Return the address of
* the module header to the caller
*
GNoteB
EC62 1dd ParmCt, S get parameter count
10830001 cmpd #1 expect one
2618 bne ParamErr
EC66 1dd V1L, S
10830002 cmpd 2 expect two
2610 bne ParamErr
% k k ok ok ok k ok
* Link to NoteBook
8640 lda #Data
308DFFE1 leax NoteBook,PCR
103F0O0 0s9 FSLink
2508 bcs Error
EFF804 stu [vl,s]
5F clrb
39 rts return
ParamErr
Cc638 1db $ESParam
43 coma set carry
Error
39 rts
BOF864 EMOD
GNoteBS equ *

ddkok ok kokokokokkokokk

* Unlink NoteBook data module
*

87CD0034 mod DNoteS,Name2,Type,Revs,DNote, 0
444E6F74 Naine2 fcs /DNote/

345

00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082

00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122

00123
00124
00125

0012
001A
0018
001B
001D
0021

0023
0026
0029
002B
0o2c
002D
002D
002F
0030
0030
0031
0034

0000
000D
0012
0013
0013
0015
0019
001B
001F
0021
0023
0025
0027
0029
002B
002D
002D
002E
002F
002F
0031
0032
0032
0033
0033
0034
0036
0036
0038
003A
0038
003D
003D
003E
0041

4E6F7465 NoteBk2 fcs /NoteBook/
01 fcb 1
DNote
EC62 1dd ParmCt,S get parameter count
10830001 cmpd #1 expect one
260a bne ParmErr?2

kkkkhkkdd

* (UnLink NoteBook
*

EEF804 1du [V1,S])
103F02 0859 F$UnLink
2505 bes Error2
SF clrb
39 rts
ParmErr2
C6138 1db #ESParam
43 coma set carry
Error2
39 rts
786B44 EMOD
DNoteS equ *

kkkkkhkhhkhdbddd

* store info in NoteBook

* run WSet(ModPtr,Data)

* Module pointer, 500 bytes of data
*

87CcD0041 mod PNoteS,Name3,Type,Revs,PNote, 0
S504E6F74 Name3 fcs /PNote/
01 fcb 1
PNote
EC62 1dd ParmCt, S get parameter count
10830002 cmpd §2 expect two
2614 bne ParmErr3
10AEF804 ldy [V1,S] address of module
EC29 144 9,Y data offset
31aB leay D,Y Y points at data in NoteBook
AE68 1dx v2,Ss
C6FF 1db #255 max move size
8DOA bsr Move move X to Y length B
C6F5 1db #500-255 remaining length
8D06 bsr Move continue move
Exit
5F clrb
39 rts
Parmerr3
c638 1ldb #ESParam
43 coma set carry
Error3
39 rts
Move
5D tstb
2707 beq MoveX
MoveLoop
A680 lda P X+
A7A0 sta ey
5A decb
26F9 bne MoveLoop
MoveX
39 rts
713917 EMOD

PNoteS equ *

khhkhkkkhhhhkhd

* get info from NoteBook
* run GNote(ModPtr,Data)

346

00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163

00000
00000
$00F9
§0018
$2410

0000
000D
0012
0013
0013
0015
0019
001B
001lF
0021
0023
0025
0027
0029
002B
002D
002D
002E
002F
002F
0031
0032
0032
0033
0033
0034
0036
0036
0038
003A
003B
003D
003D
003E
0041

* (Module pointer,

*

87CD0041
474E6F74
01

EC62
10830002
2614
10AEF804
EC29
31AB
AE68
C6FF
8DOA
C6F5
8D06

5F
39

C638
43

39

5D
2707

A6A0Q
A780
5Aa

26F9

39
9AB744

error(s)

warning(s)
00249 program bytes generated
00024 data bytes allocated
09232 bytes used for symbols

Name4

GNote

Exit.2

ParmErr4

Error4

Move.2

MovLoop2

MoveX. 2

GNoteS

500 bytes of unformatted data)

mod
fcs
fcb

1dd
cmpd
bne
ldy
1dd
leay
ldx
1db
bsr
1db
bsr

clrb
rts

ldb
coma

rts

tstb
begq

lda
sta
decb
bne

rts
EMOD
egu

GNoteS, Name4,Type,Revs,GNote, 0
/GNote/

1
ParmCt,S get parameter count
$2 expect Two
ParmErr4
{vl,s] address of module
9,Y data offset
D,Y point at data in NoteBook
v2,s point at data from Basic09
#255 Max length to move
Hove, 2 move [Y] to [X] for B
#500-255 remaining length
Move, 2
EParam
set carry
MoveX,2
Y+
,X+
MovLoop2

*

Akkkkkkhd bk k kA Rk 2 k2% NOoteBook data module *hdskdddkidihis

00001
00002
00003

00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019

0040
0081
0000
000D
0015
0015
00lF
0029
0033
003D
0047
0051
005B
0065

87Cp020C
4E6F7465

ODFF0000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

type
Revs

Name
DStart

nam
ttl
IFP1
use
ENDC
set
set
mod
fcs

fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb

NoteBook
Data Module for Note system

/d0/DEFS/defslist

Data

ReEnt+1
MSize,Name,Type,Revs,DStart,DSize
/NoteBook/

o)

OO0 OO0O0OO O~
« % % @ s s s s« O
[== Nl el o= N e N oo N en I))
e« % S & s s s e« O
o0 oOoO0o0oo-
- wm " wm w s s 0O

OO0 O0OO0CO0OO0O O~

e« s %" s s sssO

0,0 ten bytes 1
ten bytes 2
ten bytes
ten bytes
ten bytes
ten bytes
ten bytes
ten bytes
ten bytes

o O0Coo0coooH

« s S e s s~ W
OO0 OO0COO0 O~
S S S eSS s sw»
OO0 o0Ccoo0cocoom
OO0 O0OO0O0OO O~
e« 8" S s s s s s O
OO0 O0OO0CO0OO0O O~
-« %" % @ e w0
OO0 O0OO0O0OO0O O~
LogdoaU & w

. % % & % s s

347

00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063

00000
00000
$020C
$0000
$21C7

006F
0079
0083
008D
0097
00A1
00aB
00B5
00BF
00cC9
00D3
00DD
00E7
00F1
00FB
0105
010F
0119
0123
012D
0137
0141
014B
0155
015F
0169
0173
017D
0187
0191
0198
01Aa5
0laFr
01B9
01cC3
01CD
01D7
01El
OlEB
01F5
O1FF
O0lF4
0209
020c¢

oooooo000
00000000
00000000
00000000
00000000
oooovoo000
0oooo0000
0ooo0000
0oooo0000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
oooooo000
00000000
00000000
00000000
00000000
00000000
0ooooo000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

1C79BD

erroi(s)
warning(s)
00524 program bytes generated

00000 data bytes allocated

DSize

MSize

fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
equ
EMOD
equ

08647 bytes used for symbols

*OO OO OO0 OCDOOO0COOO0OO0O0OO0ODOO0COO0OODOC OO OO0 ODLODOLOO0O OO OO0 OO o
Il S 9 S 9 9 9 9 9 9 S 9 S 9 % S % N S NN NN NN NN NN NNAONTSTNST SN SNYSNSSsS~
OO0 O0O0 0000000000000 00O00 00O OO0 OO0 OO0 OO OoO
NN 9 8 9 S 8 9 9 9 S 9 9 9 9 9 9 9. 9 .9 % 8% SN NN NN NN NSNS S SSSsSSSNSSsSS~
[alieleoNoleolololeNoNeNoelolaloloNololaloNolololoaNololNololollolololololNololololololoiol o]
[elololelocNoeloelololalolololalolololoNoNolololNoNolNoNololololololololololololo ool o)
L I T N B N I I T DL B B . I D D D I TR T S N B N N I R . T T R R I T BN BN B
OO0 0000000000000 ODODODODO0OODODODOODOOO OO OOO
L N L L I L R T T I L I D T T B I DL T B L N T N L N B S L I DL DR L B B D D B B R]
[cloolocliclololololeloloclelololeleloNoleNoleNoalloNoNoNoNololoNolololoNol ool
L T T T B N T T T L N B A . T R R T TR DN R JEEE U RN TN NN RN B N R Y T R T T B BN B Y
clolojeliclolecloleololecloleolelelecleloNoloeloaloNoNoNololololololololololololololloalolo]
L I L N B N L T B I B L JEEE TR DL I R D I B I N DL T DL N . D K T TR T TN L I L B B)
elcleoleclocloloclcleololclclecloleloleloNeoleololeoNoleolNololeoNoNeloNoNoNoNlolololNololololol
LI N B L N I I D L L L B IR I I I D I DL N I S T R R T UL B L N N T T D L B L B B

US 9 9 9 9 9 9 9 9 9 9 9 8 9 9SNNS NN SN NN NN NN NANNY S Y S Y S .~

"N OO0OO0OO0CO0ODO0ODO0DO0ODO0ODO0OO0O0O0ODO0DO0ODODO0O0O0OO0DO0DODDOLDODODODODODOOOOODDODODOOOOOO

(S 9 8 9 9 9 9 9 9 9 9 9 S 9 9 9 9 9 9 9 9. 9 9.9 9 9 9 9% 9 % 9. 9 9 9 8 S 85 58 58S~

*

348

[ooNalelolelelolalololololaloelolelololelolelolololoelolololololololol ool ool ool o]

ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten
ten

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

10

0 (200 byt

0 (400 byt

VOO UDBWNOFLEOVODLdIAUESEWNNHF WOONdAOAUTLEWNHFINWOUONAATUSEWN

0 (500 byt

WORKSHOP 3

‘more’

A PROGRAM TO PAGINATE TO THE TERMINAL

If you have pause turned off (using TMODE), listings will fly by
on your terminal so fast you won’t be able to do more than appre-
ciate their length. If you turn pause on, you can see one page at a
time, but there isn’'t an easy way to move down a line at a time.
Movingthrough afile24 linesata crackleaves youlookingateach
fresh path with no context from the previous page.

The next program, More, isn't a large improvement over the
pagination that SCFMan provides, but it has some nice features.
Most important, it demonstrates an application of pipes. You’ll
also find examples of the use of F§Mem, F$Fork, F$lcpt and
F$Send.

Thereis one problem that this program wrestles with without
much success. More should be abletoacton any shell command.
The built-in shell commands are problems, but a more annoying
problem is thatthe shell insists on seeing various special charac-
ters — ‘# and ‘!’ for example. There is no way to prevent the shell
from acting on these characters, so | gave up and designed More
to be able to accept a shell command line from standard input.
You'll notice that it checks the parameter area foracommand line.
If there is only a <return> character in the parameter area, More
prompts for acommand line. This gets around the problem, but it
doesn’t solve it.

349

For a simple command like LIST TEMP, use More like this:
0S9: more list temp

Atthe bottom ofeach page you will get a““More:” prompt. Here
you have four options:

<return> next page

<space> next line

<line feed> list the rest of the file without a pause
<tab> quit

Quitingwasaproblem. It'seasy to exit, but making certain the
programs down the pipe also died was harder. The programs
would get an error on their next write to the pipe, but what if they
didn’t writeagain. One way to handle the problem would be to just
terminate display of the input. More could go on to read all the
input from the pipe and throw it away. | chose to remember the
process id of the shell that was forked earlier. When More termi-
nates, with a<<tab>command ora signal, it sends a kill signal toits
child.

E2 2222222222222 22223 More t2 2222222222222 2222

0oool
00002
00003
00005
00006
00007
0ooos
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038

Cococooococ o

0011
0081
0000

0000
0001
0002
0003
0004
0005
0006
0007
0165
000D
0011
nn12
0006
0018
001D
0022
0022
0024

0026
0028
002A
002D
002F

87CDO1C9

nam More
ttl Paginate input for a terminal

IFP1

ENDC
Type set Prgrm+0Objct
Revs set ReEnt+1

mod MSize,Name,Type,Revs,Enter,DSize

khkhkhkhkhkhkhkhkhkhkhkhkhhkhk
* Variables

*

4D6F7 2E5
01
4D6F7265

2F504950
5348454C

3436
0F06

PPageLen rmb 1 length of standard out page
CPageLen rmb 1 length to copy
Pause rmb 1 init. pause state
PipeNo rmb 1 path number of pipe
StdOSave rmb 1 path number of std. out copy
ChildNo rmb 1 task number of child
Signal rmb 1 signal received
rmb 350 Stack space
DSize equ .
Name fcs /More/

Version fcb 1
Prompt fcc /More: /
PromptL equ *~Prompt

Pipe fcs "/PIPE"
SHELL fcs "SHELL"
Enter

pshs D,X,Y
clr Signal no signal received

kkkkhkhkhkhkhkhkhkhkhkk

* First get page length from the standard output path
* and set pause off in that path.

*

8601
C600
32E8EQ
30E4
103F8D

lda #1 standard output path number
1db #SS.0pt getstat code

leas -32,S make space on the stack

leax ,S point X at the temp storage on

0s9 ISGetStt

350

00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104

0032
0036
0038
003A
003cC
003E
0040

0042
0045
0049

004c
004E
0050
0052
0054

0056
0058
005B
005E
0061
0064
0068
0068
006D

0071

0074

0076
0076

0078
007B
007F
0081
0084
0088
00o8a
008cC
008F
0093
0095
0097
009A
009E
00AO

00A3
00AS5
00A7
00A9

10250166 lbcs
A608 lda
9700 sta
A607 lda
9702 sta
6F07 clr
8601 lda
* B is still SS.Opt from

* X still points to

103F8E 0S9

10250153 lbcs
32E820 leas
khkhkhkkkkhkhdhdhhk

* See if a command line
*

3536 puls
3406 pshs
A684 lda

810D cmpa
2620 bne

ddkdkodkokkkkk ko k

* Get a command from standard input

*

3262 leas
CcCcooo00 1dd
103F07 0s9
C30100 addd
103F07 0s9
10250134 lbcs
1700BF lbsr
8600 lda
108E0101 ldy

* X points at the start
103F8B 0Ss9

* X points at the start
* Y contains the length
3420 pshs

IS AR AR RRRRRRED X

Error

PD.PAG~-PD.OPT,X get

PPageLen

PD.PAU-PD.OPT,X get

Pause

PD.PAU-PD.OPT,X set

#1
GetStat

the temp storage

I$SetsStt
Error
32,8

was given

D,X,Y

D

' X

#S0D
GotParam

2,S

#0
FS$Mem
$#256
FStiem
Error
WPrompt
#0

$#257

page length

page-pause byte
save it
no page-pause

standard output

set pause off

clear temp space off the stack

get initial register contents
save param area length again
get first byte in the param. a
<CR>?

no; there's something in the p

clear parameter area length of
request memory size

get mem size in D

add space for command buffer
get the buffer

standard input
size of buffer (include <CR>)

of the buffer already

IS$ReadLn

get a command line

of the command line
of the command

Y

* X points at the command
* ,S gives the command length
*

GotParam
3410 pshs X
* stack now contains (ptr, length)
170111 lbsr SetIcpt
308DFF99 leax Pipe,PCR
8603 lda #UPDAT,
103F84 0Ss9 I1$0Open
10250114 lbcs Error
9703 sta PipeNo
8601 lda #1
103F82 0s9 I1S$Dup
10250109 lbcs Error
9704 sta StdosSave
8601 lda #1
103F8F 0s9 I$Close
102500FE lbcs Error
9603 lda PipeNo
103F82 0s9 I$Dup

hhhkhkhkhkhhkdhhd

* fork a SHELL with the
*

3526 puls
3440 pshs
1F03 tfr
8600 lda

command line

D,Y
U

D,U
#0

351

save command length on the sta

save command pointer

open the pipe for update

std. out path number
dup std. out

close std. out

get Pipe path number
Dup it into path 1

get command pointer and size
save U

command ptr in U

any language/type

00105 00AB C601 1db #l one extra page for command lin

00106 00AD 308DFF6C leax Shell,PCR

00107 00B1 103F03 0S9 F$Fork fork the shell
00108 00B4 3540 puls U recover U

00109 00B6 102500E2 lbcs Error

00110 00BA 9705 sta ChildNo save Child's process number
OQlll khkhkhkhhkhkhkhkhi

00112 * Get std output back

00113 *

00114 00BC 8601 lda #1 std output

00115 00BE 103F8F 0s9 I$Close

00116 00Cl1 102500D7 lbcs Error

00117 00C5 9604 lda StdOSave

00118 00C7 103F82 0Ss9 I$Dup dup saved std. out into path 1
00119 00CA 102500CE lbcs Error

00120 00CE 9604 lda stdosSave

00121 00D0 103F8F 0S9 ISClose close Std, out dup
00122 I E S EEXEEEEEEERERE R J

00123 * Everything's set up

00124 * Now we mostly just copy:

00125 *

00126 00D3 2023 bra NxtPage

00127 00D5S Loop

00128 00DS5S 0DO06 tst Signal

00129 00D7 262A bne Quit

00130 00D9 17009F lbsr WCRLF skip to next line
00131 00DC 8D28 bsr CpyPage copy a page pipe to std out
00132 00DE 8D4A bsr WPrompt prompt "More:"
00133 00OEO 8D59 bsr GetChar get reply

00134 00E2 8D69 bsr CodeChar change char to 0,2,4,6
00135 00E4 308D0002 leax JTable,PCR

00136 00E8 6E86 jmp A,X

00137 00EA JTable

00138 00EA 2006 bra NxtLine

00139 00EC 200A bra NxtPage

00140 00EE 200F bra RunFree

00141 00F0 2011 bra Quit

00142 00F2 NxtLine

00143 00F2 8601 lda #1

00144 00F4 9701 sta CPagelLen

00145 00F6 20DD bra Loop

00146 00F8 NxtPage

00147 00F8 9600 lda PPageLen copy path page length
00148 00FA 4A deca minus one

00149 00FB 9701 sta CPageLen to copy page length
00150 00FD 20D6 bra Loop

00151 O0FF RunFree

00152 00FF OFO01 clr CPageLen

00153 0101 20D2 bra Loop

00154 0103 Quit

00155 0103 160095 lbra Exit

00156 khkkhkhkhhhhkhhkhhh

00157 * read a page from pipe/

00158 * write it to std. out

00159 *

00160 0106 CpyPage

00161 0106 D601 1db CPageLen

00162 0108 32E9FFO01 leas -255,S temp space

00163 010C 30E4 leax ,S

00164 010E CpyLoop

00165 010E 108EOQOQFF ldy #255 max length to read
00166 0112 9603 lda PipeNo

00167 0114 103F8B 0s9 ISReadLn

00168 0117 10250081 lbcs Error

00169 011B 8601 lda #1 std. output

00170 * X and Y are OK

352

00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236

011D
0120
0122
0123
0125
0129

012A
0l2A
0l2cC
012E
0132
0136
0139

013B
013B
013D
013F
0141
0145
0148
014A
014cC

103F8C 0Ss9
257A bcs
5A decb
26E9 bne
32E900FF leas
39 rts

khkkhkkhhkhhkhhhkhhkhhhk

* Write the More prompt
*

WPrompt
3432 pshs
8601 lda
108E0006 ldy
308DFEDC leax
103F8A 0S9
35B2 puls
khkhkhkhkhkhkhkhkhhhhhkhhkkddk
* Get a character from
* return it in A
*

GetChar
327F leas
30E4 leax
8600 lda
108E0001 ldy
103F89 0Ss9
2552 bcs
3502 puls
39 rts

khkhkhkhkhkhkhkhhkhhhhhdhhhhd
* Code the

ISWritln

Error

CpyLoop

255,S clear stack

return

A, X,Y save start of command buffer
#l Standard input

#PromptL

Prompt,PCR

ISWrite

A,X,Y,PC return
std. in

-1,S make one byte space on stack

S

14

#0 std. in

$#1 length to read

IS$Read

Error

A get byte from work area

return

character in A

* space -»> 0 one line
* return -> 2 one page
* line feed -> 4 run free
* tab -> 6 quit
* All other characters return 0 (one line)
* return the result in A
*
CodeChar
8120 cmpa #$20
2302 bls CodeOK
8620 lda #520
CodeOK
308D0003 leax CodeTbl,PCR
A686 lda A, X
39 rts
CodeTbl
00000000 fcb 0,0,0,0,0,0,0,0,0,6,4,0,0,2,0,0
00000000 fcb ¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
00 fcb 0
WCRLF
860D lda #S0D <CR>
3402 pshs A
108E0001 ldy 1 length
30E4 leax ,S
8601 lda #1
103F8C 0Ss9 ISWritLn
3582 puls A,PC clear stack and return
SetlIcpt
308D0004 leax Intcpt,PCR
103F09 0S9 F$Icpt
39 rts
Intcpt
Ccl01 cmpb §SS$Wake is the signal a fatal one?
2302 bls IntcptX no; don't change Signal
E746 stb Signal,U save signal

3583

00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268

00000
00000
$01C9
$0165
$23C5

019A
019A
019B
019B
019¢
0l19¢C
019E
01Al
01Al
01A3
01A5
01A7

01AA
01AD
01AF
01B1
0l1B3
0lm6
01B8
01BA
01BC

01BE
01c1l
01cl
01c4
01Cé6
01C9

3B

5F

8D03
103F06

3405
9605
C600
103Fr08

dhkkkkdkhkkkk

IntcptX
rti return to 0S-9
Exit
clrb
Error
bsr ClnuUp
0S9 FSExit
ClnUp

pshs CC,B

lda ChildNo

1db #SSKILL

S99 F$Send kill our childl

* set Pause back the way it was

*

32EBED
8601
C600
30E4
103F8D
2509
9602
A707
8601

leas <=32,5

lda 1 std out
1db #3SS.0pt getstat code
leax ,S

0S9 ISGetStt
bcs Clnupx

lda Pause get saved pause value
sta PD.PAU~PD.OPT,X replace it in the option
lda #1 std out

* Bis still SS.Opt from GetStat
* X still points to the temp buffer

103F8E

32E820
3585
9EQ 2EC

error(s)
warning(s)
00457 program bytes generated
00357 data bytes allocated
09157 bytes used for symbols

0S9 ISSetStt put pause back the way it was

ClnUpX
leas 32,8
puls CC,B,PC return
EMOD

MSize equ *

nice

A PROGRAM THAT SETS PRIORITIES

Sometimes it is inconveniant to use SETPR to change the
priority of a program after it has been started. The following pro-
gram, Nice, will give you a way to starta programata priority other
than the default. If you give the command:

0OS9:nice backup

the backup command will be runata priority of 0. Nice canalso be
used to raise a new process’s priority. The command

OS9:nice +ds
would start DynaStar with a priority of 200. This program uses a
different trick for cirumventing the shell's editing of the command

line than the one More used. In Nice, each character that has
special meaning to the shell has a synonym. The table of syn-

354

onyms appears in the comments at the beginning of the program.
The problem with thistrickis thatitisn’t goodtohavetoremember
two different sets of special characters for the shell. The good
thing is that this trick makes Nicework like other OS-9 commands.

khkkkkhkhkhkhhkhhkhkhkhhhkhkhhhkdkk Njce *hkkhhkhhkbhhhhbhhk

00001
00002
00003
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060

Ooooo

002F
0031
0033
0037

nam Nice

ttl run a progr
IFP1

ENDC

Run a shell command with alter
By default Nice will run the p
priority of 0.

the program will be run with a
To permit the shell command 1li

that will execute the command,

\%
\.
\s$
\ [
\1]
\ *
\"
In most cases I/0 redirection of

* % % % ¥ F % % ¥ ¥ * ¥ * ¥ ¥ ¥ ¥ * ¥ * *
AV e~ = 2 e

special characters for redirecti

Type set Prgrm+Objct
Revs set ReEnt+1
87CDO0OBE mod MSize,Name,
Prty rmb 1
CmdSize rmb 2
Ccmd rmb 256
rmb 200
DSize equ .
4E6963E5 Name fcs /Nice/
01 fcb 1
5368656C Shell fcs /Shell/
HighP set 200
Entry
OF00 clr Prty
A684 lda ' X
812B cmpa #'+
2606 bne PSet
3001 leax 1,X
86C8 lda #HighP
9700 sta Prty
PSet
8D29 bsr BldCmd
103F0C 0s9 FS$ID
D600 1db Prty
103FO0D 0Ss9 F$SPrior

kkkkkhkkhkkkk

* now fork a shell
*

8600 lda #0

C601 1db #1
308DFFDB leax Shell,PCR
109E01 ldy CmdSize

355

If the first character in the command is a +

characters to be passed through to the shell

replaced with alternate character sequences,

through to the program it runs without using

am with a non-standard priorit

ed priority.
rogram with a

priority of 200.
ne special

they are all

nice will carry

* % O ¥ * * * ¥ * ¥ ¥ ¥ ¥ ¥ * ¥ ¥ ¥ * ¥ *

on.

Type,Revs,Entry,DSize

stack space

version

check first byte in command 1li

high priority

High Priority

copy command to command area

get process 1D

set priority for us

any type
one extra page for the command

00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
ovo78
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126

003A
003cC
003E
0041
0043
0045
0048
0049
0048
004B
oo4c
004cC
004D

0050
0050
0052
0054
0056
0056
0058
005B
005D
005F
0061
0063
0065
0066
0066
0068
006A
006cC
006E
0070
0072
0074
0076
0078
007a
007cC
007E
0080
0082
0084
0086
0088
008A
0o08cC
008E
0090
0092
0094
0096
0098
009A
009cC
009E
00AO
00A2
00A4
00A6

3440
3343
103F03
3540
2507
103F04
5D
2601

5F

43
103F06

Exit

Error

khkkhkhkhkhkhkhkhkhkd
* On entry to BldCmd X points at the command line

* % * *

3143
OF01
O0F02

DCO1
Cc30001
DDO1
8D07
A7AQ
810D
26F1
39

A680
815C
264E
A684
813A
2604
863B
2042
8125
2604
8626
203A
812E
2604
8621
2032
8124
2604
8623
202A
815B
2604
8628
2022
815D
2604
8629
201A
812A
2604
863E
2012
815E

B1ldCmd

BLoop

LdChar

LCl1

LC2

LC3

LC4

LC5

LC6

LC7

pshs
leau
0Ss9
puls
bcs
0S9
tstb
bne

clrb

coma
0S9

its size is in CmdSize,
in the command have been transformed.

leay
clr
clr

1dd
addd
std
bsr
sta
cmpa
bne
rts

lda
cmpa
bne
lda
cmpa
bne
lda
bra
cmpa
bne
lda
bra
cmpa
bne
lda
bra
cmpa
bne
lda
bra
cmpa
bne
lda
bra
cmpa
bne
lda
bra
cmpa
bne
lda
bra
cmpa

U
cmd, U
FSFork
U
Error
F$Wait

Error

FS$Exit

cmd,U
CmdSize
CmdSize+l

CmdSize
#1
CmdSize
LdChar
P Y+
$#$S0D
BLoop

, X+
#'\
LdCharX
' X
'
LCl
£
LCRep
#'s
LC2
#'s
LCRep
4.
LC3
$'1
LCRep
#'S
LC4

L
LCRep
#'(
LC5
#'(
LCRep
#']
LC6
$')
LCRep
$'*
LC7
#'>
LCRep

356

Wait for the Shell to finish
Check return code from Shell
non-zero ; report error

clear carry

set carry
Done

On exit the command line has been moved to Cmd,
and any special characters

keep Size of Cmd updated

get a character in A

put it in the command buf fer
<CR>

Special Escape?

00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141

00000
00000
S00BE
$01CB
§2311

00A8 2604

00AA 863C

00AC 200A

00AE 815C LC8
00B0 2602

00B2 2004

00B4 LCSKkip
00B4 865C

00B6 2002

00B8 LCRep
0088 3001

00BA LdCharX
00BA 39

00BB 8BBEE®6

00BE MSize

error(s)
warning(s)

bne
lda
bra
cmpa
bne
bra

lda
bra

leax
rts

EMOD
equ

00190 program bytes generated

00459 data bytes allocated

08977 bytes used for symbols

LC8
$'<
LCRep
£\
LCSkip
LCRep

#'\
LdCharX

1,X

357

skip over escaped character

WORKSHOP 4

a null device

Running a program in background without doing something
aboutits input is a mistake you won't make often. Two programs
sending lines of output to your screen at the same time can
produce baffling results. The normal solution to this problem is to
redirect the standard output of the background program to a disk
file. This solution works fine and provides a hedge against
deciding later that you'd like to see the output. Still, it isn’t
convenient to have to remember to delete the disk file, and extra
disk I/0 is always to be avoided.

What is required is a “bit bucket,” a place where data can be
sent that makes it silently disappear. OS-9 lets us construct a bit
bucket without any special hardware. “Bit bucket” is on the long
side for a device name and lacks dignity. | use the name “null,”
abbreviated /nl.

A device that soaks updataas fastasyoucansenditis useful
enough to be worth a little memory space, but itdoesn’t cost more
than a few extra bytes to do something about input, as well. The
question is what? Two possibilities come to mind: return some
selected character for every read, or, return an EOF error. Since |
couldn’t decide what character to return, | settled on end-of-file.

The device driver for nl is the simplest SCF device driver |
know of.

If you type nl and dmy into one file, the assembler will leave

359

both modules in the same file in your execution directory. For
those who add the device to their boot file immediately, this isn't
important. For others, load the file, then link to the nl (the second
module in the file). This method isn’t as memory efficient as includ-
ing the modules in your boot, but it keeps them out of your
memory until they are needed.

This program was first published in ‘68’ Micro Journal in April

1983.

ARRA AN R A A AR A AN Ak Nu" Device ARRAA R AN R AR RN A RAN

00001
00002
00003
00004
00005
00006
00007
gooos
00009
00010

00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028

00029
00030
00031
00032
00033
00034
00035
00036
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050

W

W

W

00E1l
0082
0000
001D
0d1D
000D

000E
0011
0012
0012
0015
0018
001B
001E
0021

0024
0024
0024
0024
0024
0024
0025
0026
0027
0028
002A
002B
002E

00F1
0000
000D
000E

Dummy

* * * * *

87CDO02E

07

446DF9
01

16000F
16000E
160009
160006
160003
160000

S5F
39

53
C6D3
39
848D35

NAM
TTL

No error returns
Public Domain software as of 19Feb83.

Dummy I/O driver
Definitions

1July82 Peter Dibble

*
return end of file to any read *
Put any output down the bit bucket. *
*
*

use /DO0/DEFS/Defslist

IFP1
ENDC
Type set
Revs set
MOD
ORG
Memsize equ
fcb
TTL
DumNam fcs
fcb
Entry
lbra
lbra
lbra
lbra
lbra
lbra
Init
Write
GetStat
PutStat
Term
clrb
rts
Read
comb
1db
rts
emod
Dummyl equ
TTL

Type set
mod
fcb
fcb

DRIVR+0OBJCT

REENT+2

Dummyl,DumNam,Type,Revs,Entry,Memsize

V.SCF leave space for SCFman overhead etc.

READ.+WRITE.+EXEC. driver mode
Dummy I/0 Driver

/bmy/
1 Edition number
Init
Read
Write
GetStat
PutStat
Term
zero return code
Do nothing
set carry flag
#ESEOF return end of file

return

*

Device Descriptor

DEVIC+0OBJCT

DDend,DDNam, Type,Revs,FMNam,DRVNam
READ.+WRITE.+EXEC. modes

$FF,0,0 PORT ADDRESS OF O

360

00051 0011 0100 fcb 1,DT.SCF Options

00052 0013 4ECC DDNam fcs /NL/ device name

00053 0015 5343cCé6 FMNam fcs /SCF/ File Manager Name
00054 0018 446DF9 DRVNam fcs /bmy/

00055 001B BD5979 emod

00056 001E DDend equ *

00000 error(s)

00006 warning(s)

$004C 00076 program bytes generated
$0000 00000 data bytes allocated
$225D 08797 bytes used for symbols

361

WORKSHOP 5

a level one acia driver

The following program is the actual acia driver distributed
with OS-9 Level One systems. Microware has generously given us
permission to publish it, but | must warn you to use this carefully.

Thereisnoguarantee that future versions of OS-9 will support
this device driver. This works with OS-9 version 1.2. If it doesn’t
work with version 1.3 — sorry.

whkkkkkkkkkkkkkkkkkk AC'A Driver whhkkkkkkhhhhhhhk

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00023
00024
00025
uoo26
00027
00028
00029

0002

0001
0002
0002
0001
0002
0001

*

* % % * %

nam ACIA
ttl Interrupt-Driven Acia driver

Copyright 1982 by Microware Systems Corporation
Reproduced Under License

This source code is the proprietary confidential property of
Microware Systems Corporation, and is provided to licensee
solely for documentation and educational purposes, Reproduction,
publication, or distribution in any form to any party other than
the licensee is strictly prohibited!

use defsfile
LEVEL equ 2

ifpl

endc
ByteType set 1
BlockTyp set 2
RamCheck set BlockTyp
UnLimitd set 1
Limited set 2
ROMCheck set UnLimitd

363

00030
00031
00032
00933
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
0nNo61l
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
ovo8l
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095

sAvRwivhviel Nolwlwiho)

W
)

0004

0050
oosc

0080
0040
0020
0010
0008
0004

0080
0020

007c

001ln
001lp
001E
001F
0020
0021
0022
0023
0024
0074
0100

0001
0002

I EEEEEEERERERNR]
* Edition History

* % date Comments
K o i —awam e e ot e i — = = s ———p —— 4 4iii —m iim fiii A e o _m bt i e

* 3 83/02/11 Add X-ON/X-OFF generation code
* 4 83/03/10 Getstat Ready returns (B)=bytecount

Edition

d% d g g ok ok ok ok ok ok ok ok ok ok ok

equ

4 Current Edition

* Interrupt-driven Acia Device Driver

INPSIZ
OuUTS1IZ

IRQReq
PARITY
OVERUN
FRAME

NOTCTS
DCDLST

IRQIN
IRQOUT

INPERR

% d ok ko ok ok ok ok ok

set
set

set
set
set
set
set
set

equ
equ

set

* Static storage offsets

*

INXTI
INXTO
INCNT
ONXTI
ONXTO
HALTED
INHALT
INPBUF
OUTBUF
ACIMEM

* HALTED state conditions

H.XOFF
H. EMPTY

d d d ok ok ok ok ok ok ok ok k ok ok Kk

* Module Header
87CD024D

03

414349C1 ACINAM

04

160012 ACIENT
16005D
1600CC
1600F9
160109
16010D

00 ACMASK
80
0A

org
rmb
rmb
rmb
rmb
rmb
rmb
rmb
rmb
rmb
equ

equ
equ

mod
fcb
fcs

fcb

lbra
lbra
lbra
lbra
lbra
lbra

fcb
fcb
fcb

80 input buffer size (<=256)
140 output buffer size (<=256)

$10000000 Interrupt Request
$01000000 parity error bit
$00100000 overrun error bit
$00010000 framing error bit
$00001000 not clear to send
$00000100 data carrier lost

$10000000 input IRQ enable
$00100000 output IRQ enable

PARITY+OVERUN+FRAME+NOTCTS+DCDLST

V.SCF room for scf variables

1 input buffer next-in ptr

1 input buffer next-out ptr

1 input char count

1 output buffer next-in ptr

1 output buffer next-out ptr

1 output IRQ's disabled when non
1 input halted

INPSIZ input buffer

OUTS1IZ2 output buffer

. Total static storage requireme

V.XOFF char has been received;
Output buffer is empty

[N

ACIEND,ACINAM,DRIVR+0OBJCT,REENT+1,ACIENT,
UPDAT.
"ACIA"

Edition Current Revision

INIT
READ
WRITE
GETSTA
PUTSTA
TRMNAT

0 no flip bits

IRQReq Irqg polling mask
10 (higher) priority

364

00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161

0028
002A
0o2c
002E
0030
0033
0036
0038
003A
003D
003F
o4l
0043
0045
0047
0049
0048
004D
004E
004F
0052
0055
0058
0058
005D
0061
0065
0068
006A
006C
006E
0070
0072
0073

0074
0076
0079
007B
007E
0080
0082
0084
0086
0089
0o8B
008D
0090
0093
0096
0098

Acia

V.PORT,U
#$03

0,X
#H.EMPTY
HALTED, U
MSOPT, Y
#PD.PAR-PD.
INIT10

*INTERRUPT-DRIVEN Acia device routines

I/o0 port address
master reset signal
reset acia

output IRQ's disabled; buffer
option byte count

OPT acia control value given?
..no; default $15

PD.PAR-PD.OPT+MS$DTYP,Y

INIT20

INXTI,U
ONXTI,U
INHALT,U
INCNT,U
V.PORT,U
ACMASK,PCR
ACIRQ,PCR
F$IRQ
INIT9
V.PORT,U
V.TYPE,U
$IRQIN
0,X

(U)=Static Storage address
(A)=input Byte (carry clear)

default acia control
save device type
init acia

remove any interrupts
interrupt gone?
..No; abort

Initialize buffer ptrs

flag input not halted
clear in char count

address of interrupt service r
Add to IRQ polling table
Error - return it

enable acia input interrupts
initialize acia for input inte

return One Byte of input from the Acia

B=Error code if error

ACSLEP
INHALT,U
Read.a
INCNT,U
#10
Read.a
V.XON, U
§Sign
INHALY,U
V.TYPE,U

is input halted?

branch if not

get input character count
less than 10 chars in buffer?
branch if not

get X-ON char

set sign bit

flag input resume

get control value

#IRQIN!IRQOUT enable input & output IRQs

[V.PORT,U]
INXTO,U
INPBUF,U
$IntMasks

ttl
*kkokkkokkkkkkkkk
* Init
* Initialize (Terminal)
*
AE41 INIT ldx
C603 ldb
E784 stb
C602 1db
E7C822 stb
A6A811 lda
8114 INITO5 cmpa
2505 blo
E6AB826 1ldb
2602 bne
C615 INITIO 1db
E746 INIT20 stb
E784 stb
A601 lda
A601 lda
6D84 tst
2B6F bmi
4F clra
5F clrb
EDC81D std
EDC820 std
A7C823 sta
A7C81F sta
ECA4l 1dd
308DFFC4 leax
318DO0ED leay
103F2A 0S9
2509 bcs
AE4l 1dx
E646 1db
CA80 orb
E784 stb
5F clrb
39 INIT9 rts
khkkkkkhkhkkkhkkkih
* Read
*
*
* passed: (Y)=Path Descriptor
*
* returns:
* or CC=Set,
*
8D4A READOO bsr
A6C823 READ lda
2F15 ble
E6C81F 1db
Cl0A cmpb
220E bhi
E64F ldb
CAB80 orb
E7C823 stb
E646 1db
CAAO orb
E7D801 stb
E6CB1E Read. a 1db
30C824 leax
1A50 orcc
E1C81D cmpb

INXTI,U

365

set control register

(input buffer) next-out ptr
address of input buffer
calm interrupts

any data available?

00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227

009m
009m
009E
00AO
00A3
0oa4
00AG
00A8
00A9
JUAC
00AD
00AF
0081
ooB4
00B6
0oB7
00B9
00BB

oomsC
008BD
00BF

00co
00c2
00cCc4
00cC6
00cC8
oocs
00CE
00p0
00m3
00D5
00D7
00D9
00pA
00DC
00DE
00EO

00E2
00E4
00ES

00E®6
0DOES8
o0EB
00EE
00EF

27D7
3A
A684
GAC8B1F
5C
Cl4F
2301
5F
E7C81lE
5F
EGAE
2708

READI10

E7A83A
6F4E
53
Co6F4
1CAF
39

READI90

53
C6F6
39

ErrNtRdy

LEESEEEREEE R

beq
abx
lda
dec
incb
cmpb
bls
clrb
stb
clrb
1db
beq
stb
clr
comb
1db
andcc
rts

comb
1db
rts

READOO

0,x%
INCNT,U

$INPSIZ-1
READI1G

INXTO,U
V.ERR,U
READ9O
PD.ERR,Y
V.ERR,U

ESRead
$"IntMasks

$ESNotRdy

* Acslep - Sleep for I/0 activity
* This version Hogs Cpu if signal pending

Passed:

* * * *

* Destroys:
3416
A644
A745
1CAF
8E0000
103F0A
9E50
E68819
2704
Cl1l03
2309
4F
260C
8502
2602
3596

ACSLEP

ACSL90

3266
43
39

ACELER

I EEEEEEERERERERERE]
* Write

pshs
lda
sta
andcc
1dx
089
1dx
1db
beg
cmpb
bls
clra
lda
bita
bne
puls

leas
comna
rts

(cc)=Irg's Must be disabled
(U)=Global Storage

V.Busy,U=current proc id
possibly Pc

D,X
v.BUSY,U
V.Wake,U
#"IntMasks
$0

F$SSleep
D.Proc
PSsignal, X
ACSL90
#SSIntrpt
ACSLER

PSState, X
$Condem
ACSLER
D,X,PC

6,5

* Write char Through Acia

Passed:

* * % ¥ *

*

8DD8
30Cc874
E6C820
3A
AT784

WRIT(OO
WRITE

bsr
leax
1db
abx
sta

(A)=char to write

(Y)=Path Descriptor
(U)=Static Storage address
returns: CC=Set If Busy (output buffer Full)

ACSLEP
OUTBUF,U
ONXTI,U

0,X

366

the char

decrement char count

ADVANCE Next-

out ptr

end of circular buffer?

.. NO
reset ptr to
save updated

Transmission
..n0; return

start of buffer
buffer ptr

error?

return error bits in pd
return
signal
enable

carry set
read error
IRQ reguests

get current process id
arrange wake up signal
interrupts ok now

wait for input data

signal present?
..no; return

Deadly signal?
..yes; return error
clear carry

check process state
has process died?
..Yes; return error
return

flags

Exit to caller's caller

return carry set

sleep a bit
output buffer address
{output) next-out ptr

Put char in buffer

00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
011254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293

00F1
00F2
00F4
00F6
00F7
00F9
00FC
00FE
0101
0104
0106
0108
010B
010D
010F
0111
0114
0116
0117

0118
0l11A
0llcC
01l1F
0121
0123
0125
0126

0127
0129

0128
0l2cC
012E

012F
0132
0134
0136
0138
013a
013D
013F
0142
0144
0146
0149
014B
014E
0151

5C
cl8B
2301
5F
1A50
E1C821
27E8
E7C820
A6C822
270E
84FD
A7C822
2607
A646
8AAO
A7D801
1CAF
5F

39

WRITI10

Write80
Write90

khkhkhkkkkhkkkkkkkk

*
*
*
* passed:
*

*

* returns:
8101

2608
E6C8BILF
2798

AE26

E702

5F

39

8106
27EB

53
Cc6D0
39

Getsta/Putsta
Get/Put Acia Status

incb
cmpb
bls
clrb
orcc
cmpb
beq
stb
lda
beq
anda
sta
bne
lda
ora
sta

$0UTSIZ-1
WRITI10

f§Intllasks
ONXTO,U
WRITOO
ONXTI,U
HALTED,U
Write80
#°H.EMPTY
HALTED,U
Write80
V.TYPE,U

ADVANCE the ptr

end of circular buffer?

..no

reset ptr to start of buffer
disable interrupts

buf fer full?

..yes; sleep and retry

save updated next-in ptr
output already enabled?
..yes; don't re-enable

no longer halted due to empty
..Still HALTED; don't enable I
Parity control

IRQINIIRQOUT enable input & output IRQs

(V.PORT,U]

Enable output interrupts

andcc #"IntMasks enable IRQs

clrb
rts

(A)=Status Code
(Y)=Path Descriptor
(U)=Static Storage address

varies
GETSTA

STATUS99

GETS10

PUTSTA

khkhkhkhkhkkkhkhkhkhkkkk

*
*
*
* passed:

* returns:

*

17FF8E
9E50
A684
A744
A743
E6C820
1a50
E1C821
26EB
A646
A7D801
1CAF
8E0000
103F2A
39

Subroutine TRMNAT
Terminate Acia processing

cimpa
bne
1db
beq
ldx
stb
clrb
rts

cmpa
beq

comb
1db
rts

#SS.Ready
GETS10
INCNT,U
ErrNtRdy
PD.RGS,Y
RSB, X

#SS.EOF
Write90

#ESUnkSvc

(U)=Static Storage

Not hing

TRMNOO
TRMNAT

lbsr
1dx
lda
sta
sta
1db
orcc
cmpb
bne
lda
sta
andcc
ldx
0Ss9
rts

ACSLEP
D.Proc
PSID,X
V.BUSY,U
V.LPRC,U
ONXTI,U

IntMasks
ONXTO,U
T'RIINOO
V.TYPE,U
[V.PORT,U]
#"IntMasks
%0

FSIRQ

367

(return carry clear)

Ready status?

..NO

get input character count
..No; return not ready error

return bytecount to caller (1)

End of file?
..yes; return carry clear

return carry set
Unknown service code

wait for I/O activity

disable interrupts
output done?
..no; sleep a bit

disable acia interrupts
enable interrupts

remove acia from polling tbl

00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
uo3uo
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359

0152
0154
0156
0158
015A
015cC
015E

0160
0163
0165
0167
0169
0168
0l16E
0171
0173
0174
0175
0178
0178B
017E
0180
0181
0183
0184
0186
0188
0189
0l18cC
018E
0191
0193
0196
0198
0198
019D
019F

01A1
01A3
01AS5
01A7
01A9
0lacC
01AD

khkhkhkhkhkdhdkhhkhkkkkk

*
*
*
*
*
*

* Returns:

*

AE41
1¥89
C47cC
EA4E
E74E
8505
264E

ACIRQ
process Interrupt

Passed:

(U)=Static Storage addr

(X)=Port address

(A)=polled status

Nothing

ACIRQ

1dx
tfr
andb
orb
stb
bita
bne

V.PORT,U
A,B

INPERR
V.ERR,U
V.ERR,U
#5

InIRQ

* Fall Through to Do output

khkhkhkhkhkhhhkhkhthkhhkhk

(input or output) from Acia

get port address
copy status
mask status error bits

update cumulative errors
input ready (or carrier lost)?
..yes; go get it

send X-ON or X-OFF?
branch if not

clear sign bit

send character

get zero if X~ON
mark it sent

is output halted?
branch if so

clear carry

output buffer ptr

(output) next-out ptr

output buffer already empty?
..yes; disable output IRQ, ret

next output char
ADVANCE Next-out ptr
end of circular buffer?

save updated next-out ptr
Write the char
last char in output buffer?

disable output IRQs

Wake up signal
Oowner waiting?
..no; return

send signal
return carry clear

* QutIRQ

* output to Acia Interrupt Routine
*

* Passed: (A)=Acia Status Register Contents
* (X)=Acia port address

* (U)=Static Storage address
A6C823 OutIRQ lda INHALT,U
2A10 bpl OoutI.a
847F anda #7Sign
A701 sta 1,X

AB4F eora V.XON,U
A7C823 sta INHALT,U
A6C822 lda HALTED,U
2628 bne OutIRQ3

5F clrb

39 rts

31C874 OutI.a leay OUTBUF,U
E6C821 1db ONXTO,U
E1C820 cmpb ONXTI,U
2713 beg OutIRQ2

4F clra

A6AB lda D,Y

5C incb

Ccl8B cmpb #0UTSIZ2-1
2301 bls OutIRQl . .no
5F clrb

E7C821 OutIRQl stb ONXTO,U
A701 sta 1,X

E1C820 cmpb ONXTI,U
260E bne WAKEUP ..Nno
A6C822 OutIRQ2 lda HALTED,U
8A02 ora #H.EMPTY
A7C822 sta HALTED,U
E646 OutIRQ3 1db V.TYPE,U
CA80 orb $#IRQIN
E784 stb 0,X

Cc601 WAKEUP ldb #SSWake
A645 lda V.Wake,U
2705 Wakell beq Wake90
6F45 clr V.Wake,U
103F08 SendSig 0S89 F$Send

5F Wake90 clrb

39 rts

368

00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425

0l1AE
0180
01B2
01B4
01B6
01B8
01BA
01RC
01BE
01cCo
01c2
01c¢C5

01c7
0lca
0l1Cp
01CE
01D0
0lpl
01Dp3
1D5
01D6
01D9
0lpB
01pD
01DF
0lEl

0l1E3
0l1E6

01E9
01EC
0lEE
01Fl
01F3
01F5
01F8
O1FA
01FC
O1FF
0201
0204
0206
0208
020B

020D
020F
0211
0213

0215

ok ok ok kokokok ok ok okokokokk

Inacia

Passed:

* % ¥ % ¥ % ¥ *

*

A601
2715
Al4B
275F
Al4cC
275F
Al4D
274F
Al4F
2764
A1C810
2771

30c824
E6C81D
3A
A784
5C
Cl4F
2301
5F
E1C81E
2608
C620
EA4E
E74E
20BE

E7C81D
6CC81F

A6C810
27B3
E6C81F
Cl46
25AC
E6C823
26A7
847F
A7C810
8A80
A7C823
E646
CAAD
E7D801
2094

process Acia input Interrupt

(A)=Acia Status Register data
(X)=Acia port address
(U)=Static Storage address

InIRQ

InIrQl

InIRQ2

InIRQ30

InIRQ4

K okok ko ok ok ok ok ok ok ok ok ok ok

* Control character

AE49
27B6
A708
20B2

C603

InPause

InAbort

Notice the Absence of Error Checking Here

Read input char

. .NULL, impossible Ctl Chr
keyboard Interrupt?

..Yes

keyboard Quit?

..Yes

keyboard Pause?

..Yes

X-ON continue?

..Yes

X-OFF Immediate Pause request?
..Yes

input buffer
(input) next-in ptr

save char in buffer
update Next-in ptr

end of circular buffer?
..no

input overrun?
..no; good
mark overrun error

throw away character

update next-in ptr

get X-OFF char

branch if not enabled

get input count

is buffer almost full?

bra if not

have we sent XOFF?

yes then don't send it again
insure sign clear

set sign bit
flag input halt
get control value

#IRQIN! IRQOUT enable input & output IRQs

lda 1,X

beq InIRQl
cmpa V,INTR,U
beq InAbort
cmpa V.QUIT,U
beq InQuit
cmpa V.PCHR,U
beqg InPause
cmpa V.XON,U
beq InXON
cmpa V.XOFF,U
beq InXOFF
leax INPBUF,U
1db INXTI,U
abx

sta 0,X

incb

cmpb #INPSIZ-1
bls InIRQ2
clrb

cmpb INXTO,U
bne InIRQ30
1db # OVERUN
orb V.ERR,U
stb V.ERR,U
bra WAKEUP
stb INXTI,U
inc INCNT,U
lda V.XOFF,U
beq WAKEUP
1db INCNT,U
cmpb #INPSIZ-10
blo WAKEUP
1db INHALT,U
bne WAKEUP
anda #"Sign
sta V.XOFF,U
ora #Sign
sta INHALT,U
1db V.TYPE,U
orb

stb [V.PORT,U]
bra WAKEUP
routines

ldx V.DEV2,U
beq InIRQl
sta V.PAUS,X
bra InIRQl
1db #SSIntrpt

369

get echo device static ptr
..None; buffer char, exit
request pause

buffer char, exit

keyboard INTERRUPT signal

00426
00427
00428
00429
00430
00431
00432
004133
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453
00454
00455
00456
00457

00000
00004
$024Dn
SO0E3
$2AFA

0217 2002 bra
0219 C602 InQuit 1db
021B 3402 InQuitl0 pshs
021D Ae43 1da
W 021F 17FF83 lbsr
0222 3502 puls
0224 20A1 bra
0226 A6C822 InXON 1da
0229 B4FE anda
022B A7C822 sta
022E 2606 bne
0230 A646 lda
0232 8AA0 ora
0234 A784 sta
0236 5F InXON99 clrb
0237 39 rts
0238 A6C822 InXOFF l1da
023B 2606 bne
023D E646 1db
023F CAB0 orb
0241 E784 stb
(0243 8A01 InXOFF1l0 ora
0245 A7C822 sta
0248 SF clrb
0249 39 rts
024A 922C7B emod
024D ACIEND equ
error(s)

warning(s)

00589 program bytes generated
00227 data bytes allocated
11002 bytes used for symbols

InQuitlo
#SSAbort
A

V.LPRC,U
wakelO

A

InIRO1

HALTED,U
#"H.XOFF
HALTED, U
TnXON99

V., TYPE,U

Abort signal

save input char
last process id
Send error signal
restore input char
huffer char, exit

enable output
..exit if otherwise disabled
parity control

#IRQINIIRQOUT enable input & output IRQs

0,X

HALTED,U
InXOFF10
V.TYPE, U
IRQIN
0,X
#H.XOFF
HALTED, U

*

370

..already halted, contint
get acia control code
enable only input IRQs

restrict output

Module Crc

WORKSHOP 6

mcia

A LEVEL TWO ACIA DRIVER WITH ENHANCEMENTS

MCIA is a modified version of the version 1.2 Level Two ACIA
device driver. The modifications make this driver well-suited to a
modem port. It can send and receive breaks, and opens the hard-
ware up enough so that Baud rate and parity can be changed on
the fly.

| didn’t want to waste memory on two ACIA drivers, so |
modified the Microware ACIA driver in a way that remains hidden
until activated by the right SetStat call. When it's not triggered, this
driver acts enough like the standard ACIA driver that all my soft-
ware works with it.

MCIA

Support for <break> is provided via two gimics. A
break is sent by SETSTAT with a function code of
128. This will start sending a <break> immediate-
ly.The break will be sent until a SETSTAT 129 is
done. SETSTAT 129 will reinitialize the port and
empty the output buffer.

* * * * * * * * * * * * *
* * * * * * * * * * * * *

In orderto deal with situations where framing errors
are likely to occur, other than when a break is sent,

371

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029

»

* % ¥ * *

*» ¥

* % % ¥ ¥ % ¥ *

MCIA defaults to a mode where all framing errors
aretreated as errors. To cause MCIA to start treat-
ing framing errors as breaks, use SETSTAT 130.
To set the mode back to no-break, use SETSTAT
131. There is also a GETSTAT (code 129), which
will return with carry set if the terminal is in break
detect mode.

A <break> looks almost exactly like an<interrupt>
when it is received. It sends a code 3 to the con
trolling task. If a GETSTAT code 128 is done
before any other codes are sent, it will return with
carry clear to indicate that the last code 3 was
for a <break>.

GetStat 131 returns the amount of input waiting in
Y if there is any. It returns with carry set if there
is no input waiting.

An additional Setstat (132) reinitializes the port.
This, particularly, is intended to allow V.TYPE to
be changed if the parity byte is changed in the
path descriptor.

These calls are set up to provide the maximum
chance of having programs, written to work with
this driver, work with the older drivers.

nam MCIA

ttl Interrupt-Driven Acia driver

Copyright 1982 by Microware Systems Corporation

Reproduced Under License

This source code is the proprietary confidential property of
Microware Systems Corporation, and is provided to licensee

solely for documentation and educational purposes.

Reproduction,

publication, or distribution in any form to any party other than

the licensee is strictly prohibited!

IFP1
ENDC
[ZEEEEE RS R SRR E]
Edition History
¥ date Comments

- - o o m - = = - " - — -

83/02/11 Add X-ON/X-~OFF generation code
83/03/10 Add SS.SSIG putstat code

83/03/17 Putstat Release removes SS.SSIG if necessary
83/03/25 INCNT was counting chars even if buffer overrun.
83/06/01 Modified to use Suspend process state instead

3
4
4 83/03/10 Getstat Ready returns (B)=bytecount
4
4
5

of F$Send during IRQ.

6 84/85/18 Support for Break reset of V.TYPE and read

372

status.

00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
ooos1
00082
00083
00084
00085
00086
oou87
0oos8
00089
00090
00091
00092
00093
00094

ODoooooouooo

o oo

0006

0050
oos8c

0080
0040
0020
0010
0008
0004

0060

0080
0020

0080
0081
0082
0083
0084

0080
0081
0082

007¢C

001D
001D
001E
001F
0020
0021
0022
0023
0024
0026
0080
0040
0020
0027
0077
0103

0001
0002

0008

Edition

* ok k ok okokkk ok okokkkokok
* Interrupt-driven Acia

INPSIZ
OUTSIZ

IRQReq
PARITY
OVERUN
FRAME

NOTCTS
DCDLST

SBREAK

IRQIN
IRQOUT

khkkhkhkhkhkhkhhkhkhkhkkkih
* Added GetStat/PutStat codes for break processing

Added Setstat for reinitializing V.TYPE
return device status

*
* Added GetStat to
*

kR k kX Xk hkN

* Static storage offsets

*

SetBrk
ClrBrk
BrkMode
Er rMode
RelInit

TstBrk
TstBrkM
Get SReg

INPERR

INXTI
INXTO
INCNT
ONXTI
ONXTO
HALTED
INHALT
SIGPRC
LoclFl
LFBrksS
LFBrkR
LFBrkN
1INPBUF
OUTBUF
ACIMEM

equ

set
set

set
set
set
set
set
set

set

equ
equ

set
set
set
set
set

set
set
set

set

org
rmb
rinb
rinb
rinb
rmb
rmb
rmb
rmb
rinb
equ
equ
equ
rmb
rinb
equ

Device Driver

80
140

$10000000
£01000000
£00100000
%00010000
£00001000
%00000100

£01100000

$10000000
%00100000

128
129
130
131
132

128
129
130

Current Edition

input buffer size (<=256)
output buffer size (<=256)

Interrupt Request
parity error bit
overrun error bit
framing error bit
not clear to send
data carrier lost

send a break

input IRQ enable
output IRQ enable

Start sending a break ~ setsta
Stop sending a break - setstat
Set detect-break mode on - set
Set detect-break mode off -~ se
Reinitialize V.TYPE - setstat

Is a break being sent? - getst
In detect-break mode ? - getst
Return device status - getstat

PARITY+OVERUN+FRAME+NOTCTS+DCDLST

wn
Q
T

HNOHFRFRFRRPRFAC

$80
$40
$20
INPSIZ
OUTSIZ

* HALTED state conditions

H.XOFF
H.EMPTY

equ
equ

Revision set

1
2

8

373

room for scf variables

input buffer next-in ptr
input buffer next-out ptr
input char count

output buffer next-in ptr
output buffer next-out ptr
output IRQ's disabled when non
input halted

Process to signal and code
local flags

break being sent now

break has been recieved
detect-break mode on

input buffer

output buffer

Total static storage requireme

V.XOFF char has been received;
Output buffer is empty

00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00L13
0o0ll4
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00