| Gfgs/

THE

MC6809
COOKBOOK

by carl d. warren

— T ——

Dedication

For ACE
No questions asked

MCO809

COOKBOOK

THE

by carl d. warren

TAB

TAB BOOKS InC

UUUUUUUUUUUUUUUUUUUUUU

FIRST EDITION

SECOND PRINTING

Copyright © 1980 by TAB BOOKS Inc.

Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Warren, Carl D
The MC6809 cookbook.

Includes index.
1. Motorola6809 (Computer) I.Title

QA76.8.M67W37 001.64 80-23359
ISBN 0-8306-9683-0
ISBN 0-8306-1209-2 (pbk.)

@ is a trademark of Motorola Inc.

e

Contents
Acknowledgments 6
Preface 7
General Descriptions 9

Introduction to the 6809—Basics of the 6809 /xP—High Level
Language Processor—Changed Configuration—The Right
Nomenclature—Variety in Clocks—6809 MPU Signal
Description—Pulling the Schmitt-Trigger—Tracing - the
Interrupt—Establishing a System

6809 pP Software Architecture

The Software Tale—Registers, Pointers and Things—Condition
Codes Are Special—6800/6809 Software Incompatibilities-
Equivalencies—Performance Summary

Addressing Modes

Basic Concepts—Inherent Addressing Mode—Immediate
Addressing—Extended Addressing—Direct Addressing-
Register Addressing—Indexed Addressing—Indexed Indirect-
Relative Addressing—Summary

Into the Instruction Set
Push-Pull and Address It—Individual Instructions

MEKG6809EA Assembler
Basics of the Assembler—Typical . Requirements—
Expressions—Symbols—Assembler Listing

Implementation of VTL-09
Direct and Program Statements—Preliminary Concepts-
Arithmetic Operations

Appendix A Motorola 6809D4

Highlights—Model Types—Expansion—Software Features—
Added D4B Software Features—MEK6809D4 Description—
MEK68KPD Description—Sample Programs

Appendix B Hexadecimal Values of Machine Codes

Appendix C Programmer's Card
Appendix D Instruction Index

Index

25

37

56

112

118

134

148

153

169

176

=
§

<!__/‘VVV\ :
A

Acknowledgments

When any work such as this is embarked upon, it requires a
massive amount of support from a variety of sources. It was
necessary to rely upon the suggestions and resources of a number
of people and companies. Among these people are; Ron Denchfield
of AMI who supplied, most of the figures and the programmer's
card, Tim Ahrens, Bill Clendinning and Irwin Carroll of Motorola,
who provided various tables and important suggestions, aong with
the 6809D4 evaluation unit.

Since this book is about computer technology, it is only ap-
propriate that it was created with aid of a computer. The manu-
script was prepared on a Heath H-89 microcomputer, and printed
on an Epson TX-80 dot matrix printer. The software that was used
consisted of avariety of products. Among these were the editor and
text formatter available from the Heath users' group (HUG), the
PIE editor from the Software Toolworks, and a very specia pro-
gram caled COPY that permits interchanging software created
under HDOS to CP/M compatible files. This unique piece of magic
was created by Bob Mathias, a genius of our times. Other software
was supplied courtesy of Tony Gold at Lifeboat Assoc. These
consisted of Organic software's Textwriter Il for text formatting
and Digital Research's CP/M optimized for a 4200H base.

Specia thanks is reserved for the finest managing editor in the
magazine industry today, Jordan Backler. It is because of his
suggestions, coupled with those from fellow EDN editors Bob
Peterson, and Ed Teja, that this work is as concise as it is.

My wife Anne and daughter Tami played probably the most
important part in the creation of this book—putting up with the
writing process and making sure the coffee was always available.

3

Preface

As a result of the profliferation of microprocessors (pUP), since
1977 hardware and software designers have been able to extend
their capabilities in terms of creating useful products for everyday
life. Each day, new processor introductions are opening up even
more exciting vistas. Unfortunately, there is a problem associated
with the introduction of the newer devices: how to correctly use
them for maximum benefit and efficiency.

This book, like many of itstype, attempts to give the engineer
or technician an expert command of the fundamentals of the 6809
microprocessor (HP), and the basic skills for writing 6809 assem-
bly language level code. In systematic fashion, it proceeds from
analysis of the microprocessors design to its important electrical
characteristics. It continues with discussion onmatters like inter-
na logic, comparison to the 6800, interfacing to peripherals,
software architecture, addressing techniques and the instruction
set. It concludes with advice on how to build or make use of
existing 6809 based systems. Further enhancing The MC6809
Cookbook's usefulness is the inclusion of a programmer's card,
provided courtesy of American Microsystems Inc. (AMI).

The MC6809 Cookbook may be studied as a course, proceed-
ing from the simple to the more complex. However, it should be
more appropriate viewed as areference source to be called upon as
necessary. Therefore, | have kept the idea of a compact and concise
reference work utmost in my mind while creating this book. As a

result of this goal, the diversified contents are readily identifiable
to facilitate the finding of specific principles or functions associated
with the 6809 pP.

The MC6809 Cookbook aims to be comprehensive without
being cumbersome. It seeks in al areas to be exact, clear and
succinct.

Throughout this book, pP, and pC are used to mean micro-
processor and microcomputer, respectively. These are stylistic
nuances used at EDN magazine, and permit brevity without being
imprecise.

carl d. warren

e

General Descriptions

L

The 6809 pP, developed by Motorola and second sourced by
American Microsystems Inc. (AMI), is a high performance mul-
tifaceted device. It is considered by many industry observers and
Motorola to be the interim processor between 8-bit and 16-bit
devices. The general design philosophy of the device seems to
support this conjecture in that it permits the handling of 16-bit
registers with powerful instructions.

INTRODUCTION TO THE 6809

The 6809 pP is unique because it represents an upward
growth device from the ubiquitous 6800 pP. This upward growth is
in the form of software compatibility, at the source code level, and
apparent similar operation of the two devices.

As a result of these similarities, it is possible to design the
6809 P into a variety of applications. Among these applications
are process control, automobile system monitoring, television
sets, intelligent terminals and other devices more far reaching than
this book could even begin to mention. As an example of the use of
the 6809 pP was recently incorporated into what will more than
likely become the small computer system of the decade, theRadio
Shack TRS-80 Videotex (Fig. 1-1). This unit not only uses the 6809
pP, but the entire spectrum of Motorola support and peripheral
chips. The point is that it shows the flexibility of the 6809 pP.

9

Fig. 1-1. Incorporating the 6809 UP in concert with a host of Motorola compati-
ble peripheral device chips, the Radio Shack TRS-80 Videotex is designed to
transform the home television and telephone into a high-powered communica-
tion system (courtesy of Radio Shack).

Flexibility and ease of system integration are important fea:
tures of the 6809 P, but are only representative of just a minor
portion of the processor's capability. Throughout the rest of this
book, you will be introduced to the specific features and functions
of the processor and given sufficient information to make it work
for you.

BASICS OF THE 6809 pP

The 6809 pP is an 8-bit NMOS device. With al the different
mnemonics around—buzz words—it can be extremely difficult to
figure out what someone is talking about in device types. For
example, | say the 6809 pP is an NMOS device which it most
surely is. Metal Oxide Substrate (MOS) technology isamethod of
creating integrated circuits (ICs); theN or P indicates the type of
channd the device has built into it and does, in fact, refer to
negative or positive. But for the purposes of this book, suffice it to
say the device is NMOS. An NMOS device exhibits an electron
mobility about 2.4 times that of PMOS. Consequently, the NMOS
device outperforms smilar PMOS devices in speed and power.
This means more power to you, the designer, in asmaller and in
most cases less expensive packege.

10

The processor is designed, according to Motorola engineers,
for real-time and character manipulation programming. This de-
sign philosophy implies that the device is ideal for such applica-
tions as real time, or event, data collection. Applications such as
this require that the processor work in concert with data acquisi-
tion probes like thermocouples, strain gauges or flow sensors to
name a few. The 6809 uP offers the important characteristics of
being able to respond quickly enough to handle the influx of data
from this type of device.

The character oriented capability of the 6809 pP makes it an
excellent choice for word processing applications. In this type of
application, ASCII data is manipulated in several ways to create
useful output data. Word processing implies that the pP must work
with a variety of peripheral devices, afunctiona plus of al 68XX
type parts.

HIGH LEVEL LANGUAGE PROCESSOR

Another feature of the 6809, UP is that it is a byte-oriented
device rather than operating on each bit of the 16 available on the
address bus. This single characteristic enhances the processor's
ability to function, with efficiency, as a high-level language compu-
ter.

The reason this processor, or any processor for that matter,
works better as a high level language processor if it isbyte-oriented
isthat abyteis 8 bitslong. Itis directly equatable to a character of
some type, for example the letter A. High level language like
COBOL and FORTRAN work by comparing block structures made
up of characters to determine a task. Bit-oriented devices must
first build a byte from individual bits, store it in aregister and then
permit the language instruction to perform some work or compari-
son. The byte-oriented device makes the assumption that registers
are filled with bytes, thus speeding up execution times. This fact
does not preclude bit operations that must take place in math
functions.

Although the 6809 UP is not a pin-for-pin replacement of the
6800, it is not all that different in the sense of compatible functions
and software. For example, the 6800 pP exhibited one stack
pointer; the 6809 has two. The 6809 UP has two index registers as
opposed to the single index register of the 6800. In relationship to
the improved indexing capability of the device, both the stack
pointers and program counter can be indexed. This feature makes
it much easier for the programmer to manipulate data held in the
processor's registers.

11

zZ

CHANGED CONFIGURATION

The 6809 pP, as mentioned, is not a pin-for-pin replacement
for the 6800 uP; nor was there any thought for it being so. The idea
behind the 6809 pP was to make it an optimum device, which
meant that pin outs and pin definitions would change. Figure 1-2 is
a representation of both the pin-outs of the 6800 and the 6809
microprocessors. You will notice that for the 6809 uP, two ver-
sions exist. The versions demonstrate the difference in the clock
and at the same time represent the functional features of the 68009.
To summarize these functiona and electrical features:

» The 6809 pP incorporates an 8-bit data and a 16-bit
address bus.

» The device is compatible to the MC6800 bus structure as
defined by Motorola. (For further information, consult the M6800
microprocesor applications manual).

* The 6809, puP, housed in a40-pin package, requiresonly
a single +5V supply.

» The 6809 pP, exhibits the same interfacing characteris-
tics as the 6800. This means that it is compatible with TTL logic
levels, and consequently makes total system integration fairly
easy.

 Addition of extra features like the Fast Interrupt Request
(FIRQ). The FIRQ permits the 6809 pP to drop everything and
handle high speed interrupts, as would be necessary in data acquis-
ition systems.

EXtal

> AD-ATS

— b A0 - A15 Xul ~— D0-07

0, —> <> 00 - 07 MROY - B

TSC —o BRED 56809 = Oy
- = ns

i ,H‘.‘..l_T S6800E R HALT
b RESET —> = BA RESET
b o

N — = 85 NMI

= AW
- BA
I~ BS
* FIRD —# == BUSY FIRD ~

T YY YT T YV Y

A0 — - Lic (LT

Fig. 1 -2. Although compatibility exists between the 6809 and 6800 at the source
code level, pin assignments differ since the 6809 offers more functions than its
predecessor. (A) This represents the 6800 with its standard, pin assignments.
(B) and (C) Block diagrams of the versions of the 6809 uP. Notice the pins
named TSC, LIC and BUSY (courtesy of Motorola Semiconductor Products Inc.
and American Microsystems, Inc.).

12

» Vectored interrupts alow the 6809 WP to locate an inter-
rupt servicing routine within a minimum amount of time, and return
back to the starting location without destroying the current data.

» The 6809 uP incorporates an onboard oscillator which is
four times the input frequency of the crystal. The 6809E version
featuresan external clock. SeeFig. 1-3. Thisallowsthe 6809 uPto
sync with an external clocking source such as that being generated
by a clock source from another system.

» The 6809 MPU has two memory functions not found with
the 6800: MRDY that extends data access times for use with slow
memory, and DMA/BREQ that permits quick access to the bus for
Direct Memory Access (DMA) and memory refresh.

The electrical differences in the two versions are shown in
Figs. 1-3A and 1-3B. Basically, the two versions of the 6809 P are
the same, with the exception of the clocking mode. Table 1-1
defines the Read/Write for each version of the microprocessor.
Table 1-2 lists the electrical characteristics of the processor.

THE RIGHT NOMENCLATURE

Asyou proceed through this book, you will notice referenceto
a part preceded by an S. This nomenclature defines the part as
being from AMI. When the device being referred to is a Motorola
part, the number is preceded by an M or MC. However, for the
sake of clarity | have adopted the generic term—6809. There are
some tables and figures in this book that do make reference to the
specific manufacturers' devices.

VARIETY IN CLOCKS

The 6809 pP incorporates the choice of two clock functions.
The basic 6809 processor exhibits an internal clock (oscillator). To
make use of this clock, an external crystal is connected between
EXTAL and XTAL pins 39 and 38. Netting or filter 0.01 disc
ceramic capacitors are on either side to the system ground (Fig.
1-4). When the 6809 is in this configuration, a synchronization
signa is available at the E/out terminal (pin 34). This available
signal can be used as the system clock with dl other devicesin sync
with it.

The output that is available on pin 34 is at the basic processor
frequency and for most applications is connected to the Enable (02)
input of 6800 peripheral devices, as shown in Fig. 1-5. This
simplification of the clocking system, with 6800 family compatibil-
ity, eases system design and integration.

13

S6809 S6809E
INPUT OUTPUT INPUT OUTPUT
EXTERNAL
 EXTAL,| ADDRESS cLock ADDRESS
2 xTAL—| A0-A1S INPUT o)) A0-A1S
Em. Qu
MEMORY READY DATA e DATA
(MRDY) — <:> Do.07 THREE-STATE <:> D0-D7
BUS REQUEST cogRoL - —
- YSTEM K (TSC) 56809
(OMA BREQ) 6809 SYSTEM CLOC READ WRITE
(Eour) HALT — g Bosiins: W
HALT —=| QUADRATURE OUT (Qour)
[—(ADDRESS & DATA STABLE) RESET —=f s
RESET —-| READWRITE FAST INTERRUPT }smms SIGNALS
FAST INTERRUPT — REQUEST —4 L_.8A
(R W)
REQUEST [FIRQ)
FIRQ) (PROCESSOR BUSY
(- BA INTERRUPT REQUEST —| Uy,
INTERRUPT REQUEST — } STATUS SIGNALS (IRQ) ST INSTRUGT
(IRQ) l—Bs NON-MASKABLE —] l . (L;vséL’E STRUGTION

NON-MASKABLE — INTERRUPT e
INTERRUPT (NMI)
(NMI) ®) ®

Fig. 1-3. Providing flexibility to the system designer, the 6809 uP is built with
either an internal oscillator (A) or for use with an external clock (B) (courtesy of
American Microsystems, Inc.).

Besides the timing signas discussed, another sgna called

the Quadrature output (Q/out) is available. The purpose of this

| sgnd isto dgnify that addresses and deta are stable. This Stability

| tells the system that operations have settled down and something
else can take place.

Table 1-1. Read/Write Timing (courtesy of
American Microsystems, Inc. and Motorola Semiconductor Products Inc.).

Read/Write Timing
56809 S68A09 568809
Symbol Parameter Min. | Typ. | Max. | Min. | Typ.| Max. | Min. | Typ. | Max.
; teye | Cycle Time 1000 et 500
tr | TotalUpTime | 95| | 640 | 480
e Peripheral Read Access Time | 695 | 140 [a2 |
[Data Setup Time (Ready | 80 | 60 T l 10 ns
[Input Data Hold Time BT 10 I 10 ns)
L Output Data Hold Time | 30 | 30 % 30 ns
e [, NERE .
tan Address Delay IREZREEE 140 n | s |
thow Data Delay Time (Write) o 225 S 771’8’0 I 145 ns
s | B 0 Qu Time) 1o | 165 25 | s |
Address Valid 0 Que | 25 | | ER R ns
Processor Clock Low 450 205 210 ns |
| Processor Clock High 150 wo | | w0 | [e |
MRDY Set Up Time 60 60 T 0 ns
T Interrupts Set Up Time 200 140 D 1 ns
et Up Time 200 140 BE2R ns
200 140 o 77”’07 [i - ;|%) -
125 125 125 ns
i 100 100 00 | ms
N 5 5 | 5 % | 5 | ns |)
or Control Rise/Fall 100 100 100 | ns
seand Fall Tme | 5 Tas | s 5 | 5 IR o
rwm Q Clock High I R 280 ; P N N)

14

Tabie 1-2. Electrical Characteristics (courtesy American
Microsystems, Inc. and Motorola Semiconductor Products Inc.).

Electrical Characteristics (V¢ = 5.0V = 5%; Vg =0, T4 = 0°C to + 70°C unless otherwise noted)

Symbol | Parameter Max. | Unit | Condition
b Volage e EXal v 5 N
Vist . Input High Voltage Logic Xtal ‘\;’:;:: Vde |
Vi, T'lnpm Low Voltage Logic EXtal, Vis 08| Vde ' - B
L, InputleakageCurrent Logi 25 | pAde | Vip=0t0 525V, Ve = max
Output High Voltage DO-D7 o = — 2050Ade, Vi = min
Vou A0-A15,RW.Q.E Vde I - 145xAde, Ve = min
! BA.BS - 100uAde. Ve = min
Vo | Output Low Voltage vde | 20mAdc, Vg = min
Po _ PowerDissipation R w
Cin . Capacitance # DyDr 10 15
! Logic Inputs, EXtal 7 10 PF | Vi, =0, Ty =25°C, = 1.0MHz
G| AyARRW N 12 -
f | Frequency of Operation $6809 4
fxrat, | S68A09 6 | MHz
fxTAL 7»7{7Cryslal or External Input) S$68B09 8
i Three-State (Off State) Input Current Dy-D; 2.0 10 A Vo 204 t0 24V, Ve =
Iy AgAys RW 100 | #Ade in = 0.4 to 2.4V, V¢ = max

Theexterna dock version, indicated by an E, requiresthat an
external clock source be implemented. This externa clock must
generate an output at the MPU frequency. Thetiming signd E is
smilar to the 6800 bus timing signd 02, Q is a quadrature clock,
signd which leads E. This quadrature signal has no parallel onthe
6800. The importance of these signals are that addresses from the
MPU will be vdid with the leading edge of Q (Fig. 1-6). Datais
latched on the faling edge of E.

Yauwill noticefrom Fig. 1-3 that the external clock version of
the 6809, the BREQ input, is replaced by ainstate (TSC) control.
This control serves to place the address and R/W in the high

Crystal Connections and Oscillator Start Up 6809 Crystal Parameters”
358MHz 4 00MH: §OMHz 8 OMHI

0 As 60w s0u 3050u 2040t
v N “ a6oF
Vio G ISF 6SPF 46pF o
€ 0MsF 025pF 01 02pf 01 02pF
¢ CaCe 250F 290F 25F 259F
TS ——] 40K 30K 20K 20
Al Parameters Are -+ 10°

“Nole These are representative AT cut crystal parameters only
Crystals of other fypes of cul that work may aiso be used

nesen
- —-—-—-*{ o8V
- e -) 3 S %
e e AM——
| ‘ [Bs |
— = I
A\ Cr Cour »
BMHz 18pF 18pF L ,,,,, AJF —
6MHz 20pF 20pF Co

AMHI 24pF Z4pF

Fig. 1-4. The clock on the 6809 is invoked by tying pins 38 and 39 together via a
crystal and filter capacitors (courtesy American Microsystems, Inc. and
Motorola Semiconductor Products Inc.).

15

16-BIT ADDRESS BUS

l l

[

|

l ADDRESS ? ADDRESS

| DECODER DECODER

B
ok r_ & Ll)
ADDRESS] ADRESS OUTPUT] INPUT
DECODEH DECODER DEVICE DEVICE
e 5
|

L TL 4
£ Sl e

CHIP ENABLE OuTPUT INPUT
ROM LATCHES BUFFER

4 CHIP ENABLE CHIP ENABLE

F

T
y

011 o 111

1
J

6809
MPU

s
i e

|

I

1

8:BIT DATA BUS 34

Fig. 1-5. Interfacing the 6809 pP to other devices is easy by taking the output
from pin 34 and tying it to the chip enable pin of the peripheral chip. In this figure,
the processor is tied to RAM, ROM and output devices. Pay particular attention
to the direction of the data on the data bus. The output from 34 is tied to the chip
enable of the output latch and input buffer.

cycle of any ingtruction. This sgnifies that the next instruction
cycle is the opcode fetch and acts like a pipeline fetch, thus
improving processing throughout. The processor BUSY signd
facilitates multiprocessor gpplications by dlowing the designer to

START (llF CYCLE END OF CYCLE (LATCH DATA)

pEs = &

P <

|
i ADDRESS VALID

Fig. 1-6. E/Q relationship (courtesy American Microsystems, Inc. and Motorola
Semiconductor Products Inc.).

16

impedance state for DMA or memory refresh. The E and Q pinsare
replaced by two status outputs: Last Instruction Cycle (LIC) and
processor busy signal (BUSY). TheLIC isactivated during thelast
insure that flags being modified by one processor are not accessed

by another smultaneoudly.

The 6809 P, in norma operation, fetches an instruction from
memory and then executes the requested function. This opera-
tiond function begins when the processor is sarted—RESET—
and repeated until forced to cease. This stopping of the operation
can be from a multitude of sources including interrupts, hard and
oft, or via a specid ingtruction that permits the processor to
HALT but dso save the contents of the registers—that is, waiting
to proceed without impacting the computing ability of the proces-
Sor.

6809 MPU SIGNAL DESCRIPTION

This section describes the functiond purposes of the pins
available on the 6809 LP.The reason, isto create a solid foundation
for the chapters on addressing and the instruction set.

The information contained in this section is, in most cases,
directly from AMI literature. | have attempted, where necessary,
to further darify or amplify upon those items that seem vague.

Power (Vs Vo) Pins 1 And 7. Two pins are used to supply
power tothepart: V_isground, or Ovolts, whileVis +5V witha
5% tolerance. This holds true whether the device is of the internal
or externa dock variety (Fig. 1-7).

Address Bus(Ag- Ass) Pins 8-23. Sixteen pins are used to
output address information from the MPU onto the address bus.
When the processor does not require the bus, for a datatransfer, it
will output address FFFF,R/W = 1 and BS = 0 (Table 1-3).
Addressesarevaid on therising edge of Q. All addressbusdrivers
are made high-impedance when output Bus Available (BA) ishigh.
Each pin will drive one Schottky TTL load and typically 90pF (Fig.
1-7).

Data Bus (Do-D;) (Pins 24-31). The eight pins, desig-
nated for data, provide communication with the system bidirec-
tiond data bus. Each pin will drive one Schottky TTL load and
typically 130pF (Fig. 1-7).

Read/Write (RAW) Pin 32. This signd indicates the direc-
tion of the data transfer on the data bus. A low indicates that the

17

Block Diagram Pin Configuration
) 00-07
AD-A15 F)
g S v [0 wo[] macr
Y ! s il il
wo[]s a8 [exrac
PROGRAM
le— COUNTER |o—] oo [« a7 [] weser
(PC)
STACK POINTER A i i
bt DECODE
(C)) (IR) i s(lo
w [7 alle
¢ ISTACK POINTER,
« (S) nfs 23 [omissea
> INDEX 2 O [aw
T aills a2 {]aw
2 REGISTER [e—s @ REvET
g 4 alln o nfle
TNOEX ThE S8
§ REGISTER |e—s| iy llife} afln Swe w[o \
3 (€9} 2 2 IRG a2 2 [0
1 7 & e
o MA,
Z i - w RD/W/E EQ as [})]0
5 e L o[(]
z BIRECT f
5 CONQ Bus HALT
‘—E“D‘gf CODE [+—*| Control BA a1 (] «llo
At 16 25 06
Lt (]]
XTAL [uf]or
A
T Bl w0 [v a[]as
MRDY mi] 22 (] A
[A2 20 21 A3
= [

Fig. 1-7. (A) Block diagram. (B) Pin configuration (courtesy of American Mic-
rosystems, Inc. and Motorola Semiconductor Products Inc.).

MPU is writing deta onto the _data bus. RW is mede high impe-
dance when BA is high. RIW is vaid on the rising edge of Q.

RESET. Pin 37. A low level on this Schmitt trigger* input
for greater than one bus cycle will RESET 'RESET the MPU. The RESET
vectors are fetched from locations FFFE;s and FFFF5, when
interrupt acknowledge is true BABS=1). During initial power on,
the Reset line should be held low until the clock oscillator is fully
operationd.

Because the 6809 PP Reset pin has a Schmitt-trigger input
with athreshold voltage higher than that of standard peripherals, a

Table 1-3. MPU State (courtesy of American Microsystems, Inc.).

MPU State
BA BS
0 0 Normal (running)
0 1 Interrupt Acknowledge
1 0 SYNC Acknowledge
Al i HALT or Bus grant

18

simple R/C network may be used to reset the entire system. This
higher threshold voltage insures that al peripherals are out of the
reset state before the processor.

PULLING THE SCHMITT-TRIGGER

A Schmitt-trigger is a specia type of flip-flop circuit that
permits feedback and is sometimes referred to as a regenerative
switching circuit, having two stable output states. The Schmitt-
trigger is frequently used in timing circuits to mark the instant
when an input voltage reaches the trigger level, converting a
sinusoidal input voltage into a pulse train at the output. Sinceit is
not within scope of this book to provide complete explanations of
flip-flops, |1 recommend Electronic Circuits Digital and Analog, by
Charles A. Holt, John Wiley and Sons, New Y ork.

HALT—Pin 40. A low level on this input pin will causethe
MPU to stop running at the end of the present instruction and
remain halted indefinitely without loss of data. When halted, the
BA output is driven high indicating the buses are high-impedance.
BS is also high which indicates the processor is in the Halt or Bus
Grant State. While halted, the MPU will not.respond to external
real-time requests (FIRQ, IRQ) athough DMA/BREQ will al-
ways be accepted and NMI or RESET will be latched for later
response. During the HALT state Q and E continue to run normal-
ly. If the MPU is not running (RESET, DMA/BREQ), a halted
state (BA and BS = 1) can be achieved by pullmg HALT low while
RESET is still low. If DMATBREQ andHALT are both pulled low,
the processor will reach thelast cycle of theinstruction (by reverse
cycle stealing) where the machine will then become halted (Fig.
1-8).

Bus Available. Bus Status (BA, BS) Pins 5 and 6. The
Bus Available output is an indication of an internal control signal
which makes the MOS buses of the MPU high-impedance. This
signa does not imply that the bus will be available for more than
one cycle. When BA goes low, an additional dead cycle will elapse
before the MPU acquires the bus. The bus status output signal,
when decoded with BA, represents the MPU state (vaid with
leading edge of Q).

TRACING THE INTERRUPT

When an interrupt occurs, the processor must respond in
some manner. The 6809 PP responds by going to a location in
memory and executing a specific routine. In dl cases, the proces-

19

HALT and Single Instruction Execution for System Debug

208 T0 LAST LAST CYCLE
CYCLE O oF ~
ENT CURRENT DEAD DEAD INSTRUCTION INSTRUCTION DEAD.
L cYcLe 5 HALTED CYCLE FETCH EXECUTE CYCLE | WALTED
5 e I R R =
1

T TRV
o8y 5 08y ooy

FEVON EXECUTE

WWSTRUCTION

Fig. 1-8. HALT and single instruction execution for system debug (courtesy of
American Microsystems, Inc. and Motorola Semiconductor Products Inc.).

sor generates a Sgnd called an interrupt Acknowledge. It is indi-
cated during both cycles of a hardware-vector-fetch (RESET,
NMT, FIRQ, IRQ, SWI, SWI2, SWI3). Thissignal, plus decoding of

thelower 4 addresslines, can providethe user with anindication of
which interrupt level is being serviced and dlow vectoring by

device, as shown in Table 14

Table 1-4. Memory Map for
Interrupt Vectors (courtesy of American Microsystems, Inc.).

Memory Map for Interrupt Vectors

Memory Map for

Vector Location Interrupt Vector

Description

MS LS
FFFE FFFF RESET
FFFC FFFD NMI
FFFA FFFB SWiI
FFF8 FFF9 IRQ
FFF6 FFF7 FIRQ
FFF4 FFF5 SWI2
FFF2 FFF3 SWI3
FFFO FFF1 Reserved

20

Other signals that play an important role either during an
interrupt condition or HALT condition are Sync acknowledge and
Halt/Bus grant (Fig. 1-9). The Sync acknowledge is indicated
while the MPU is waiting for external synchronization on an inter-
rupt line. Halt/Bus Grant is true when the 6809 pP isinaHALT or
Bus Grant condition, as explained previously under HALT.

Nonmaskable Interrupt (NMI) Pin 2. The Nonmaskable
Interrupt pin is very similar to the IRQ pin 3, except that the
interrupt input is nonmaskable from the MPU. This means that a
program cannot inhibit the interrupt, and it has a higher priority
than TRQ or FTIRQ, or for that matter of software interrupts (Fig.
1-10).

The NMI is invoked when a negative wedge is input on the
pin. When recognized, the entire machine state is saved on the
hardware stack. However, once the machine is reset, the NMI is
not recognized until the first program load of the Hardware Stack
Pointer (S). The pulse width of NMT low must be at least one E
cycle. If the NMT input does not meet the minimum set up with
respect Q, the interrupt will not be recognized until the next cycle.

Fast-Interrupt Request (FIRQ) Pin 4. It is unique to the
6809 pP. When a low level signal is detected at this pin, afast
interrupt sequence, provided its mask bit (F) in the CC is clear,
will be initiated. The FTIRQ has priority over the standard I nterrupt
Request IRQ and isfast in the sense that it stacks only the contents
of the condition code register and the program counter. When

Fig. 1-9. SYNC timing (courtesy of American Microsystems, Inc., and Motorola
Semiconductor Products Inc.).

21

used, the interrupt service routine should clear the source of the
interrupt before doing a-Return from Interrupt (RT1). The timing
for this interrupt is shown in Fig. 1-10A.

Interrupt Request (IRQ) Pin 3. When this line is forced
low, from some external device, the MPU will complete the in-
struction it is executing and go into the interrupt sequence. Thisis
no different than for the 6800 pP. The IRQ hasalower priority than
FIRQ, but the servicing routine should clear the source of the
interrupt before returning to the caling routine (Fig. 1-10B).

When IRQ is invoked, the contents of the index register, the
program counter, accumulators and condition code register will be
stored on the stack. The | bit in the condition code register will be
set to a 1 so that no further interrupts may occur, or at least until
thisoneis serviced. Asshown in Table 1-4, the MPU will nowload
the contents of FFF8,s and FFF9y¢ into the program counter and
vector the program to execute the interrupt routine pointed to by
these locations. After an RTI is encountered, the MPU will return
to itsinitid state.

FIRQ Interrupt Timing

[OOSR S i A A

ADDRESS
BUS NEX FFF
Tocy INSTRUCTION

c
FEToN
e 1Y

DATA BUS|

SP SP2 SP3 FFFF FRFG FFFT FFFF NEW PC NEW
PCHy

INSTRUCTION VMA PG PC, . CCR VMA NEW NEWPC VWA JSTINST

w “u vC OF INTERRUPT
(5] _SEAVICE HOW ___
Aw
BA \ s
8s SRR N S M L o
1RQ and NMI Interrupt Timing :
9 a0 2 nen3 15 9 ne20, ne2

A mel M2 ned nee, nes ne6 | ne7 ne8 aed A0I0 null ne12 Aeld nela neld Ne16. nel7 nei8 1419 ne20, ne2!
k**wm***ww“MNN—.M**N*.N..u.J
o

3 M—UU R 8 i o s 5 o s oy o] i O i IO
AODRES!
oS
FFFF SPT SPZ SP3 SP4 SPS SPE SP7 S5PB SPU Gp10 P11 SP1Z FRFF FFFC INNIFFFO FFFF NEW PC NEW POH
L -<|NSTRUCTION FFFBURQ) FFFY (IRO)
o 0r Y08
OATABUS
R NEW PCNEWPG VAT
S TRCTN VAR Py e Wi US,VREG_ V.REG, X REG (X AEG, DP ACCE ACCA CCA NEWC NEW A A
SERVICE
s 05957 S
noorme —
T
8s A X

5]

Fig. 1-10. (A) FIRQ interrupt timing. (B) IRQ and NMT interrupt timing (courtesy
of American Microsystems, Inc. and Motorola Semiconductor Products Inc.).

22

MRDY Timing

s bl o 7 ok O T Wi

5 \ J ““““ B

Fig. 1-11. MRDY timing (courtesy of American Microsystems, Inc. and Motorola
Semiconductor Products Inc.).

EXTAL, XTAL Pins 38, 39. These input pins are used to
connect the on-chip oscillator to an external parallel-resonant
crystal (Fig. 1-4). The pin labeled EXTAL may be used as TTL
level input for external timing by grounding XTAL. The crystal or
external frequency is 4 times the bus frequency which is shown in
Fig. 1-4.

E, Q Pins 34, 35. Here you can see some specific
similarities between the 6800 uP and the 6809. E is similar to the
6800 bus timing signal Q2; Q is a quadrature clock signal which
leads E. Q has no parallel on the 6800. Addresses from the MPU
will be valid with the leading edge of Q. Data is latched on the
faling edge of E.

MRDY Pin 36. Thisinput control signal allows stretching of
E to extend data-access time. When MRDY is high, E will bein
normal operation. When MRDY islow, E may be stretched integral
multiples of quarter (1/4) bus cycles, thus allowing interface to slow
memories as shown in Figs. 1-11. A maximum stretch is 10 psec.
During non-valid memory accesses (VMA cycles), MRDY has no
effect on stretching E. This inhibits slowing the processor speed
during don't carebusaccesses.

DMA/BREQ Pin 33. The DMA/BREQ input provides a
method of suspending execution and acquiring the MPU bus for
another use. Typical uses include DMA and dynamic memory
refresh.

Transition of DMA/BREQ should occur during Q. A low level
on this pin will stop instruction execution at the end of the current
cycle. The MPU will acknowledge DMA/BREQ by setting BA and
BS to a one. The requesting device will now have up to 15 bus
cycles before the MPU retrieves the bus cycle with a leading and
trailing dead cycle.

23

ESTABLISHING A SYSTEM

Now that you have aresonable understanding of the hardware
side of the 6809 PP, you can build a working unit. All that is
required is the 6809, some memory, power and form of display.

A typical syslem—the Motorola6809D4 unit—isdiscussed in
Appendix A. But the most important element behind the processor
is not the hardware but rather how to program it. In the next
chapter, the basic software architecture of the device will be
introduced, followed by the various addressing techniquesin Chap-
ter 3 and findly the instruction set in Chapter 4.

24

6809 pP Software Architecture

Software development entails the understanding of several
disciplines—specificaly hardware logic as it relates to the
hardware, mathematics and general logic flow. Interestingly
enough, the software engineer doesn't really need to have an -
in-depth understanding of the electrical characteristics of the pro-
cessor he is programming, unless of course origina system
software development is the godl.

However, whether the god is system software design or
developing specific utility ware, the software architecture of the
device must be understood.

=N
o~

THE SOFTWARE TALE

The 6809 YP is, as stated in Chapter 1, an upward growth
device from the 6800 pP. Specificdly, the 6809 adds three regis-
ters to the set available in the 6800. These include a direct page
register, the user stack pointer and asecond index register. These
additiona registers make the device extremely flexible, but the
6809 offers even other software features:

—Two 8-bit accumulators

—Two 16-hit index registers.

—Two 16-hit sack pointers with index capability.

—The previoudy mentioned programmeable direct pageregis-
ter.

—H0 ingtruction mnemonics (see Chapter 4).

25

—268 opcodes.

— 1464 instructions with different addressing modes.
—8x8 unsigned multiply.

— 16-bit arithmetic: load, store, add, subtract and compare.
—Powerful Push/Pull instructions.

—Powerful register transfers and exchanges.

—Powerful address-manipulation instructions.
—Extended-range long branches.

Asyou can see, the device is extremely flexible and offers the
software designer a great deal of power in a microprocessor.
Figure 2-1 is the basic programming model for the 6809 pP. You
will notice that the X and Y index registers are 16-bits wide, and
the U and S stack pointers are al'so 16-bits. The interesting register
is made up of two 8-bit registers, A and B, which together make up
D. It is within these three registers— accumulators—that most of
the processor's work will be done. The direct page and condition
code registers are 8-bits wide and provide programming en-
chancement that will be explained later.

The general architecture of the device supports software
techniques such as position-independent code, structured high
level-subroutined code, multi-task and multi-processor opera-
tions, development and operation of stack oriented compiler in-
structions, and the important facilities of re-entrancy and recur-
sion, both important facets of software for high-level language use

15 LR
el
X — INDEX REGISTER |

|
ai e

Y — INDEX REGISTER
e —————) POINTER REGISTERS

U — USER STACK POINTER

S — HARDWARE STACK POINTER

PROGRAM COUNTER

A I 1 ‘ ACCUMULATORS

0
l oP J DIRECT PAGE REGISTER

0
f 1
l E l F I H] | —[N l z l v I c J CC — CONDITION CODE REGISTER

Fig. 2-1. Programming model of the microprocessing unit (courtesy of American
Microsystems, Inc.).

26

or real-time data acquisition. Now that you know al of the good
things that the software architecture behind the 6809 is supposed
to provide, you are probably anxious for a more in-depth explana-
tion of the programming model.

REGISTERS, POINTERS AND THINGS

Taking alook at Fig. 2-1, you can see that within the structure
there are the X and Y 16-bit index registers. These are also
referred to as the pointer registers.

The index registers are used in the indexed mode of addres-
sing. The 16-bit address in either the X and Y register is used to
point to data directly, or it may be modified by an optional constant
or register offset. The X and Y registers are equivalent in usage
and consequently support the same instructions. These registers
may be used to implement software stacks, queues and buffers.

Stack pointers U and S, shown in Fig. 2-1, can also be used as
index registers, but they serve very specific purposes in proces-
sing. The Hardware Stack Pointer (S) is used by the processor
during subroutine calls and interrupts. The difference between this
stack pointer and that on the 6800 UP isthat it pointsto the top of
the stack rather than the next free location (Table 2-1).

The User Sack Pointer (U) isfor use by you, the programmer.
This stack pointer permits you to pass arguments to and from
subroutines with ease. This facility coupled with the hardware
stack pointer makes the 6809 P and idea stack processor and
enhances its functioning as 'a higher level language processor.
Because the architecture of the U and S pointers are, as previously
indicated, the same asthe X and Y registers, they also support the
same instructions plus the PUSH and PULL stack controls.

The next register is theProgram Counter (PC). This register
is 16-bits and is used by the processor to point to the address of the
next instruction to be executed by the processor. Relative addres-
sing is provided allowing the PC to be used like an index registerin
some situations. Limited index-mode addressing is available, but
functions such as auto increment and decrement are not.

In operation, each instruction used by the processor assumes
that the PC points one location past the last byte of the op code—as
it would after decoding the instruction. Conseguently, as additional
bytes are used by the instruction, the PC always points to the next
unused byte.

The next registers, A, B and D accumulators, are made up of
two 8-bit registers as shown by Fig. 2-1. The A and B registersare

27

Table 2-1. 6809 pP Push/Pull and Interrupt Stacking Order.

FFFF
PUSH ORDER
PC 1
L
10,S PC,
u/s
8,S
U/SH
YL
6.5 Y
XL
4,5 X
H
3.8 DPR
2,S B t
1.8 A
PULL FROM STACK
0S CCR @@===m TOP OF STACK
PUSH ONTO STACK
SP (or US) commiiiie
0000

general purpose accumulators which are used for arithmetic cacu-
lations and manipulation of byte Size data. \What makes this pair
unique is that certain instructions concatenate A and B to fom the
16-bit register D, with the contents of A being the most sgnificant
byte.

The Direct Page register (DP) defines the most sgnificant
(MS) byte to be used in the direct mode of addressing. The DP is
concatenated with the byte fdlowing the direct mode op code to
foom a 16-bit effective address. The contents of this register
appear at the higher address output (A8-A15) during direct addres-
sng instruction execution. This permits the use of the direct mode
anywhere in memory. To maintain 6800 compatibility, al bits are
initidized to $00 on Reset of the processor.

CONDITION CODES ARE SPECIAL
Thefind register in the programming modd of Fig. 2-1isthe
condition code register (CC). Figure 2-2 is the format for this 8-bit

28

CARRY
OVERFLOW
ZERO

SIGNFLAG

IRQ MASK

HALF CARRY

FIRQ MASK
ENTIRESTATEFLAG

Fig. 2-2. Condition code register format (courtesyAmerican Microsystems, Inc.).

register. Notice that each bit is defined and based on the
condition—toggle 0 or 1—which defines the operation state of the
processor and is always nice to know.

Each bit within the register performs a specific task. For
example, bits 0-3 and 5 are set as the result of instructions that
manipulate data in some way. The actua definitions of each bit
follows.

Bit 0 (C)

Bit 0 isthe CarryFlag, and is usualy the carry from the binary
Arithmetic Logic Unit (ALU). Specificaly, the C flag is generated
by the binary carry from the Most Sgnificant Bit (MSB) of the
operations (ADC, ADD). Furthermore, C is used to represent a
"borrow" from subtract-like instructions (CMP, NEG, SUB,
SBC). Only arithmetic operations affect C.

Bit 1 (V)

Bit 1 is the overflow flag and is set to a one by an operation
which causes a signed two's complement arithmetic overflow. This
overflow is detected in an operation in which the carry from the
MSB in the ALU does not match the carry from the MSB-1. L oads,
stores and logical operations set V.

Two's Complement

If you have advanced to this point in the book and aren't sure
what two's complement is, you may have a problem. | would
suggest that you obtain a copy of "Basic Microprocessor and the
6800," by Ron Bishop, Hayden Book Co., 1979. You might also
consider the Heath course on microprocessors. Both are excellent
sources for explaining this concept, which is important if you wish

29

to understand what you are doing. Should you know what two's
complement is al about but can't quite get a picture in your mind,
this note will serve to refresh your memory—no pun intended.

The two's complement is the method used to represent signed
numbers in microprocessors. Positive numbers, in this system,
use the same bit pattern for al values up to decimal +127. Nega
tive numbers are represented as the two's complement of positive
numbers.

To find the two's complement of a number, you first take the
one's complement and then add one. The one's complement is
formed by changing al the Osto 1sand dl the 1sto Os Invertdl the
bits. For example, the decimal number 10 is 00001010 in binary. If
the number is positive (°10), you follow this procedure.

00001010 invert 11110101 =~ one's complement

add one + 1 Jr two's complement
11110110 this now represents -10

‘—determines the sign when set—negative
Bit 2 (2)

Bit 2 is the zero flag and is set to a one if the result of the
previous operation was identically zero. Loads, stores, logica and
arithmetic operations set Z.

Bit 3 (N)

Bit 3 isthe negative flag, which obtains exactly the MSB value
of the result of the preceding operation. Thus, a negative two's
complement result will leave N set to aone. Loads, stores, logica
and arithmetic operations dl set N. If atwo's complement overflow
occurs, the sign of the result (and the N-flag) will be incorrect.
Therefore, two's, compliment branches use the expression (N + V)
to obtain an aways valid sign result.

Bit 4 (1)

This is the Interrupt Request (IRQ) mask bit. The processor
will not recognize interrupts from the IRQ line if thishit is set to a
one. NMI, FIRQ, IRQ, RESET and SWI al set | to aone. How-
ever, SWI2 and SWI3 do not affect I.

Bit 5 (H)

This hit is used to indicate a carry from bit 3 in the ALU as a
result of an 8-bit addition only (ADC or ADD). This bit is used by
the DAA instruction to perform a BCD decimal add adjust opera-

30

tion. The state of this flag is undefined in al subtract-like instruc-
tions.
Bit 6 (F)

This bit is associated with the Fast Interrupt Request (FIRQ).
If this bit is set, the processor will not recognize interrupts from
the FIRQ line. NMI, FIRQ, SWI and RESET 4l set F to a one.
IRQ, SWI2 and SWI3 do not affect F.

Bit 7(E)

This bit (7) is reserved for indicating the state of the ENTIRE
registers. It shows when the processor is stacked or the subset
state (PC or CC) is being stacked. E is used by the Return from
Interrupt (RTI) instruction to determine the extent of the unstack-
ing. This function alows some interrupt handling routines which
work with both fast and slow interrupts. FIRQ will clear E while
IRQ, NMI, SWI, SWI2 and SWI3 will set E before stacking. The E
bit associated with the saved registers is in the E flag position in
the CC of the stacked state.

Interrupts and the Condition Codes

When the 6809 accepts anTRQ interrupt, it will set the E flag
bit 7 and save the entire machine state. Furthermore, the| mask bit
4 will be set to blank out the present and further IRQ interrupts.
Once theinterrupt is cleared, you can reset the | mask bit to permit
multiple-level IRQ interrupts. When the IRQ occurs, the F mask
bit 6 is not affected which means that an FIRQ interrupt can
supersede the current IRQ interrupt. The machine state is reco-
vered by the RTI instruction.

When an FIRQ interrupt is accepted, the E flag is cleared and
the submachine state (return address and CC) is saved. Thel and F
bits are set to mask out further interrupts. Again, | and F can be
reset to permit multiple interrupts.

6800/6809 SOFTWARE INCOMPATIBILITIES

The 6809 as designed is reasonably compatible with the 6800,
but with the added features some inconsistencies must exist.
Specificaly, they are:

e The stacking order on the 6809 exchanges the order of
ACCA and ACCB. Thisallows ACCA to stack asthe MS byte of the
pair and also invalidates previous 6800 code which displayed I1X or
PC from the stack.The 6809 stacks five more bytes for each NMI,
IRQ or SWI when compared to the 6800.

e The 6809 stack pointer points directly to the last item
placed on the stack rather than the location before it, as was done

31

on the 6800. Consequently, the stack pointer is initialized one
location higher on the 6809 than the 6800. Comparison values must
be one location higher.

e The 6809 uses two high-order condition code register
bits and will not apear as 1s as on the 6800.

» TheTST instruction does not affect the C flag in the 6809.
Nor do the right shifts (ASR, LSR.ROR) affect V.

 The 6809 H flag is not defined as having any particular
state after subtract-like operations (CMP, NEG, SBC, SUB). The
6800 clears this flag for these instructions.

e The CPX instruction for the 6809 functions correctly,
setting al flags in the correct manner. The 6800 sets only the
Z-flag.

e The 6809 instruction LEA may or may not affect the
Z-flag depending upon which register is being loaded. However,
LEAX and LEAY do affect the Z-flag, while LEAS and LEAU do
not. See Chapter 4. Asaresult, the User stack (U) does not exactly
emulate the index registers.

EQUIVALENCIES

Although Chapter 4 will deal with the actua instructions, the
equivalent instructions between the 6800 and 6809 are important
to know about for complete understanding of the architecture of the
device. This is especialy true if you are familiar with the 6800
instruction set.

Table 2-2 lists the 6800 instructions that are not included in
the 6809. However, during assembly, the 6800 instructions are
translated in to thefunctiona equivalents as shown. | have madeno
attempt at this point to define each instruction, only to present the
equivalent.

The interrupt structure on the 6809 PP has been extensively
analyzed and improved compared to the 6800. With the 6800 pP it
was useful to execute the sequence CLI, WAI. The 6809 pP
logicaly-equivalent sequence-ANDCC #3$EF, CWAI #3$FF-
would allow an IRQ interrupt to occur after the ANDCC instruc-
tion. If thisis not desired, the 6809 instruction CWAI #$EF should
be used to replace the logically-equivalent sequence.

PERFORMANCE SUMMARY

The following cycle-by-cycle performance chart (Fig. 2-3)
illustrate the memory-access sequence corresponding to each pos-
sible instruction and addressing mode for the 6809 pP. Notice that

32

33

mﬂa

ALLY
LEM) HIVLS

|

(s39v4 van

1) 17300
(W) 123808

T [}
L A P R[S .
A WA L1 E> YRA wRA
*(*ouj ‘SweIsASOIN o w w s s %
A
ueouaWY Jo Asaunod) souewiouad R L0
A

Bwv!
ajoko-Ag-a10Ao snq ssaippy ‘e-¢ Bid BT) - 0
1230 ¥ »u.!\'ﬁ N 135440 820V 300340 v ,q
Lisis vanw

van 400!
135430 0 a30N3La wet-3 Ja-u LRI
0030
13y
3 Hmvee
031304 »- Jivows | 03303 12380 LuaHs HIMYES W01
- 300340
w334 300348

‘(e abed
woJy panupuoo) (-ou| ‘swajsAsoioly
ueouswy jo Asennoo) asuewiopad
8|oAo-Ag-ajoko snq ssaippy ‘g-g B4

s A 4) 4 : H :
| |
ovs
ovis
- —— .
oy ¢ XOVIS
XIWLS. L1 |
_ L1
_ | YHA |
AIVIS-2 !
VWA |
HOLDA £ | VA
| | HOLI3A 1 “n> i | HIPLS
1 i HOVLS
| Al | _ 8
| | viA b | |
| VA |
o | _ YA YAA | |
h PETH VHA VHA | |
{3 1 | VHA VYHA |
AIWIE. 2L 7 _ WHA WA |
] A |
YWA |
WA VWA
5 i WA WA
| | WA
- |
v EL L
HIVILS _ i iy
|
|
| _
_ ! | | | 40N
| 5104 | | | wva
1y M) |1ms nnd R ﬂ 73 Hil i Si§ Y X35
| |
|
| |
J | | ﬁ
o . ‘- : 4

19%d LN IR

34

(y¢ obed
WwoJj panupuod) (ou| ‘swasAsololpy
uesuswy Jo Asaunod) souewiopad
ol0ko-Aq-a10Ako snq ssauppy “e-2 ‘Bi14

asns
AdW3
| XdW3
NdWI
| SdWd
0dWd
| aooy

VWA
vWA

| 181

G
HOOV
VWA

H0Y

ﬁzcu

2380
200Ny

ALS
X1S
ns
sis
ais
A0
X071
| na1
| sa
a0t

| sans
| vans

81S

1S

50

V0

801
{ v
| 8403 |
V403

8dHI i
VdWd
8118
Vi
800V
ooy
830V
¥ay va1

SINIHIHNINON

»

35

Table 2-2. Equivalent Instructions

(courtesy of Motorola Semiconductor Products Inc.).

6800 Instruction

ABA
CBA
CLC
CLI

CLv
CPX
DES
DEX

6809 Equivalent

PSHS B; ADDA ,S +
PSHS B; CMPA .S +
ANDCC #S$FE
ANDCC #S$EF
ANDCC #$FD
CMPX P

LEAS -1,5
LEAX -1 ,X
LEAS 1.-S
LEAX 1.X

LDA

LDB

ORA

ORB

PSHS A

PSHS B

PULS A

PULS B

PSHS B;SUBA,S+
ORCC #$01
ORCC #$10
ORCC #$02
STA

STB

TFR A,B; TSTA
TFR A,CC

TFR BA; TST A
TFR CCA

TFR SX

TFR X,S

CWAI #$FF

each instruction begins with an opcode fetch. While that opcode is
being internally decoded, the next program byte is fetched—the
so-called pipelining effect. Since most instructions will use the next
byte, this considerably speeds processor throughput. You will find
in tracing the operation that each opcode will follow the chart, and
VMA is an indication of FFFF,, on the address bus, R/W =1 and
BS = 0. Although this chart may appear out of place at this time, it
is my hope that it will help reinforce the architectural design of the
processor and ease your understanding of addressing and the in-
struction set.

36

?":""‘M’”_

LAY

Addressing Modes

Thefirst two chapters of thisbook wereto get you into the swing of
things and hopefully spark your interest in the 6809 This chapter
is designed to build upon the power that | have hinted lies within
the miniscule dot of slicon. Therefore, let's dig in.

Yau probably realize that the true power of any computer,
regardiess of size, isits ability to access memory. The addressing
modesthat the designersbuild in provide that capability. Withinthe
6809 P, the addressing modes make it possible to extend the
basicingtruction set (59 instructions) to over 14 64. This statement
in itsdlf should tell you that alot of power is possible.

BASIC CONCEPTS

This chapter is about addressng—what it is, how it works,
and what modes and/or functions you have available with the 6809.
In order to do this, however, it is necessary to lay down some
ground rules to assist in the understanding of the subject. Con
sequently, rather than devel op some odd-bal method. | have opted ,
to use the same terms and definitions that Motorola prescribes. i

Therefore, in the fdlowing descriptions the term effective {
address(EA) isused. The EA isthe addressin memory fromwhich ‘
the argument for an ingtruction isfetched or stored. In two operand ,
ingtructions, such as add to accumulator (ADD), one of the effec- '
tiveoperandsisused asapointer. (The accumulator isinherent and
not considered an addressing mode per se').

37

The following several pages provide descriptions and exam-
ples of the various modes of addressing the 6809 uP. To insure that
understanding is achieved, | have provided examples for each
mode and in some, but not al, cases the example is described in
detail. Within these examples, you will see assembler instructions
(described in Chapter 5) which should not be confused with an
instruction set mnemonic. Specifically, | will be using the assem-
bler instructions ORG, EQU and FCB. AsdoesMotorola, | will use
the parentheses in the examples to indicate "the contents of the
location or resistor referred to. For example, (PC) indicates the
contents of the location pointed to by the PC (Program Counter).
The colon (:) is used to indicate a concatenation of bytes.

Furthermore, for convenience of description, it will be under-
stood that the PC points one byte past the last byte of the instruc-
tion op code at the beginning of instruction execution. Other
descriptive notation used throughout this book and Motorola and
AMI documentation are shown in Tables 3-1, 3-2 and 3-3.

To fully appreciate this chapter, and to use it, | recommend
that you look at the programmer's card located in Appendix C. This
card will assist you in making the connection between the addres-
sing mode and the instruction.

Before getting into the real meat of the matter, hereis arun
down of the types of addressing modes that will be discussed:
inherent (includes accumulator), immediate, extended indirect, di-
rect, register, indexed, zer o-offset, constant offset, accumulator offset,
auto increment/decrement, indexed indirect, relative, short/longre-
lative branching and program counter relative addressing.

INHERENT ADDRESSING MODE
This mode of addressing has no effective address (EA). The
opcode of the instruction contains al the address information

Table 3-1. Register Addressing Notation
(courtesy of Motorola Semiconductor Products Inc.).

Accumulator ACCA or ACCB(A OR B)
Double Accumulator ACCA:ACCB or ACCD(D)
Index Register IXorlY (X orY)

Stack Register SP or US (S or U)
Program Counter PC (PC)

Direct Page Register DPR (DP)

Condition Code Register CCR (CC)

The Longer-form notation (i.e, ACCA, ACCB,ACCD, IX, IY,SP,US, PC, DPR,
CCR) is used to describe the MPU resisters.The short-form notation (i.e.,A,B,
D, XY, S, U, PC, DP, CC) is used by the 6809 assembler that is discussed later.

38

Accumulator Table 3-2. Register Addressing Modes
Double-Accumulator (courtesy of Motorola Semiconductor
Inherent Products Inc.).

necessary. Inherent addressing instructions are the only type
which do not include information in the operand field. Included in
inherent addressing are : ABX, DAA, SWI, ASRA and CLRB.

Assembly Example

0500 5F CLRB

0501 3F Swi

In Table 3-4 accumulator B is cleared (filled with 00000000) and the
processor in interrupted.

IMMEDIATE ADDRESSING

In immediate addressing, the EA of the data is the location
immediately following the opcode. In other words, the data to be
used in the instruction immediately follows the opcode of the
instruction. The 6809 uP uses both 8 and 16-bit immediate values,
depending on the size of argument specified by the opcode. Of
course, immediate addressing implies that the data is a known
value as the program is being created.

PC +1 —— PC
EA = PC
PC +1 —— PC

Table 3-3. Memory Addressing Notations
(courtesy of Motorola Semiconductor Products Inc.).

e

0 = The (8-bit) data pointed to by the enclosed (16-bit) address 7

EA = The Effective Address; a pointer into memory created as a result of an addressing mode

M = (EA) = The data in the address space (MEMORY") pointed to by the effective address.

MI = Memory Immediate Addressing; the data immediately following the last byte of the OP code.
dd = 8-bit Offset. (or a relative distance to a label which evaluates to 8-bits).

DDDD = 16-hit Offset (or a relative distance to a label).

P = Immediate, Direct, Indexed, Extended.

Q e Accumulator, Direct, Indexed, Extended.

YYYY = Offset such that -64K <= YYYY<=64K..

7z = Any indexable register (IX, IY, SP, or US)
‘XX = 6-bit hex value.

. = PC at start of present instruction

o = Start of next instruction.

IN = Indexed Addressing only

= Immediate Addressing Bytes(s) Follow(s).

$ = Hex Value Follows.

% = Binary Value Follows.

< = Before indexing: force one-byte offset form (for known forward reference, or before

absolute address; force direct addressing (obtain warning If SETDP — M5 byte value

> = Before absolute address; force extended addressing.

b = Indexing symbol.

[1 = Indirection..

39

F

Table 3-4. Accumulator B Is Cleared and the Processor Is Interrupted.

Befora Complaton
A
4 ! 11110101
1 l 1
| cLRB oS00 | PC
i s e
s e e B Gy | pc=sos00
1 | NewPC=PC+1
i 0501 i g L B T M
| |
r |
Atter Completion
A
‘ J ! 00000000 '
| | | |
1
! 0501 ! New PC+1
i i hiz. St e L L NSO
e T e e e "I" ! 0501
I s S e] |
1 interrup!t f v e i e AT R ol

Assembly Examples

OSCD 8% 20 LDA #$20 ;%#signifiesimmediate
addressing ,
\ 0802 8E FOOO LDX #$FO00 ; $ signifies hexidecimal value |
{0505 1041 LDY #$41
\
In the falowing example, the program says load the A ac-
cumulator with the vaue F8, which is the vaue immediatdy

falowing the opcode (Fig. 3-1).
EXTENDED ADDRESSING

In extended addressing, the contents of the two bytes im-
mediately following the opcode fully pecify the 16-bit EA used by
the ingtruction. The address generated by an extended instruction
defines an absolute address and is not position independent. This
addressing mode references any location available in the memory
space. Extended addressing mode ingtructions are 3-bytes long,
opcode and two-byte address.

PC+1 wPC
EA = (FQ) : (FC'+ 1)
PC +2 »PC

40

BEFORE COMPLETION
A

———
STEPS TO DETERMINE
PREVIOUS VALUB EEFECTIVE ADDRESS
PC
LDA #$F8 0SBE G5 | e f— PC=$05BE
PC=PC+1=$0585

058F F8 EA=PC
NEW PC=PC+1
05CO =$05CO

AFTER COMPLETION
INSTRUCTION COMPLETE

~——")
A A=(EA)=$F8
NEW PC=$05CO
05BE 86
05BF F8 — NEW PC
-
L

Fig. 3-1. Immediate addressing mode example (courtesy of Motorola Semicon-
ductor Products Inc.).

Assembly Example

4300 A PG EQU $43A0
1000 B6 43A0 LDA A ARG . DUE

In the fallowing example, the program contains an instruction
to load the accumulator with DOG. For thisexample, DOG isequd
to the contents of memory location 06E5, which is the result of
adding the concatenated two bytes following the opcode byte to
$0000 (Fig. 3-2).

Asa specia case of indexed addressing, one level of indirec-
tion may be added to extended addressing. In extended indirect, the
two bytes following the postbyte of an indexed instruction contain
the address of the data

DIRECT ADDRESSING

TheEA of adirect modeingtruction isthe contents of the next
byte of the opcode as a one-byte pointer into a single 256-byte
"page" of memory. (Pageis used to mean one of the 256 possible
combinations of the high-order address bits). The page in use is
fixed by loading the Direct Page Register with the desired high-
order byte—by transferring from or exchanging with another re-

41

gister. Asaresult, the EA consists of ahigh-order byte, from the
DP register, catenated with alow-order byte from the instruction.
The direct addressing mode for the 6809 P is directly compatible
to that of the 6800 pP.
EA = DPR: (POC)

Assembly Examples
0500 9630 LDA $20
0502 10 SETDP $10
0505 D6 1030 LDB $1030

Severa things are shown here. First, this mode requires|ess
memory and executes faster than extended addressing. Of course,
only 256 |location (one page) can be accessed without redefining the
contents of the DP register. Indirection is not alowed with this
addressng mode. The next thing demonstrated is SETDP—Set
Direct Page Pointer.

Thisdirective is used by the assembler. It causes the assem-
bler's 8-hit direct page pointer to be set to the value in the operand
field—in this caseahex 10. This pointer is used when the assem-

BEFORE COMPLETION

Sl e
A STEPS TO DETERMINE
REVIOUS VALUE] EFFECTIVE ADDRESS
PC PC=$0409
LDA DOG 0409 B6 Ll [-] PC=PC-+1=§040A
EA=(PC)(PC+1)
sl 06 SO06ES =$06E5
NEW PC=PC-+2=$040C
040B E5
040C

S e

EA[06E5]

DOG FCB $40 06ESL v 40

[] AFTER COMPLETION
INSTRUCTION COMPLETE
A=(EA)=$40
LDA DOG 0409 B6 NEW PC=$040C
040A 06
0408 £5 NEW PC
040C 7 <~ r 040C I

A

e e |

Fig. 3-2. Extended addressing mode example (courtesy of Motorola Semicon-
ductor Products Inc.).

TR

DOG FCB $40 06E5

42

bler must decide whether to select the extended or direct mode of
addressing. If the high or most sgnificant (MS) byte of the EA is
equd to the assembler's current direct page pointer, the direct
mode is chosen. Otherwise, the extended mode is selected. The
valuein the operand fidd of the SETDP directive must belessthan
or equd to $FF.

In the fallowing example of the Direct Addressng Mode the
program contains an instruction to load the accumulator with CAT.
For thisexample, CAT isequd to the contents of memory location
004B, which is the result of adding the byte falowing the opcode
byte to $0000. Notice that this example isthe same example that is
used for explaining direct addressing for any of the 68XX family of
processors, thus implying strict compatibility (Fig. 3-3).

REGISTER ADDRESSING

Register addressing implies no magic but merely references
the sdlection of various on-board registers. Some of the opcodes
are followed by a byte that defines aregister or set of registersto
be used by the instruction, which is caled apostbyte (Table 3-5).

Examples

TFR X, Y Transfers X into Y
EXG A, B Exchanges A with B
PSHS A, B, X, Y Push onto SY X, B then A
PULU XY, D Pull from U D, X, then Y

In the following assembly example, the REG—register
directive—is used to define specific registers for gpecific labels.
See Chapter 5. The registers are then pushed and pulled from the
gtack in the order that is characteristic of the 6809 pP. See Table
2-1.

Assembly Example

000OF DOG REG A,B,CC,DP
0070 CAT REG SX,Y
0070 FROG REG U,X,Y

0000 36 70 PSHU #CAT

0002 35 70 PULS #FROG

0004 34 OF PSHS #DOG

The interesting thing about this example, used courtesy of
Motorola, is that a label assigned avaue using the REG directive
which contains the U register may not be used with the PSHU

43

BEFORE COMPLETION
D et - |
STEPS TO DETERMINE
A EFFECTIVE ADDRESS
CAT FCB $20 004B 20 PREVIOUS
VALUE PC=$052D
PC PC=PC+1=$052E
; > EA=(PC)=$4B+$0000
LDA CAT 052D| D6 <—»-.~A| 052D] A
052E 4B | NEW PC=PC+1
=$052F
052F
EA 0048
AFTER COMPLETION
NP e et
A
CAT FCB $20 004B 20 ————»[20]
INSTRUCTION COMPLETE
A=(EA)=$20
LDA CAT 052D| D6 NEW PC=$052F
052E 4B NEW PC
052F < [052F 1
-)

Fig. 3-3. Direct addressing mode example (courtesy of Motorola Semiconduc-

tor Products Inc.).

ingtruction. Similarly, avalue formed using the S register may not
be used with PSHS instruction. The assembler will flag either of

these forms with an error message.

INDEXED ADDRESSING

Indl indexed addressing one of the pointer registers(X, Y, U,
S and sometimes PC) is used in a cdculation of the effective
address (EA) of the operand to be used by the ingtruction. Five

Table 3-5. Push/Pull Postbyte (courtesy of American Microsystems, Inc.).

Push/Pull Postbyte

-PULL ORDER PUSH ORDER-
PC u Y X DP B A
EEEE 25 <-INCREASING MEMORY ADDRESS->
PC S Y X DP B A

cC PSHS/PULS

cC PSHU/PULU

44

basic types of indexing are available and are included in this
discussion. The postbyte of an indexed instruction specifies the
basic type and variation of the addressing mode as well as the
pointer register to be used. Table 3-6 lists the legal formats for the
postbyte. Table 3-7 gives the assembler form and the number of
cycles and bytes added to the basic values for indexed addressing
for each variation. As a result of processor compatibility, most
6800 uP index mode instructions will map into an equivalent two
bytes on the 6809 pP.

Zeao-Offset Indexed

This option allows selection of auto increment/decrement by
one or two bits; it is a minimum two-byte instruction (opcode +
postbyte). When in this mode, the selected p0| nter register con-
tains the EA of the datato be used by the instruction. This isthe
fastest indexing mode.

Examples
LDD 0,X,
LDA 0,S

Congant Offsst indexed

When this mode of addressing is used, atwo's complement,
offset and the contents of one of the pointer registers are added to
form the effective address (EA) of the operand. The pointer regis-
ter's initial content is unchanged by the addition. Three sizes of
offset are available.

+4-bit (-16 to +15)
+7-bit (-128 to +127)
+15-bit (-32768 to +32767)

Constant offset, +4 bits, use bit 4 of the postbyte as a sign bit
and bits 0 through 3 as a constant offset. It is a minimum two-byte
instruction.

Constant offset, + 7 bits, designates the byte after the post-
byte as a two's complement offset. It is a minimum three-byte
instruction—opcode + postbyte + offset.

Constant offset, + 15 bits, specifies the two bytes following
the postbyte to be two's complement offset. It is a minimum
four-byte instruction—opcode + postbyte + two-byte offset.

Other options are the two's complement 5-bit offset that is
included in the postbyte and is most efficient in use of bytes and
cycles. The two's complement 8-bit offset is contained in a single

45

Table 3-6. Indexed Addressing Postbyte Register

Bit Assignments (courtesy of American Microsystems, Inc.).

Bit Assignments

POST—BYTE REGISTER BIT INDEXED
ADDRESSING
7]/6[54f3]2[1]0 MODE
O|R|R| X|X|X|X|XfEA=BR=4BIT OFFSET
1/R|R|O|O|jO|O]|O R+
1({R{R|[1[0O|0|0O]1 R+ +
1 R|R|O[O|O[1]|0 ,—R
1R R{I1[O|0O]|1]1 ,——R
1 R|R|1|0|1|0]|0| EA=,R+0 OFFSET
1(R{R|{ 1[0 1[0 1|EA=R=+ACCB OFFSET
1 R|[R|[1{0| 1| 1]|0]|EA=,R-ACCA OFFSET
1/R/R| 1| 1| 0| 0] 0| EA=R=+7-BIT OFFSET
1/R|R|1|1|0]|0|1|EA=R=15-BIT OFFSET
1| R|R| 1|1/ 01| 1| EA=,R=D OFFSET
1{X|X| 1|{d| D 0| 0|EA=PC=7-BIT OFFSET
1 X[x| 1| 1] 1] 0| 1|EA=,PC+15BIT OFFSET
1(R[R|] 1] 1] 1] EA=,ADDRESS
N o e ———
gnonnsssmc MODE FIELD
INDIRECT FIELD
SIGN BIT. WHEN B7 =0
REGISTER FIELD

00:R=X-
01:R=Y
10:R=U
11:R=$
X=DON'T CARE

byte following the postbyte, and the two's complement 16-bit
offsat isin the two-bytes following the postbyte. Asa programmer
you will normally not worry about the offset, since the assembler
should take it into account.

Examples
LDA 23X
LDX 2,S
LDY 300X

46

Example of constant-offset indexed indirect

LDA [, X] (note: the brackets indicate indirection)
LDB [0,Y]
LDX [64000,S]

Constant offset indexed indirect addressing functions in two
stages like al indirects. First, the indexed address is formed by
temporarily adding the offset-value contained in the addressing
byte(s) to the value from the sel ected pointer register (X, Y, S, U, or
PC). Then this address is used to recover a two-byte absolute
pointer which is used as the EA.

The following example of the indexed addressing mode with a
16-hit offset contains an instruction to load the accumulator with a
tabular value containing the hexadecimal number $DB (Fig. 3-4).
This value is located in memory location 0780, which is the result
of adding the concatenated two bytes following the opcode byte to
the contents of the index register. Take out your programmer's
calculator and add up the values to see what you get. From Fig. 3-4
you can see that this mode allows the programmer to use a "tabl e of
pointer" data structures, or to do 1/O through absolute values
stored on the stack.

Accumulator-Offsat Indexed

When this option is chosen, it designates the A, B or D
register as two's complement offset. The instruction is a minimum

Table 3-7. Indexed Addressing Modes (courtesy of American Microsystems, Inc.).

Non Indirect Indirect
Assembler Postbyte { +f+{ Assembler Postbyte § +{+
Type Forms Form OP Code { ~{# Form OP Code | ~|#
Constant Offset From R No Otfset R 1RR00100 | Of 0 [.R] 1RR10100 § 3§ 0
RionediOllses) 5:B1 Oftse! n R ORRnnnnn | 110 detaults 1o 8-by
8-81t Offset n R TRR01000 | 1§ 1 [n. R} 1RR11000 | 4} 1
16811 Offset n R 1RR01001 | 4§ 2 [n. A} “1RR11001 | 712
Accumulator Ottsel From R A — Register Offset AR 1RRO0110 § 110 {A. R} 1RR10110 § 430
LS0pedilses) B — Register Offsel 8 R 1RRO0101 | 1]0] - (B. A 1RR10101 | 4]0
D — Register Oftset DR 1RRO1011 | 410 0. R} 1RR11011 § 740
Auto Increment/Decrement R Increment By 1 R+ 1RR0O0000 § 280 not allowed
increment By 2 R+ + 1RR00001 | 310 [R+ +] I 1RR1000! | 640
Decrement By 1 -R 1RR00010 | 240 not allowed
Decrement By 2 .~-R 1RR0001Y § 3§00} | - -R) 1RR10011 J 610
Constant Oftset From PC 8-Bit Offset n PCR 1XX01100 | 1§14 [n. PCR| 1XX11100 § 441
16-811 Offset n PCR 1%XX01101 | 5|2 |[n. PCR| 1XX11101 | 842
Fxtended Indirect 16-B1t Address — — —f— In) 10011111 f5§2
* ang * ingicate the number of addihonal cycies and Dyles for the particular vanation R=X.¥ Uor§ Xx=00 Ni=0)
g X =Don't Care U=10 Stz
47

e

BEFORE COMPLETION
G
PC
T 21 STEPS TO DETERMINE
40 QP EFFECTIVE ADDRESS
0693 07 077E
0694 7€ X PGC=50692
; : PC=PC+1=$063
r ! EA=(PC){(PC+1)+(X)
TABL FCB $BF O77E BF A =$077E+502
50780
FCB 586 007F 86 PREVIOUS VALUE NEVEE-FE
FCB $DB 0780 08 LI
FCa SCF 0781 F
s SEd ADDER
EA 0780
AFTER COMPLETION
X
LDA TABL X 0692 A6 02 l
0693 07 INSTRUCTION COMPLETE
A=(EA)=$DB
oo 7E NEW PC NEW PC=$0695
0695 i 0695
TABL FCB $BF 077 BF
FCB $86 007F 86 A
FCB SCF 0781 cF
—

Fig. 3-4. Indexed addressing, mode, 16-bit offset example (courtesy of Motorola
Semiconductor Products, Inc.).

of two-bytes. However, in dl cases the offset is temporarily added
to the contents of the selected pointer register to form an EA.

Thismode issimilar to constant offset indexed except that the
two's complement value in one of the accumulators (A, B, or D),and
the content of one of the pointer registers, are added for the EA as
stated earlier. It is important to realize that when this process
takes place, neither the contents of the accumulator or the pointer
register are changed as a result of the addition. Furthermore, the
postbyte specifies which accumulator to use as an offsat. No addi-
tiona bytes are required. The value of using an accumulator offsst
is that the vaue of the offset can be calculated by a program at
run-time, thus relieving the programmer.

Examples

LDA AX
DA~ BY
LDA DU

48

Accumulator-indexed indirect addressing uses an ac-
cumulator (A,B or D) as a two's complement offset which is tem-
porarily added to the value from the selected pointer register
(X,)Y,S, or U). The resulting pointer is then used to recover
another pointer from memory —the indirect notation—which is
then used as the EA.

Auto | ncrement/Decrement | ndexed

When the auto increment addressing mode is chosen, the
pointer register contains the address of the operand. After the
pointer register is used, it is incremented by one or two. This
mode is extremely useful when you want to step through tablés,
move data or create software stacks. Conversely, the auto decre-
ment mode suggests that the pointer register be decremented
prior to its use as the pointer to the address of the data. This mode
isvery similar in operation to the increment mode, but everything
is backwards. For example, tables would be scanned from the high
to low addresses.

As indicated, the increment or decrement can be one or two to
al for 8 or 16-hit tables. Of course, the step is programmer
selectable. Because the decisions can be made before run-time,
the programmer can establish additional software stacks that are
identical to the U and S stacks.

Examples

LDA X LDX , X+
LDA ey LDX TRMEE
LDA , St LDX , Ut+

LDA , U LDX Dbt

Notice that the value in the selected pointer register addres-
ses aone or two byte valuein memory. No offset is permitted in
this mode.
Example

LDA [X + +]
DB [Y: + +]
LDD [,S + +]
DX [U + +]

This mode references auto-increment indirect. It uses the
value in the selected pointer register (X,Y,S or U) to recover an
address value from memory. This value is used as the EA. The
register is then incremented by two (++)—incrementing by one
in the indirect mode is illegal and no offset is permitted.

49

Example

LDA ,-X LDX ,--X
LDA ,-Y LDX ,--Y
LDA ,-U LDX ,--U
LDA ,-S LDX ,--S

In the auto-decrement addressing mode, the selected pointer
register (X,Y,Sor U) is decremented by one (-) or two (--) and is
user selectable. The resulting value then becomes the EA.

Example

LDA [,--X]
LDB [,--Y]
LDD [,--U]
LDX [,-- S]

Auto-decrement indirect first decrements the selected
pointer register by two (--). An auto-decrement of one is prohi-
bited. The resulting vaue is used to recover a pointer vaue from
memory and is the EA.

INDEXED INDIRECT

With the exception of the + 4-bit congtant offset and the
auto-increment/decrement by one, dl indexed addressing modes
may be used with an additiond level of indirection. The address
formed by adding the offset to the selected pointer register desig-
nates alocation containing the EA of the operand data. Bit 4 of the
postbyte is used to select the indexed indirect mode. Interestingly
enough, this same hit (bit 4) is used as a d9gn hit in the + 4-hit
congtant offsst mode. Regardless of indexing mode direct or indi-
rect, the same number of bytes are used.

In this indirect mode, the EA is contained at the location
specified by the content of the index register plus any offsat. Inthe
folowing example, the A accumulator isloaded indirectly usng an
EA cdculaed from the index register and an offsat. It is reprinted
courtesy of Motorola

Example
Before execution
A =XX (don't care)

X =$F000
$0100 LDA 10X EA is now $F010
$F010 $F1 F150 is now the new EA
$FO11 $50
$F150 $AA . After Execution

[} TA=$AA Actud Daa Loaded

50

RELATIVE ADDRESSING

Relative addressing involves adding a signed constant to the
contents of the program counter. When this mode is used in
conjunction with a branch instruction, the sum becomes the new
PC content if the branch is taken; if not the PC merely advances to
the next instruction. For example, the bytes following the branch
opcode are treated as a signed offset which is added to the program
counter. All of memory can be reached in long relative addressing
as an EA is interpreted modulo 2. The following example is
reprinted courtesy of American Microsystems, Inc. (AMI).
Example

BEQ CAT (short)
BGT DOG (short)
CAT LBEQ RAT (long)

DOG LBGT RABBIT (long)

RAT NOP
RABBIT NOP

According to Motorola and AMI, relative addressing differs
from that contained in the 6800 P due to two important additions.
Thefirst of these is that the offset—signed constant—can be either
+ 7 bitsor = 15 bitsin length. This feature permits the program to
branch to any location in memory.

The second most important addition is that the relative mode
isno longer limited to branch instructions. An EA which retainsthe
position-independent nature of relative addressing may be formed
by adding a + 7-bit or = 15-hit offset to the program counter. Doing
this in-effect is an indexed addressing mode with one or two
specific postbytes. The examples are reprinted courtesy of Ameri-
can Microsystems, Inc.

Examples
2015 LDA -$3EPC 2018 LDA $211F,PC
2015 OPCODE 2018 OPCODE
2016 POSTBYTE 2019 POSTBYTE
2017 [C2| OFFSET 201A OFFSET(MSB)
2018 | NEXT INST 201B OFFSET (LSB)
1FDA] 01 JINEW 201C NEXT INST
1FDB[00 |(EA 413B NEW
0100 DATA 413C EA

0300 DATA

Note: the offset is added to the new value of the PC.

51

Table 3-8. 8-Bit Accumulator and Memory
Instructions (courtesy of American Microsystems, Inc.).

Addressing Modes
8-Bit Accumulator and Memoary Instructions - E ‘E §
IR IEIHIEE
_ HHHEIEE IR
Mnemonic(s) Operation = | = a | w w| E | E = [=
ADCA, ADCB Add memory to accumulator with carry — | X X X X X X X X
ADDA, ADDB Add memory to accumulator — X X X X X X x 3
ANDA, ANDB And memory with accumulator X X X x X % »% X
ASL Arithmetic shift left memory location — —_ X : X X X X X
ASLA, ASLB Arithmetic shift left accumulator X — - ey qpesey e e w2 -y
ASR Arithmetic shift right memory location — — x X X X % x X
ASRA, ASRB Arithmetic shift right accumulator X - el Pl - R -~ e
BITA, BITB Bit test memory with accumulator — 1 x X X X X X X X
CLR Clear memory location e I X X X X X X
CLRA, CLRB Clear accumulator X SR 207 e A IR RS R (2
CMPA, CMPB | Compare memory with accumulator | X | X[X] X X X X
COoM Complement memory location S e Ve 7 e B e ¢
COMA, COMB | Complement accumulator O) P By A DU M AN A
DAA Decimal adjust A-accumulator X Ll e —_] - —_ —_ _
DEC Decrement memory location — - X X X X X X X
DECA, DECB Decrement accumulator X =1 7= 1 = -l =]=1— —_
EORA, EORB Exclusive or memory with accumulator — X X X X X X X X
EXG R1, R2 Exchange R1 with Rs (R1, R2 = A, B, CC. DP} X e i e o s = e =
INC Increment memory location —_ — X ¢ X % 1 4 X X
INCA, INCB Increment accumulator X TR NS WY R R B] f—
LDA, LDB Load accumulator from memory — X X X X X X X X
LSL Logical shift left memory location o X X X X X X X
LSLA, LSLB Logical shift left accumulator X —_ - —_ —_ — — —
LSR Logical shift right memory location i X X X X X X X
LSRA, LSRB Logical shift right accumulator X s 3] s = SO [
MUL Unsigned multiply AXB D) TR e e TR R R [R
NEG Negate memory location — = X X X X X X X
NEGA, NEGB Negate Accumulator X e = By = i A S50 =
ORA, ORB Or memory with accumulator — X X X % X X X X
ROL Rotate memory location left — — " X X ¥ % X X
ROLA, ROLB Rotate accumulator left X — - -] = == =]
ROR Rotate memory location right —_ —_ % X % x % % X
RORA, RORB | Rolate accumulator right T e e [e
SBCA, SBCB Subtract memory from accumulator with borrow =X X | X X X X X X
STA, STB Store accumulator to memory - — % X X % 4 X X
SUBA, SUBB Subtract memory from accumulator — X X X X X X X X
TST Test memory location — — % X X b 4 % X X
TSTA, TSTB Test accumulator e LS oF . vy _ _ i s
TFR, R, R2 Transter R1 to R2 (R1, A2 = A, B, CC, DP) o B PR e pon) N R T

NOTE: A and B may be pushed to (pulled from) either stack with PSHs. PSHU (PULS, PULU) instructions.

Relative Indirect

Thismode in actua use is indexed with the PC being used as
theindex register or in concert with the primeregister. One or two
bytes past the postbyte are used to provide a + 7 bit or + 15 bit
offsat. Theresulting sgned number isthen added to the contents of
the PC, which then forms a pointer to consecutive locations in
memory that contain the new EA. This example is courtesy of
American Microsystems, Inc.

52

Table 3-9. 16-Bit Accumulator and Memory

Instructions (courtesy of American Microsystems, Inc.).

Addressing Modes
—
S = -
= [=
16-Bit A and Memory =1 2 £
@ £ 2 2
edlis Bl B|eln|e|®
2| B | Bl B|lg | 2|22
e o e iR RS PR S RS E ISR S 8 R By
0p E g_‘ 5|a| 8| E|E &»’4 g
ADDD Add memory to D accumulator B = e e e | e e Y
~_CMPD Compare memory with D accumulator — | X IR X X X B
EXG D, R Exchange D with X, Y. S, U, or PC X|—[=-1—-1=/=-]==]—
LDD Load D accumulator from memory =X X X X X X X X
SEX Sign Extend X i | oy | e o [| ey | e
STD Store D accumulator to memory = == X X X X X X
SUBD Subtract memory from D accumulator o | oK X X X X X X X
TFR D, R Transfer Dto X, ¥, S, U, or PC XE e = e e e e
TFRR. D Transfer X, Y, S, U, or PC to D Xl == =l= = li=ili=
Example
2015 LDA -$3E,PC 2018 LDA $2115,PC
2015 A6 OPCODE 2018 A6 OPCODE
2016 9C POSTBYTE 2019 9D POSTBYTE
2017 C2 OFFSET 201A 21 OFFSET (MSB)
2018 NEXT INST 201B 1F OFFSET (LSB)
201C NEXT INST
1FDA 01 NEW 413B 03 NEW
1FDB 00 EA 413C 00 EA
0100 DATA 0300 DATA
Table 3-10. Index Register/Stack Pointer
Instructions (courtesy of American Microsystems, Inc.).
4 ing Modes
k= = -
£ 8 8
index Rep Pointer o B § 1:=
s Bl 8B |lw (3| e]|e
BBl |B|lS|[8|2]z2
2| E|B|Es|e|s|s|8]|8
Wnemonicis) ElE|Z|5|H|E|E(2|¢&
CMPS, CMPU Compare memory with stack pointer — | X X X X X X X X
CMPX, CMPY Compare memory with index register —] X X X X X X X X
1 Exchange D, X, Y, S, U, or PC with R R SR | e | dt o
R DX s U or o A
LEAS, LEAU Load effective address into stack pointer = | =1=}—1X X X X X
LEAX, LEAY Load effective address into index register =R X X X X
LD, LBY Load stack pointer from memory — X P X X X X P X P X)X
LDX, LDY Load index register from memory |k X X X X X X X
PSHS Push any register(s) onto hardware stack (except S} X | — | — | — | — |— | — | — | —
PSHU Push any register(s) onto user stack (except U) X s e e i k| s
PULS Pull any register(s) from hardware stack (except S) | X A | g | v | P | e | = ol |
PULU Pull any register(s) from hardware stack (exceptU)[X | — | — | — | — |— | — | — | —
STS, STU Store stack pointer to memory — | =1 X X X X X X X__‘
__STX, STY Store index register to memory == X XX X | X | X
| TFRR1, R2 Transfer 0. X, U, or PC 1o D. X, S. U. or PC Xl =all= e = = g
ABX Add B-accumulator to X (unsigned) X === === | =

Table 3-11. Branch Instructions (courtesy of American Microsystems, Inc.).

Addressing Mades
]

8 = B

Branch Instructions s £ £

£ 2lEigls =]t

B 8l |B|B 22|22

—— e E @ K K 3 2 = E
i i FE E|S|d |82 |5 |= \L:_'

BCC. (BCC _ Branch if carry clear *7:#;1%7" T = BN
BCS. LBCS Branch il carry set = S R T 7—1

BEQ. LBEQ Branch if equal T === R

"BGE. LBGE Branch if greater than or equal {signed) RS R (g — - - ~1 X =

BGT. LBGT Branch If greater (s»gnéa)—-m—‘_—r—: === =J=] x| =

BHI. LBHI __ Branch i higher (unsigned)) i i e g *:ZT"L’ =

LBHS LBHS Branch if lugher or same {unsigned) i Wl K| Wl et | il sl 1 3 [
| BLE LBLE Branch if less than or equal (signed) [N N [QR _.;__L_:_,‘

BLO. LBLO Branch if lower (unsigned) S \ony [USI) S SO CS) (P

BLS. 1815 Branch f lower or same (unsignedl | — | = —| = | = | = | < X[=

BLT. LBLT Branch i less than (signed) s | :—‘*f"‘ g o] i 7 D)

BMI. LBMI __ Branch # mmus | = | =] =1 === =] x| =

BNE. LBNE Branch 1f nol equal) e, ey e (el et (- tom R] USRS

| BPL_LBPL _ Buanch plis = e S e e
BRA. LBRA Branch always N N S g ’f‘f}f‘\j]“?
BRN. LBRN __ Branch never (3. 5 Cycle NOP) 'EE?TTT' Pl e 731 g
BSR. LBSR Branch 1o subroutine —[—-1-1T—-1-1- ;J x| —1

BVC. LBVC Branch if overflow clear A s 5 e % (ORI ey [s O 3| =

BVS. (BVS Branch if overllow sel e i o e e

Extended Indirect

Thisis another option of indexed indirect addressing. For the
extended mode, two bytes following the postbyte are used as a
pointer to consecutive locations in memory which contain the new
effective address. The exampleis courtesy of American Microsys-
tems, Inc.

Example

201Cc WDA c200
201C [A6 | OPCODE
201D [9F | POSTBYTE

201E [C?
201F [65] POINTER
2020 NEXT INST

c200 [00 4sNEW
C201 [80 |LEA
0080 DATA

Absolute Indirect

The processor must have some method of restarting and
handling interrupt vectors. Thisaddressing modeisexclusvely for
that purpose and no other. The conditions are serviced by fetching
the contents of exact memory locations and loading it into the PC.
Nothing more and nothing less happens.

54

Table 3-12. Miscellaneous Instructions (courtesy of American Microsystems, Inc.).

L Addressing Modes
I
] g 3 2
® =] ©
Miscellaneous Instructions } g o =
£ s 5
| & \ = E 2
T 8| .|| |8|8|8| 8
Sl E | 8|E|5|5|8|5|3
e Es A e g
__ANDGC AND condition code register =l ===
CWA! AND condition code register. then wat forwnterrupt | — | X | —{ — | — | — | — 1 — | —
NOP No operation X === =-1~— e
0RCC OR condition code register ”T ST R [| L iy P P (s
_Jmp Jump e X i e X o X
__JSR Jump lo subroutine il X X X X X X X
RT1 Return from interrupt X —] =] =1 =] —=1—=1—=1 =
RTS Return from subroutine S A e s P = [=S
C e Soltware interrupt (absolute indirect) XA e W B | B | e e B e
| swig

SYNC Synchronize with interrupl line X =1=1=1=[=1=1=1=

SUMMARY

Thischapter isatough oneto understand. I'm reasonably sure
that on this first reading you haven't grasped everything that was
presented. You will quite naturally have to reread this chapter and
actudly try the concepts explained before they redly mean any-
thing to you. However, as a quick reference I've included Tables
3-8 through 3-12 to help put the variousinstructionsin perspective
as far as addressing goes and get you ready for the next chapter on
the instruction set.

55

iy

Into the Instruction Set

Now that you have an understanding of how the 6809 pPworksand
the various methods of addressing, the next step is to become
familiar with the instruction set. As discussed in Chapter 1, the
6809 is dmilar to that of the 6800 UP, and in most cases has the
same instructions except where noted in Chapter 2. The 6809 uP
as designed is upward compatible at the source level. This means
that you can use 6800 instructions in a 6809 assembly and end up
with a working program, which you will see in Chapter 6.

Ore difference that is readily discernible is the number of
opcodes has been reduced from 72 to 59, primarily because of the
expanded architecture and additiond addressing modes. See Chep-
ter 3. Because of the additiona addressing modes, the number of
available opcodes hasrisen from 197 to 1464—aconsiderablejump
and indication of thetype of programming power you have available
to you. Before getting into a breskdown of theinstruction codes, a
brief overview isdueto give you abetter idea of what isin store.

PUSH-PULL AND ADDRESS IT

Some things you might not be aware of are the use of push
(PSH) and pull (PUL), the transferring of register contents (TFR)
and (EXG), the method of loading the EA (LEA), multiplying
accumulators (MUL), and long and short relative branches. These
and other functions of the 6809 UP are important concerns for the
programmer to become familiar with and are covered hereto assist
in understanding.

56

PSHU/PSHS

The push instructions have the capability of pushing onto
either hardware stack (S) or user stack (U). Any or dl of the MPU
register with asingleinstruction. In Chapter 3, | showed you how a
register set could be predefined to permit pushing several defined
registers on the stack at one time.

PULU/PULS

The pull instructions have the same capability of the push
instruction in reverse order. The byte immediately following the
push or pull opcode determines which register or registers are to
be pushed or pulled. The actual PUSH/PULL sequence is fixed;
each bit defines a unique register to push or pull. This push/pull
postbyte was demonstrated in Table 3-5.

TFR/EXG

One of the powerful features of the 6809 pP is that any
register of like size may be transferred content wise with the
other, or the contents exchanged. For example, an 8-bit register
can be transferred or exchanged with another 8-bit register and so
on. When thisfeature isused, the bits 4-7 of the postbyte define the
source register while bits 0-3 represent the destination. The fol-
lowing combinations are the valid definitions for these register
transfers.

0000 - D 0101 - PC
0001 - X 1000 - A
0010 - Y 1001 - B
0011 - U 1010 - CC
0100 - S 1011 - DP

Load Effective Address (LEA)

One of the methods used by the 6809 P to speed up proces-
sing is to use this instruction. What happens is that the LEA
calculates the EA used in an indexed instruction and stores that
address value, rather than the data at that address, in a pointer
register. This functional addressing makes al the features of the
internal addressing hardware available to the programmer, and
suggests that the 6809 is a 16-bit processor in reality. Table4-1 is
an example of LEA and demonstrates its power.

Multiply (MUL)

This is a powerful instruction that multiplies unsigned binary
numbersin the A and B accumulator and then places the result into

57

Table 4-1.LEA Examples (courtesy of American Microsystems, Inc.).

Instruction Operation Comment
LEAX 10,X X + 10 ->X ! Adds 5-bit constant 10 to X
LEAX 500,X X+500 ->X IAdds 6-bit constant 500 to X
LEAY AY Y+A 2> 1Adds 8-bit accumulator to Y
LEAY -10,U U-10 ->U ! Subtracts 10 from 11
LEAS -10,S S-10 ->5 1 Used to reserve area on stack
LEAS 10,S S+10 ->S ! Used to clean up stack
LEAX 5S S+5 ->X | Transfers as well as adds.

the 16-bit D accumulator. This permits multiple-precison multi-
plications.

Long and Short Relative Branches

| would imagine that the first thing that comes to mind is that
thisis really something difficult to master. Actudly, the 6809 has
the capability of PC relative branching throughout the entire mem-
ory map. When in this mode and a branch is to be taken, the 8 or
16-bit offst value is added to the PC to meke the EA. Con
sequently, this permits the processor to branch anywhere within a
64K memory map. Position independent code can be easily gener-
ated by using relative branching. Incidentaly, short refers to 8-bit
and long to 16-hit.

SYNC

Thisisaunique instruction since it stops the MPU and makes
it wait for an interrupt. If the pending interrupt is nonmaskable
(NMI) or maskable (FIRQ, IRQ) with itsmask bit (F or I) clear, the
processor will clear the Sync state and perform the normd inter-
rupt stacking and servicing routine. Yau can see that this makes it
possible to handle specidized interrupts and develop programs
that work well in process control or data acquisition.

Software Interrupts (SWI)

If you are familiar with the 6800 pP, then you have someidess
what a software interrupt isfor. It isthe instruction that will cause
an interrupt in the course of program execution and will permit a
goto for the associated vector fetch. Three levels of SM are
available on the 6809 and have a priority status of SWI, SWI2 and
SWI3.

58

16-Bit Operations

These operations make the 6809 a high-powered pP and
excellent precursor to 16-bit processors. The 6809 can process
16-bit datas on an 8-hit structure with almost the same power as its
big brother the 68000. Included in these 16-bit instructions are:
loads, stores, compares, adds, subtracts, transfers, exchanges,
pushes and pulls. Refer again to Tables 3-8 through 3-12 which are
summaries of the instruction set. Associated with this chapter is
Appendix B which covers the hexadecimal values of machine
codes, coupled with Appendix C, the programmer's quick refer-
ence card.

INDIVIDUAL INSTRUCTIONS

The next several pages will cover each instruction available
on the 6809 pP. You will notice that in concert with the instruction
mnemonic, | have provided the various addressing modes and the
associated opcode. This sequence of presentation is coupled with
the Instruction Index, located in Appendix D. The purpose is to
assist you in finding the proper instruction for a particular purpose.
| would suggest that as you proceed through this section of the
chapter you look at the programmer's card, found in Appendix C,
and use it to follow along. This will help you become familiar with
each instruction and the card.

See Tables 4-2 and 4-3 for the notation that is used in the
explanation of the instruction set. The notation is used by Motorola
and consequently provides continuity in explanation.

ABX ADD ACCB INTO IX
SOURCE FORM: ABX

OPERATION: X' = IX + ACCB
CONDITION CODES NOT AFFECTED

DESCRIPTION:

Add the 8-bit unsigned value in Accumulator B into the
X index register.

ADDRESSING MODE: OPCODE MPU NO OF
CYCLES BYTES

INHERENT 3A 3 1

59

~

ADC ADD WITH CARRY MEMORY INTO REGISTER

SOURCE FORM: ADCAP ; ADCB P
OPERATION: R - R + M + C
CONDITION CODES
H: Set if the operation caused a carry from bit
3 in the ALU.
N: Set if bit 7 of the result is set.
Z: Set if dl bits of the result are clear.
V: Set if the operation caused an 8-bit two's
complement arithmetic overflow.
C Set if the operation caused a carry from bit
7 in the ALU.
DESCRIPTION:
Adds the contents of the carry flag and the memory
byte into an 8-bit register.

REGISTER ADDRESSNG MODE: Accumulator
ADCA
MPU NO OF
ADDRESSING MODE OPCODE | &veies | BYTES
IMMEDIATE 89 2 2
DIRECT 99 4 2
INDEXED A9 4+ 2+
EXTENDED B9 5 3
ADCB
MPU NO OF
ADDRESSING MODE OPCODE CYOLES BYTES
IMMEDIATE C9 2 2
DIRECT D9 4 2
INDEXED E9 4+ 2+
EXTENDED Fo 5 3

Operation Notation

Table 4-2. Operation Notation (cour- 7_ = is transferred
tesy of Motorola Semiconductor Pro- = Boolean AND
ducts Inc.). v = Boolean OR
® = Boolean EXCLUSIVE-OR
5 = (overling) = Boolean NOT

Concatenation

60

ADD ADD MEMORY INTO REGISTER - 8BIT
SOURCE FORMS ADDA P, ADDB P
OPERATION: R - R ot 209V
CONDITION CODES
H: Set if the operation caused a carry from bit
3inthe ALU.
N: Setif bit 7 of the result is set.
Z: Set if dl bits of the result are clear.
V: Set if the operation caused an 8-bit two's
complement arithmetic overflow.
C Set if the operation caused a carry from bit
7 in the ALU.
DESCRIPTION:
Adds the memory byte into an 8-hit register.
REGISTER ADDRESSING MODE: Accumulator

ADDA
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
IMMEDIATE 8B 2 2
DIRECT 9B 4 2
INDEXED AB 4+ 2+
EXTENDED BB 5 3
ADDB
MPU NO OF
ADDRESSING MODE OPCODE G s fyoe
IMMEDIATE CB 2 2
DIRECT DB 4 2
INDEXED EB 4+ 2+
EXTENDED FB 5 3
ADDD
MPU NO OF
ADDRESSING MODE OPCODE e e e
IMMEDIATE Cc3 4 3
DIRECT D3 6 2
INDEXED E3 6+ 2+
EXTENDED F3 7 3

This instruction ADDD is the 16-bit version. For this the
16-bit version. For thisthe operation isR' == R+M:M+1. The
condition codes are: H: not affected; N: Set if bit 15 of the result

61

*(-au] S}aNPoid 10}aNPUOIIWAS ©[0I0J0W
j0 Asauno3) uonejoN J8ysiday ‘- alqey

X X8pu| jo 3kg S

X X8pu| Jo aikg S

1A ueoylubis-isean

31A8 weayiubiS-Isow

118 weoyubis-ison

S'‘N‘A‘X ‘aeisibal sayuiod v

D0 PUB 43'0d'S'N'A'X'Q'8'Y ‘sioisibey |1y

uonesado sy Jaye Jaisibal v

*(suononisul

[Enpiaiput 8y Ut epoyy Buissaippy

1915168y, AQ payeds aie asaul

‘(eba) si sigysibel jo 1@sqns e Ajuo

‘Aiilensn) 99 10 4Q°0d'S'N'A'X'A'D'a'V

‘uonesedo sy} 810jeq 18151631 v
leuno) weiboid

10]SISeY 8poy) UORIPUOD —

Je)sisey abed auQg =

18)UI0d XOE}S Jasn =

13JUI0d YORBIS 8iempieH =

A Joisibay xapuy =

X Jeisibey xapu| =

JOye|INWNOOY 81anog =
g00V 10 YOOV ey3

g 10)B|NWNO0Y —

v Jole|nWNDdY =

axi

HXI
31A8 S1
31A8 SW
S

744
1w

X!

go0Vv- VOOV
X00V

g00V

VOOV

uoneloN Jalsiday

62

isset; Z: Set if dl bits of the result are clear; V: Set if there
was a 16-bit two's complement arithmetic overflow; and C: set if
the operation on the M S byte caused a carry from bit 7 in the ALU.
This instruction adds the 16-bit memory value into the 16-bit
accumulator (D) and has a register addressing mode of double
accumulator. The memory addressing modes are shown above.

In the next group of instructions, the logical AND is implied.
The logical AND is best explained by assuming that it has the
property such that if X and Y are two logic variables, then the
function X AND Y is defined by the following:

XY XANDY XY XANDY
00 0 10 0
01 0 11 1

A basic operation in Boolean algebra is the AND operation
which, for the two integers | and J, may be defined by saying if | and
Jare both 1, then theresultis 1. If isOand Jis 1, then theresult is
0 and vice versa.

AND LOGICAL AND MEMORY INTO REGISTER
SOURCE FORMS ANDA P; ANDB P
OPERATION: R' — R AN D M
CONDITION CODES

H: Not Affected

N: Set if bit 7 of result is set

7 Set if dl bits of result are clear

V. Cleared

Ci Not affected

DESCRIPTION:
Performs the logica "AND" operation between the
contents of ACCX and the contents of M and the result
is stored in ACCX.

REGISTER ADDRESSNG MODE: Accumulator
ANDA
MPU NO OF

ADDRESSING MODE OPCODE EEALE A
IMMEDIATE 84 2 2
DIRECT 94 4 2
INDEXED A4 4+ 2+
EXTENDED B4 5 3

63

ANDB

MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
IMMEDIATE C4 2 2
DIRECT D4 4 2
INDEXED E4 4+ 2+
EXTENDED F4 5 3

AND LOGICAL AND IMMEDIATE MEMORY INTO CCR

SOURCE FORM: ANDCC #XX

OPERATION: R e R % AND Ml

CONDITION CODES
CCR - CCR A Ml

DESCRIPTION:

Performs a logicd "AND" between the CCR and the
MI byte and places the result in the CCR.

ANDCC
ADDRESSING MODE OPCODE M Es NOoE
MEMORY IMMEDIATE 1C 3 2
ASL ARITHMETIC SHIFT LEFT
SOURCE FORM: A9 Q
OPERATION:
- - 0
b7 ha bo

C’- Clb7, b7'...b, - b(;...bo,bgI e 0

CONDITIONCODES
: Undefined
St if bit 7 of the result is set
Set if dl bits of the result are clear
Loaded with the result of (b, & by) of

the origind operand.
C Loaded with bit 7 of the origina operand.
DESCRIPTION:
Shiftsal bits of the operand one placeto theleft. Bit O
is loaded with a zero. Bit 7 of the operand is shifted
into the carry flag.

SNZZXI

PR

e ——

ASLA
MPU NO OF
ADDRESSING MODE OPCODE i e
ACCUMULATOR 48 2 il
ASLB
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
ACCUMULATOR 58 2 1
ASL
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
DIRECT 08 6 2
EXTENDED 78 7 3
INDEXED 68 6+ 2+
ASR ARITHMETIC SHIFT RIGHT

SOURCEFORM: AR Q

OPERATION: il [E T PRI sl s O]

b b

7 0

C' by bl.b e=b..b,b’ e b

7 7
CONDITION CODES
H: Undefined
N: Set if bit 7 of the result is set
Z Set if dl bits of result are clear
V: Not affected
C Loaded with bit O of the origind operand

DESCRIPTION:
Shifts all bits of the operand right one place. Bit 7 is
held constant. Bit O is shifted into the carry flag. The
6800/01/02/03/08 processors do &ffect the V flag.

65

ASR
MPU NO OF |
ADDRESSING MODE OPCODE | MPU NO OF
INHERENT 57 2 1
DIRECT 07 6 2
EXTENDED 77 7 3
INDEXED 67 6+ 2+
ASRA
MPU NO OF
ADDRESSING MODE OPCODE | wvoies | Byres
INHERENT 47 2 1
BCC BRANCH ON CARRY CLEAR
SOURCE FORM: BCC dd: LBCC DDDD
OPERATION: TEMP «= M|

if C=0THEN PC « PC + TEMP
CONDITION CODES
Not afected
DESCRIPTION:
Teststhe state of the C bit and causesabranchif Cis
Clear.
MEMORY ADDRESSING MODE:
COMMENTS
When used dfter a subtract or compare on unsgned
binary values, this instruction could be cdled
"branch” if the resister was higher or the same as

the memory operand.

Memory Immediate

BCC
1 MPU NO OF
ADDRESSING MODE OPCODE CYCLES I BYTES
RELATIVE 24 3 2
LBCC LONG BRANCH
MPU NO OF
ADDRESSING MODE OPCODE CVOLES BYTES
RELATIVE 10 5(6) 4
BCS BRANCH ON CARRY SET
TEMP = MI

OPERATION:
if C= 1 THEN PC = PC + TEMP

66

T R A P e S S T

CONDITION CODES
Not affected
DESCRIPTION:
Tests the state of the C bit and causes a branch if C is
sef.
MEMORY ADDRESSING MODES Memory Immediate
COMMENTS
When used after a subtract or compare, on unsigned
binary values, this instruction could be called
"branch" if the register was lower than the memory

operand.
BCS
MPU NO OF
ADDRESSING MODE OPCODE ey Doson
RELATIVE 25 3 2
LBCS
T wmpu NO OF
ADDRESSING MODE OPCODE e hofer
LONG RELATIVE 10 5(6) 4
BEQ BRANCH ON EQUAL
SOURCE FORMS BEQ dd; LBEQ DDDD
OPERATION: TEMP = MI

ifZ= 1THEN PC e PC + TEMP

CONDITION CODES
Not affected.

DESCRIPTION:
Teststhe state of the Z bit and causes a branch if the Z
bit is set.

MEMORY ADDRESSING MODE: Memory Immediate

COMMENTS:
Used after a subtract or compare operation, this
instruction will branch if the compared values-
signed or unsigned—were exactly the same.

BEQ
MPU NO OF
ADDRESSING MODE OPCODE
T CYCLES BYTES
RELATIVE 27 3 2

67

e T R

LBEQ
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4

BGE BRANCH ON GREATER THAN OR EQUAL TO
ZERO

SOURCE FORMS BGE dd; LBGE DDDD
OPERATION: TEMP = MI
if [N® V] =0THEN PC « PC + TEMP
CONDITION CODES
Not afected
DESCRIPTION:
Causesabranchif N and V are either both set or both
clear. For example, branch if the Sign of a vdid two's
complement result is, or would be, positive.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS
Used after a subtract or compare operation on two's
complement values, this ingruction will branch if
the register wasgreater than or equd to the memory

operand.
BGE
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
RELATIVE 2C 3 2
LBGE
OPCODE MPU NOOF
ADDRESSING MODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4
BGT Branch on Greater

SOURCE FORMS BGT dd; LBGT DDDD
OPERATION: TEMP = MI
if Zv[N &/] =0then PC+= PC+TEMP
CONDITION CODES: Not affected
DESCRIPTION:
Causes a branch if (N ad V are either both set or both
clear) and Z isclear. In other words, branch if thesgn of a
valid two's complement result is, or would be, positive and
non-zero.

68

e e i i T ST

MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS
Used after a subtract or compare operation on two's
complement vaues, this ingtruction will "branch if the
register was greater than the memory operand.”

BGT
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
RELATIVE 2E 3 2
LBGT
MPU NO OF
ADDRESSING MODE
OPCODE i 5.0 oo
LONG RELATIVE 10 5(6) 4
BHI Branch if Higher

SOURCE FORMS BHI dd; LBHI DDDD
OPERATION: TEMP «= M|
if [CV Z] =0then PC = PC + TEMP
CONDITION CODES Not affected
DESCRIPTION:
Causes abranch if the previous operation caused neither a
carry nor a zero result.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS
Used &fter a subtract or compare operation on unsigned
binary values, thisinstruction will "branch if the register
was higher than the memory operand.”" Not ussful, in
general, after INC/DEC, LD/ST, TST/CLR/COM.

BHI
OPCODE MPU W28
ADDRESSING MODE g BYTES
RELATIVE 22 3 B
LBHI
MPU NO OF
ADDRESSING MODE OPCODE e neEE
LONG RELATIVE 10 5(6) 4

69

BHS Branch if Higher or Same
SOURCE FORM: BHS dd; LBHS DDDD
OPERATION: TEMP = MI
if C=0thenPC' = PC'«PC + 1Ml
CONDITION CODES Not Affected
DESCRIPTION:
Teststhe state of the C-bit and causesabranchif Cis
Clear.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS
When used after a subtract or compare on unsigned bi-
nary values, thisingtruction will "branch if register was
higher than or same as the memory operand." Thisisa
duplicate assembly-language mnemonic for the single
mechine instruction BCC. Not useful, in generd, after
INC/DEC, LD/ST, TST/CLR/COM.

BHS
MPU NO OF
ADDRESSING MODE
OPCODE CYCLES BYTES
RELATIVE 24 3 2
LBHS
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4
BIT Bit Test

SOURCE FORM: BITP
OPERATION: TEMP « R # M
CONDITION CODES

H: Not Affected

N: Set if bit 7 of the result is Set

Z: Set if dl bits of the result are Clear

V: Cleared
C Not Affected
DESCRIPTION:

Performsthelogicd "AND" of the contents of ACCX and

the contents of M and modifies condition codes accord-

ingly. The contents of ACCX or M are not affected.
REGISTER ADDRESSNG MODE: Accumulator

70

BITA
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
DIRECT 95 4 2
EXTENDED B5 5 3
IMMEDIATE 85 2 2
INDEXED A5 4+ 2+
BITB
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
DIRECT D5 4 2
EXTENDED F5 5 3
IMMEDIATE c5 2 2
INDEXED E5 4+ 2+
BLE Branch on Less than or Equal to Zero
SOURCE FORM: BLE dd; LBLE DDDD
OPERATION: TEMP == MI

TEMP

CONDITION CODES

DESCRIPTION:

Not Affected

Causes a branch if the "Exclusive
OR" of theN and V bitsislorif Z=1.
That is, branch if the sign of avalid
two's complement result is—or
would be—negative.
MEMORY ADDRESSING MODE:

COMMENTS

Memory Immediate

ifZV(N ® V)=1thenPC=PC+1

Used after a subtract or compare operation on two's
complement values, this instruction will "branch if the
register was lessthan or equa to the memory operand.”

BLE
MPU NO OF
OPCODE
ADDRESSING MODE e BYTES
RELATIVE 2F 3 2
LBLE
MPU NO OF
OPCODE
ADDRESSING MODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4

71

BLO Branch on Lower
SOURCE FORM: BLO dd; LBLO DDDD

OPERATION: TEMP &= MI
if C=1then PC « PC4- TEMP

CONDITION CODES Not Affected
DESCRIPTION:

Teststhestate of the C bit and causesabranchif CisSet.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS

When used after a subtract or compare on unsgned bi-
nary values, this ingtruction will "branch if the register
was lower" than the memory operand. Note that thisisa
duplicate assembly-language mnemonic for the single
mechine ingtruction BCS. Not ussful, in general, after
INC/DEC, LD/ST, TST/CLR/COM.

BLO
MPU NO OF
ADDRESSING MODE OPCODE T e
RELATIVE 25 3 2
LBLO
MPU NO OF
ADDRESSING MODE OPCODE i Lo
LONG RELATIVE 10 5(6) 4
BLS Branch on Lower or Same

SOURCE FORM: BLS dad; LBLS DDDD
OPERATION.TEMP == MI
if(CVZ) =1then PC = PC + TEMP
CONDITION CODES Not affected
DESCRIPTION:
Causes a branch if the previous operation caused either a
carry or a zero result.
MEMOR Y ADDRESSNG MODE: Memory Immediate
COMMENTS
Used after a subtract or compare operation on unsigned
binary values, this ingtruction will "branch if the register
was|ower than or the same asthe memory operand.” Not
ussful, in general, after INC/DEC, LD/ST, TST/CLR/
COM.

72

BLS
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
RELATIVE 23 3 2
LBLS
MPU NO OF
ADDRESSING MODE OPCODE CYCLES e 2T
LONG RELATIVE 10 5(6) 4
BLT Branch on Less than Zero

SOURCE FORMS: BLT dd; LBLT DDDD
OPERATION: TEMP <= MI
if (N® V) =1thenPC <~ PC + TEMP
CONDITION CODES Not affected
DESCRIPTION:
Causes abranch if either, but not both, of the N or V bitsis
1. Thatis, branch if the sign of avalid two's complement
result is—or would be—negative.
MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS
Used after a subtract or compare operation on two's
complement binary values, thisinstruction will "branch if
the register was less than the memory operand.”

BLT
MPU NO OF
ADDRESSING MODE OPCODE aVaiEs LA R
RELATIVE 2D 3 >
LBLT
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
LONG RELATIVE 10 5(6) 4
BMI Branch on Minus

SOURCE FORM: BMI dd; LBMI DDDD
OPERATION: TEMP = MI

if N=1thenPC = PC + TEMP
CONDITION CODES Not affected

73

DESCRIPTION:
Tests the state of the N bit and causes abranch if N is set.
That is, branch if the sign of the two's complement result is
negative.
MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS
Used after an operation on two's complement binary
values, this instruction will "branch if the (possibly in-
valid result is minus."

BMI
MPU NO OF
ADDRESSING MODE OPCODE SVOLES EvaEe
RELATIVE 2B 3 2
LBMI
MPU NO OF
ADDRESSING MODE OPCODE CYCLES Kokl
LONG RELATIVE 10 5(6) 4
BNE Branch Not Equal

SOURCE FORMS BNE dd; LBNE DDDD
OPERATION: TEMP == MI
if Z=0then PC <~ PC + TEMP
CONDITION CODES Not Affected
DESCRIPTION:
Teststhestate of the Z bit and causesabranchif the Z bitis
clear.
MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS
Used After a subtract or compare operation on any binary
values, thisingruction will "branch if the register is (or
would be) not equd to the memory operand.”

BNE
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
RELATIVE 26 3 >
LBNE
OPCODE MPU NO OF
ADDRESSING MODE ity O OF
LONG RELATIVE 10 5(6) 2

74

BPL Branch of Plus
SOURCE FORM: BPL dd; LBPL DDDD
OPERATION: TEMP = MI

if N=0then PC <« PC + TEMP
CONDITION CODES Not affected
DESCRIPTION:

Tests the state of the N bit and causes a branch if N is
clear. That is, branch if the sign of the two's complement
result is positive.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS
Used after an operation on two's complement binary
values, thisinstruction will "branch if the possibly invalid
result is positive."

BPL
MPU NO OF
ADDRESSING MODE OPCODE S S
RELATIVE 2A 3 2
LBPL
ADDRESSING MODE OPCODE MPU NO OF
CYCLES CYTES
LONG RELATIVE 10 5(6) 4
BRA Branch Always

SOURCE FORMS BRA dd; LBRA DDDD
OPERATION: TEMP « Ml
PC « PC + TEMP
CONDITION CODES Not Affected.
DESCRIPTION:
Causes an unconditiona branch.
MEMOR Y ADDRESSING MODE: Memory Immediate

BRA
MPU NO OF
ADDRESSING MODE OPCODE L S
RELATIVE 20 3 2
LBRA
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 16 5 3

75

BRN Branch Never

SOURCE FORM: BRN dd; LBRN DDDD
OPERATION: TEMP < Ml
CONDITION CODES Not Affected
DESCRIPTION:
Does not cause abranch. Thisingruction is essentidly a
NO-OP, but has a bit pattern logicdly related to BRA.
MEMOR Y ADDRESSING MODE: Memory Immediate

BRN
MPU NO OF
ADDRESSING MODE OPCODE SVCLES BYTES
RELATIVE 21 3 2
LBRN
MPU NO OF
ADDRESSING MODE OPCODE CYOLES BYTES
LONG RELATIVE 10 5 4
BSR Branch to Subroutine

SOURCE FORM: BSR dd; LBSR DDDD
OPERATION: TEMP «= MI
SP «= SP-1(SP) «~ PCL
SP ~ SP-1(SP) «~ PFCH
PC — PC+ TEMP
CONDITION CODES ~ Not afected
DESCRIPTION:

The program counter is pushed onto the stack. The pro-
gram counter is then loaded with the sum of the program
counter and the memory immediate offset.

MEMOR Y ADDRESING MODE: Memory Immediate

BSR
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
RELATIVE 8D 7 2
LBSR
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 17 9 3

76

BvVC Branch on Overflow Clear

SOURCE FORM: BVC dd; LBVC DDDD
OPERATION: TEMP = Ml
ifV =0then PC = PC + TEMP
CONDITION CODES Not Affected
DESCRIPTION:
Teststhe state of theV bit and causes abranch if the'V bit
isclear. That is, branch if the two's complement result was
vdid.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS
Used after an operation on two's complement binary
values, thisinstruction will "branch if there was no over-

flow."
BVC
MPU NO OF
ADDRESSING MODE OPCODE s =
RELATIVE 28 3 2
LBVC
MPU NO OF
ADDRESSING MODE OPCODE i Eoe
LONG RELATIVE 10 5(6) 4
BVS Branch on Overflow Set

SOURCE FORM: BVS dd; LBVS DDDD
OPERATION: TEMP = Ml
ifV=1then PC = PC + TEMP
CONDITION CODES Not Affected
DESCRIPTION:
Teststhe state of the V bit and causesabranch if the V bit
isset. Thatis, branch if the two's complement result was
invalid.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS
Used after an operation on two's complement binary
values, thisinstruction will "branch if there was an over-
flow." Thisinstruction is also used after ASL or L9 to
detect binary floating-point normdization.

77

BVS

MPU NO OF
OPCODE
ADDRESSING MODE CVOLES BYTES
RELATIVE 29 3 2
LBVS
MPU NO OF
OPCODE
ADDRESSING MODE CYOLES BYTES
LONG RELATIVE 10 5(6) 4
CLR Clear

SOURCEFORM: CLRQ
OPERATION: TEMP «— M

M = 0016

CONDITION CODES: v

H: Not affected

N: Cleared

Z Set

V: Cleared

C Cleared
DESCRIPTION:

ACCX or M isloaded with 00000000. The CHlag iscleared
for 6800 compatibility.

CLRA
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
INHERENT 4F 2 1
CLRB
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
INHERENT 5F 2 1

78

P T O S N oo e e

CLR
MPU NO OF
ADDRESSING MODE OPCODE S as P
DIRECT OF 6 2
EXTENDED TF 7 3
INDEXED 6F 6+ 2+
CMP Compare Memory from a Register - 8 Bits

SOURCE FORM: CMPA P; CMPB P =

OPERATION: TEMP « R-MJ[i.e,TEMP «R +M +1]

CONDITION CODES

H: Undefined

N: Set if bit 7 of the result is Set.

7L Set if dl bits of the result are Clear.

V: Set if the operation caused an 8-bit two's complement
oveflow

C: Set if the subtraction did not cause a carry from bit 7 in the
ALU

DESCRIPTION:
Compares the contents of M from the contents of the
specified register and sets gppropriate condition codes.
Neither M nor R is modified. The C flag represents a
borrow and is set inverse to the resulting binary carry.

REGISTER ADDRESSING: Accumulator

FLAG RESULTS

(N® V)=1R.LT. M (2s comp)
C =1R .LO. M (undgned)
Z =1R.EQ. M
CMPA
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
DIRECT 91 i 2
EXTENDED B1 5 3
IMMEDIATE 81 2 2
INDEXED Al 45 2+
CMPB
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
DIRECT D1 4 2
EXTENDED F1 5 3
IMMEDIATE c1 2 2
INDEXED E1l 4+ 2+

79

CMP Compare Memory From a Register - 16 Bits

SOURCE FORMS. CMPD P; CMPX P, CMPY P, CMPU P,
CMPS P

OPERATION: TEMP = R- M:M+ 1) (i.e., TEMP =

R+MM+1+1
CONDITION CODES
H: Unaffected
N: Set if bit 15 of the result is Set
Z: Set if dl bits of the result are Clear.
V: Set if the operation caused a 16-hit twos com-
g plement overflow.
C. Set if the operation on the MS byte d|d not cause
a carry from bit 7 in the ALU
DESCRIPTION:
Compares the 16:bit contents of M:M+1 from the con-
tents of the specified register and sets appropriate condi-
tion codes. Neither R nor M:M+1 ismodified. The C flag
represents a borrow and is set inverse to the resulting
binary carry.
REGISTER ADDRESS NG Double Accumulator
Pointer (X, Y, S or U)
FLAS> RESULTS
(N®V)=1R .LT. M (2scomp)
C=1R.L M (undgned)
Z=1REQ. M CMPD

MPU NO OF
ADDRESSING MODE OPCODE VOIS VTS
DIRECT 10 7 3
93 :
EXTENDED 10 8 4
B3
IMMEDIATE 10 5 &
83
INDEXED 10 L2 3+
A3
MPU NO OF
ADDRESSING MODE OPCODE e =
DIRECT 11 7 3
9C
EXTENDED 1 8 4
BC
IMMEDIATE 11 3 4
8C
INDEXED 11 7+ 3+
AC

80

CMPU

ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT 11 7 3
93
EXTENDED 11 8 4
B3
IMMEDIATE 1 5 4
83
INDEXED 11 7+ 3+
A3
CMPX
ADDRESSING MODE OPCODE | MPU NO OF
‘ CYCLES | BYTES
DIRECT 9C 6 2
EXTENDED BC 7 3
IMMEDIATE 8C 4 3
INDEXED AC 6+ 2+
CMPY
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT 10 7 3
9C
EXTENDED 10 8 4
BC
IMMEDIATE 10 5 4
8C
INDEXED 10 7+ 3+
AC
COM Complement

SOURCE FORM: COM Q
OPERATION: M' e 0 + M
CONDITION CODES
H: Not affected
N: Set if bit 7 of the result is Set
Z: Set if dl bits of the result are Clear

V: Cleared
& Set
DESCRIPTION:

Replaces the contents of M or ACCX with its one's com-
plement (dso cdled the logicd complement). The carry
flag is set for 6800 compatibility.

81

COMMENTS

—ﬁ

When operating on unsigned values, only BEQ and MBE
branches can be expected to behave properly. When
operating on two's complement values, al signed
branches are available.

COMA
ADDRESSING MODE OPCODE MPU NO OF
CYCLES | BYTES
INHERENT 43 2 1
COMB
ADDRESSING MODE OPCODE MPU NO OF
CYCLES | BYTES
INHERENT 53 2 1
COM
ADDRESSING MODE OPCODE MPU NO OF
CYCLES | BYTES
DIRECT 03 6 2
EXTENDED 73 7 3
INDEXED 63 6+ 2+
CWAI Clear and Wait for Interrupt

SOURCE FORM: CWwAI #xx [(EJF[HII[N[Z]V]C]

OPERATION:

CCR -» CCR A Ml (Possibly clear masks)
Set E (entire state saved)

SP =~ SP-1(SP) = PCL FF = enable neither
SP = SP-1,(SPPeH EF = enable IRQ
SF. == SP- 1, (SP) meUSl BF = enable FIRQ
SP e SP-1 (S = UsH AF = enable both
SE i SP - 1(SH) f=RrYIS

SP = P-1,(P)I¥H

SP = SP-1(SP = IXL

SP e SP-1(SP) e IXH

SP — SP-1,(SP) «~ DFR

SP — SP-1,(SP) - ACCB

SP = SP-1,(SP) -« ACCA

SP = SP-1(P) = R
82

CONDITION CODES Possibly cleared by the immediate
byte.
DESCRIPTION:
The CWAI instruction ANDs an immediate byte with the
condition code register which may clear interrupt
maskbit(s). It stacks the entire machine state on the
hardware stack and then looks for an interrupt. When a
nonmasked interrupt occurs, no further machine state will
be saved before vectoring to the interrupt handling
routine. This instruction replaced the 6800's CLI WAI
sequence, but does not tri-state the buses.
ADDRESSING MODE: Memory Immediate
COMMENTS
An FIRQ interrupt may enter its interrupt handler with
its entire machine state saved. The RTI will automati-
caly return the entire machine state after testing the E
bit of the recovered CCR.

CWAI
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 3C 20 2
DA Decimal Addition Adjust

SOURCE FORM: DAA
OPERATION: ACCA' == ACCA + CFMSN):CFLSN)
where CF is a Correction Factor, as follows
The CF. for each nybble (BCD) digit) is deter-
mined separately, and is either 6 or O.
Least Sgnificant Nybble
CHLSN) = 6if1) H=1
or2) LN >9
Most S gnificant Nybble
CF(MSN)=6if) C=1
or2 MNN > 9
or 3MSN >8and LSN> 9

CONDITION CODES

: Not affected

Set if MSB of result is Set

Set if dl bits of the result are Clear

Not defined

sSNzzT

83

C. S if the operaion caused acarry from bit 7 in the
ALU, or if the carry flag was Set before the oper-
ation.
DESCRIPTION:
The sequence of a single-byte add instruction on ACCA
(either ADDA or ADCA) and a fdlowing DAA ingruction
resultsin a BCD addition with appropriate carry flag. Bath
vaues to be added mug be in proper BCD fom (each
nybble such that 0 = nybble < 9). Multiple-precison
additions must add the carry generated by thisDA into the
next higher digit during the add operation immediately
prior to the next DA.
ADDRESSNG MODE: ACCA

DAA
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT 19 2 1
DEC Decrement
SOURCE FORM: DECQ
OPERATION: M' = M-I(i.e.,M' = M + FFy)

CONDITION CODES
H: Not afected
N: Set if bit 7 of result is Set
Z Set if dl bits of result are Clear
V: Set if the origind operand was 10000000
e Not affected
DESCRIPTION:
Subtract one from the operand. The carry flag is not &-
fected, thus alowing DEC to be a loopcounter in
multiple-precision computations.
COMMENTS
When operating on unsgned vaues only BEQ and BNE
branches can be expected to behave consisgtently. When
operating on two's complement values, dl signed
branches are available.

DECA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
INHERENT 4A 2 1

84

DECB

ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT 5A 2 1
DEC
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT OA 6 2
EXTENDED 7A 7 3
INDEXED . 6A 6+ 2+
EOR Exclusive Or
SOURCE FORMS: EORA P, EORB P

OPERATION: R
CONDITION CODES
H: Not affected

- R & M

N: Set if bit 7 of result is Set
72 Set if dl bits of result are Clear

V: Cleared
C Not affected
DESCRIPTION:
The contents of memory is exclusve—ORed into an 8-bit
register.
REGISTER ADDRESSING MODES Accumulator
EORA
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT 9B 4 2
EXTENDED B8 5 3
IMMEDIATE 88 2 2
INDEXED A8 4+ 2+

85

EORB

ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES

DIRECT D8 4 2

EXTENDED F8 5 3

IMMEDIATE cs 2 2

INDEXED ES 4+ 2+

EXG Exchange Registers

SOURCE FORM: EXG RI, R2

OPERATION: Rl ~——R2

CONDITION CODES Not affected (unless one of the regis-
ters is CCR)

DESCRIPTION:

Bits 3-0 of the immediate byte of the instruction define one
register, while bits 7-4 define the other, as follows:

0000 = AB 1000 = A

0001 = X 1001 =B

0010 = Y 1010 = CCR
0011 = US 1011 =DPR
0100 = SP 1100 = Undefined
0101 = PC 1101 = Undefined
0110 = Undefined 1110 = Undefined
0111 = Undefined 1111= Undefined

Registers may only be exchanged with registers of like size; i.e.,
8-bit with 8-bit, or 16 with 16.

EXG R1, R2
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT 1E 7 2
INC I ncrement

SOURCE FORM: INC Q
OPERATION: Me M+1
CONDITION CODE:
H: Not afected
N: Set if bit 7 of the result is Set
Z: Set if dl bits of the result are Clear
V: Set if the origind operand was Q11111
C Not affected
DESCRIPTION:
Add one to the operand. The carry flag is not affected, thus
dlowing INC to be used as a loop-counter in multiple-
precision computations.

86

COMMENTS
When operating on unsigned values, only the BEQ and
BNE branches can be expected to behave consistently.
When operating on two's complement values, al signed
branches are correctly available.

INCA
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT 4c 2 1
INCB
ADDRESSING MODE OPCODE '\cﬂschLEs E‘?ng
INHERENT 5C 2 1
INC
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT oc 6 2
EXTENDED 7C 7 3
INDEXED 6C 6+ 2+
JMP Jump to Effective Address
SOURCE FORM: JMP
OPERATION: PC «— EA
CONDITION CODES Not affected
DESCRIPTION:

Program control is transferred to the location equivalent

to the effective address.

JMP
I ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT OE 3 2
EXTENDED 7E 4 3
INDEXED 6E 3+ 2+
JSR Jump to Subroutine at Effective Address
SOURCE FORM: JSR
OPERATION: SP «~ SP-1,(SP) « PCL
SP = SP-1,(SP) = PCH
PC = EA
CONDITION CODES: Not affected
DESCRIPTION:

Program control is transferred to the Effective Address
after storing the return address on the hardware stack.

87

IR
ADDRESSING MODE OPCODE |MPU NO OF
CYCLES |BYTES
DIRECT 9D 7 2
EXTENDED BD 8 3
INDEXED AD 7+ 2+
LD Load Register from Memory—8 Bit

SOURCE FORMS: LDA P, LDB P
OPERATION: R -~M
CONDITIONCODES

H: Not affected

N: Set if bit of loaded data is Set

Z Set if dl bits of loaded data are Clear

V: Cleared
C Not affected
DESCRIPTION:
Load the contents of the addressed memory into theregis-
ter.
REGISTER ADDRESSING MODE: Accumulator
LDA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES _|BYTES
DIRECT 96 4 2
EXTENDED B6 5 3
IMMEDIATE 86 2 2
INDEXED A6 4+ 2+
LDB
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT D6 4 2
EXTENDED F6 5 3
IMMEDIATE cé 2 2
INDEXED E6 4+ 2+
LD Load Register from Memory—16 Bit

SOURCE FORM: LDD P, LDX P, LDY P, LDS P, LDU P
OPERATION: R == M:M+1
CONDITION CODES

H: Not affected

N: Set if bit 15 of loaded data is Set

Z: Set if dl bits of loaded data are Clear
V: Cleared

C Not affected

88

DESCRIPTION:

Load the contents of the addressed memory (two consecu-
tive memory locations) into the 16-bit register.
Double Accumulator
Pointer (X, Y, S or

REGISTER ADDRESSING MODES

V)
LDD
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT DC 5 2
EXTENDED FC 6 3
IMMEDIATE CC 3 3
INDEXED EC 5+ 2+
| DS
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT 10 6 3
DE
EXTENDED 10 7 4
FE
IMMEDIATE 10 4 4
CE
INDEXED 10 6+ 3+
EE
LDU
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
DIRECT DE 5 2
EXTENDED FE 6 3
IMMEDIATE CE 3 3
INDEXED EE 5+ 2+
_DX
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT 9E 5 2
EXTENDED BE 6 3
IMMEDIATE 8E 3 3
INDEXED AE 5+ 2+
_DY
ADDRESSING MODE OPCODE MPU NO OF
: CYCLES BYTES
DIRECT 10 6 3
9F<=9E
EXTENDED 10 7 4
BE
IMMEDIATE 10 4 4
8E
INDEXED 10 6+ 3+
AE

89

LEA Load Effective Address
SOURCE FORM: LEAX, LEAY, LEAS, LEAU
OPERATION: R = EA
CONDITION CODES
H: Not affected
N: Not affected
Z: LEAX, LEAY: Set if al bits of the result are
Clear.
LEAS, LEAU: Not affected
V: Not affected
C Not affected
DESCRIPTION:
Form the effective address to data using the memory
addressing mode. Load that address, not the data itsalf,
into the pointer register. '

LEAX and LEAY affect Z to allow use as counters and for
6800 INX/DEX compatibility. LEAU and LEAS do not
affect Z to alow for cleaning up the stack while returning Z
as a parameter to a calling routine, and for 6800 INS/DES

compatibility.
REGISTER ADDRESSING MODE: Pointer (X, Y, S, or U)
LEAS
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES |BYTES
RELATIVE 32 4+ 2+
LEAU
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
RELATIVE 33 4+ 2+
LEAX
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
RELATIVE 30 4+ 2+
LEAY
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
RELATIVE 31 4+ 2+

90

LSL Logical Shift Left
SOURCE FORM: LSLQ
OPERATION: [e=[T TTTTT] =0

b b

7 0

C' _— b7,b7‘...b;|_I o= bs...bo,boI = (

CONDITION CODES
H: Undefined
N: Set if bit 7 of the result are Clear
Z: Set if al bits of the results are Clear.
V: Loaded with the result of (b; + bg) of the origina
operand.
G Loaded with bit 7 of the original operand.
DESCRIPTION:
Shifts al bits of ACCX or M one place to the left. Bit O is
loaded with a zero. Bit 7 of ACCX or M is shifted into the
carry flag. This is a duplicate assembly-language
mnemonic for the single machine instruction ASL.

LSLA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 48 2 1
LSLB
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 58 2 1
LESL
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES |BYTES
DIRECT 08 6 2
EXTENDED 78 7 3
INDEXED 68 6+ 2+
LSR Logical Shift Right

SOURCE FORM: LR Q

OPERATION: O < [ITIIIIIT1 ~—1
Arrow Direcction Error b by =%
\\ " 7

C b5 by...be = by...b by = o

91

CONDITION CODES
H: Not affected
N: Cleared
Z: Set if dl bits of the result are Clear
V: Not affected
C Loaded with bit O of the original operand
DESCRIPTION:
Performs a logica shift right on the operand. Shifts a zero
into bit 7 and bit 0 into the carry flag. The 6800 processor
also effects the V flag.

LSRA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 44 2 1
LSRB
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 54 2 1
LR
ADDRESSING MODE OPCODE| MPU NO OF
CYCLES | BYTES
DIRECT 04 6 2
EXTENDED 74 7 3
INDEXED 64 6+ 2+
MUL Multiply Accumulators

SOURCE FORM: MUL
OPERATION: ACCA" ACCB's—-ACCA x ACCB
CONDITION CODES
H: Not affected
N: Not affected
Z: Set if dl bits of the result are Clear
V: Not affected
C Set if ACCB bit 7 of result is Set.
DESCRIPTION:
Multiply the unsigned binary numbers in the accumulators
and place the result in both accumulators. Unsigned multi-
ply alows multiple-precision operations. The Carry flag
alows rounding the M S byte through the sequence MUL,
ADCA #0.

92

MUL

ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES

INHERENT 3D 1 1
NEG Negate
SOURCE FORM: NEG Q i
OPERATION: M < 0-M(i.e, = M+1)
CONDITION CODES

H: Undefined

N: Set if bit 7 of result is Set

Z: Set if al bits of result are Clear

V: Set if the original operand was 10000000

C Set if the operation did not cause a carry

from bit 7 in the ALU.
DESCRIPTION:
Replaces the operand with its two's complement. The C-flag
represents a borrow and is set inverse to the resulting
binary carry. Note that 80y . is replaced by itself and only in
this case is V Set. The value 00y is also replaced by itself,
and only in this case is C cleared.
FLAG RESULTS
(N®V)=21if0.LT. M (2's comp)
C=1if 0.LO. M (unsigned)
Z=1if 0.EQ. M

NEGA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
INHERENT 40 2 1
NEGB
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
INHERENT 50 2 1
NEG
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
DIRECT 00 6 2
EXTENDED 70 7 &
INDEXED 60 6+ 2+

93

NOP No Operation
SOURCE FORM: NOP

CONDITION CODES Not affected
DESCRIPTION:

This isa single-byte instruction that causes only the pro-

gram counter to be incremented. No other registers or
memory contents are affected.

NOP
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 2 2 1
OR Inclusive OR Memory into Register
SOURCE FORMS ORA P, ORB P
OPERATION: R = RVM

CONDITION CODES
H: Not affected
N: Set if high order bit of result Set
Z Set if al bits of result are Clear

V: Cleared
C: Not affected
DESCRIPTION:

Performs an "Inclusive OR" operation between the con-
tents of ACCX and the contents of M and the result is

stored in ACCX.
REGISTER ADDRESS MODE: Accumulator
ORA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
DIRECT 9A 4 2
EXTENDED BA 5 3
IMMEDIATE 8A 2 2
INDEXED AA 4+ 2+
OREB
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
DIRECT DA 4 2
EXTENDED FA 5 3
IMMEDIATE CA 2 2
INDEXED EA 4+ 2+ E

94

OR

SOURCE FORM: ORCC #XX

OPERATION:
CONDITION CODES
DESCRIPTION:

R = RVMI
CCR « CCRVMI

Inclusive OR Memory-Immediate into CCR

Performs an "Inclusive OR" operation between the con-
tents of CCR and the contents of MI, and the result is
placed in CCR. This instruction may be used to Set inter-
rupt masks (disable interrupts) or any other flag(s).
REGISTER ADDRESSNG MODE:
MEMOR Y ADDRESSING MODE:

CCR

Memory Immediate

ORCC
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
IMMEDIATE 1A 3 2
PSHS Push Registers on the Hardware Stack

SOURCE FORM: PSHS register list

PsHS #Label [PClU] Y [X[DPIB[AlCC

OPERATION: push order
_ P~ SP- 1 (P
if B7 of Ml set, then: gp . <p-
SP — SP-
if B6 of MI set, then;, gp «— gp-
SP — SP-
if BS of MI set, then: gp —~ gp-
_ SP — SP-
if B4 of Ml set, then: gp «~ gp.
if B3 of Ml set, then: SP — SP-
if B2 of Ml set, then: SP «— SP-
if B1 of M| set, then: SP' == SP-
if BO of Ml set, then: SP' == SP-
CONDITION CODES Not affected
DESCRIPTION:

L (P
1 (SP)
1L ()
1 (SP)
1, (S
1 (P
1 (SP)
1L (SP)
1 (D)
L (SP)
1L (&)

Pttt ettt

PCL
PCH

UsL
UH
YL
IYH
IXL
IXH
DPR
ACCB
ACCA
CCR

Any, al, any subset or none of the MPU registers are pushed
onto the hardware stack, (excepting only the hardware stack

pointer itself).
MEMORY ADDRESSING MODE: Memory Immediate
PSHS
ADDRESSING MODE | OPCODE | MPU NO OF
CYCLES | BYTES

INHERENT

34

5+

2

95

PSHU Push Registers on the User Stack
SOURCE FORM: PSHU register list

PSHU #LABEL [PC[S| Y [X|DP B[A[CC

push order
OPERATION:
if B7 of Ml set, then: US = US- 1, (US < PCL
US = US- 1, (US < PCH
if B6 of MI set, then: US = US- 1, (US = SPL
US = US- 1, (US e SPH
if B5 of Ml set, then: US = US- 1, (US & IYL
US « US- 1, (US « IYH
if B4 of Ml set, then: US = US- 1, (US < IXL
US = US- 1, (US _ IXH
if B3 of Ml set, then: g = US- 1 (US o DPR
if B2 of Ml set, then: g — US- 1 (U§ _ ACCB
if B1 of MI set, then: g = US- 1 (US <« ACCA
if BO of Ml set, then: g == US- 1 (U§ < CCR

CONDITION CODES: Not affected

DESCRIPTION:
Any, dl, any subset or none of the MPU registers are
pushed onto the user stack (excepting only the user stack
pointer itself).

MEMORY ADDRESSING MODE: Memory Immediate

PSHU
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 36 5+4 2
PULS Pull Registers from the Hardware Stack
SOURCE FORM: PULS register list
PULS# ABEL (PCIU|Y [XIDP|B|A|CC
OPERATION. - pull order
if BO of Ml set, then: CCR = (SP), SP — SP+1
if B1 of MI set, then: ACCA'= (SP), SP — SP+1
if B2 of MI set, then:. ACCB'= (SP), SP =— SP+1
if B4 of Ml set, then: [XH == (SP), SP — SP+1
DU ((SP)MSPyte=" 5P + 1
if B5of M| set, then: |YH <= (SP), SPP = SP+1
Y/ e=R(SP) ISP et SP + 1
if B6 of Ml set, then: USH' = (SP), SP = SP+1
USL! Te= (SP), SP. = SP+ 1
if B7 of Ml set, then: PCH' = (SP), SP =— SP+1
PCL 44 »= (SP),'SP' == SP'+ 1

96

CONDITION CODES

May be pulled from stack, otherwise unaffected.

DESCRIPTION:

Any, al, any subset or none of the MPU registers are pulled
from the hardware stack, (excepting only the hardware Wil ¢
stack pointer itself). A single register may be "PULLED"
with condition-flags set by loading auto-increment from stack

(EX:LDA, St).
MEMORY ADDRESSING MODE: Memory Immediate
PULS k
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 35 5+ 2

PULU

Pull Registers from the User Stark
SOURCE FORM: PULU register list

PULU #LABEL [PC[S[Y|X|DP[BJA[C(

OPERATION:
if BO of Ml set, then:
if B1 of Ml set, then:
if B2 of Ml set, then:
if B3 of Ml set, then:
if B4 of MI set, then:

if B5 of Ml set, then:
if B6 of MI set, then:
if B7 of MI set, then:

CONDITION CODES

May be pulled from stack,

DESCRIPTION:

pull order

CCR' = (U9, US
ACCA' = (US), US
ACCB' — (US), US
DPR' = (US), US
IXH' = (US), US
IXL' <= (US), US
IYH = (US), US
IYL' < (US), US
SPH' - (US), US
SPL' — (US), US
PCH' « (US), us
PCL' = (US), us

LT TR T8 R e P e T A

US 5l
US+ 4
USH
USEAE
US+1
US+1
US4
US+4%
USEEd:
USE=E
US&a1
USg-1

otherwise unaffected.

Any dl, any subset or none of the MPU registers are pulled
from the user stack (excepting only the user stack pointer
itself). A single register may be "PULLED" with condition-
flags set by doing an auto-increment load from the stack

(EX.LDX, U++))

MEMORY ADDRESSING MODE: Memory Immediate

PULU

ADDRESSING MODE

OPCODE MPU
CYCLES

NO OF
BYTES

INHERENT

37

2

97

ROL
SOURCE FORM: ROL Q

OPERATION:

a2 —

by

bo

Rotate Left

Ghombry B 5 e, by Bt ssill

CONDITION CODES
H: Not affected

N: Set if bit 7 of the result is Set

Z. Set if dl bits of the result are Clear
V: Loaded with the result of (b; bg) of the original operand.
C: Loaded with bit 7 of the original operand

DESCRIPTION:

Rotate dl bits of the operand one place l&ft through the carry

flag; this is a 9-hit rotation.

ROLA
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT 49 2 1
ROLB
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT 59 2 1
ROL
ADDRESSING MODE OPCODE MPU NOOF
CYCLES BYTES
DIRECT 09 6 2
EXTENDED 79 7 3
INDEXED 69 6+ 2+
ROR Rotate Right
SOURCE FORM: ROR Q
1
OPERATION: [T T T T TJ
b? b[l
Co—bo, bS---bU'— bbl’ b_ -

CONDITION CODES
H: Not affected

: Setif bit 7 of result is Set
Set if dl bits of result are Clear

N
Z:
V: Not affected
C

. Loaded with hit O of the previous operand

98

DESCRIPTION:

Rotates dl bits of the operand righl one place through the
carry flag; this is a nine-bit rotation. The 6800 processor also

affects the V flag.

ADDRESSING MODE

INHERENT

ADDRESSING MODE

INHERENT

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

RORA
OPCODE | MPU
NO OF
= .| BYTES
46 2 1
KNORH
OPCODE | MPU NO OF
CYCLES BYTES
- 56 2 1
ROR
OPCODE | MPU NO OF
CYCLES _BYTES .
06 6 2
76 7 8
66 6+ I 2+

RTI
SOURCE FORM: RTI

Return from Interrupt

OPERATION: CCR' (SP), SP~SP +1

if CCR hit E is SET then:

ACCA' — (SP),
ACCB' = (SP),
DPR - (SP),
IXH' — (SP),
IXL' =—(SP),
IYH' <= (SP),
YL = (SP),
USH' «—(SP),
USL' «(SP),
PCH' «(SP),
pcL' «(SP),

if CCR bit E is CLEAR then:

PCH'
PCL'

- (SP),
=(SP),

CONDITION CODES Recovered from stack

DESCRIPTION:

SP' =—SpP +
SP' = SP +
SP' = SP +
SP =SSP +
SP' ==SP +
SP' —~ S +
SP' =SSP +
SP' & SP +
SP o3P +
SP" 5P +
' e SP +

PRrRPPRrRrRPRRRRRPRPR

= Sk
= SPEEN

=

SP'
SP'

The saved machine state is recovered from the hardware
stack and control is returned to the interrupted program. If the
recovered E bit is CLEAR, it indicates that only a subset of the
machine state was saved (return address and condition codes) and
only that subset is to be recovered.

99

SBCB
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT D2 4 2
EXTENDED F2 5 - 3
IMMEDIATE c2 2 2
INDEXED E2 4+ 24
SEX Sign Extended
SOURCE FORM: SEX
OPERATION: If bit 7 of ACCB is set then ACCA' &= FFy

else ACCA' &= 0046

CONDITION CODES

H: Not affected

N: Set if the MSB of the result is Set

Z Set if al bits of ACCD are Clear

V: Not affected

C Not affected
DESCRIPTION:

This instruction transforms a two's complement 8-bit

value in ACCB into a two's complement 16-bit value inthe

double accumulator.

SEX
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT i) 2 1
ST Store Register Into Memory—8 Bits

SOURCE FORM: STA P, STBP
OPERATION: M' = R
CONDITIONCODES
H: Not affected
N: Set if hit 7 of stored data was Set
Z: Set if dl bits of stored data are Clear
V: Cleared
C Not affected
DESCRIPTION:
Writes the contents of an MPU register into a memory
location.
REGISTER ADDRESSING MODES Accumulator

101

RTY

ADDRESSING MODE OPCODE MPU NO OF
CYCLES | BYTES
INHERENT 3B 6/15 1
RTS Return from Subroutine

SOURCE FORM: RTS
OPERATION: PCH' <= (SP), SP' «=SP + 1
PCL' == (SP), SP' = SP + 1
CONDITION CODES: Not affected
DESCRIPTION:
Program control is returned from the subroutine to the calling
program. The return address is pulled from the stack.

RTS
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 39 5 1
SBC Subtract with Borrow

SOURCE FORMS SBCA P; SBCB P

OPERATION: R ==R-M-C (i.e, Re= R+ M + ()

CONDITION CODES

: Undefined

Set if bit 7 of the result is Set

Set if dl bits of the result are Clear

Set if the operation causes an 8-bit two's comple-

ment overflow

C: Set if the operation did not cause a carry from bit 7
in the ALU

DESCRIPTION:

Subtracts the contents of M and the borrow (in the carry flag)
from the contents of an 8-hit register, and places the result in that
register. The C flag represents a borrow and is set inverse to the
resulting binary carry.

REGISTER ADDRESSNG MODE: Accumulator

SNzT

SBCA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
DIRECT 92 4 2
EXTENDED B2 5 3
IMMEDIATE 82 2 2
INDEXED A2 4+ 2+

100

STA

ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT 97 4 2
EXTENDED B7 5 3
INDEXED A7 4+ 24+
STB
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT D7 4 2
EXTENDED F7 5 3
INDEXED E7 4+ 2+
ST Store Register Into Memory—16-Bits

SOURCE FORM: STD P, STX P, STY P, STSP;, STU P
OPERATION: M':M+1" = R
CONDITION CODES

H: Not affected

N: Set if bit 15 of stored data was Set

Z: Set if dl bits of stored data are Clear

V. Cleared

C Not affected

DESCRIPTION:
Write the 16 hit register into consecutive memory loca
tions
REGISTER ADDRESSING MODES Double Accumulator
Pointer (X, Y, S, or U)

SID
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT DD 5 2
EXTENDED FD 6 3
INDEXED ED 5+ 2+
STS
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT 10 6 3
DF
EXTENDED 10 7 4
FF
INDEXED 10 6+ 3+
EF

102

STU
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT DF 5 2
EXTENDED FF 6 3
INDEXED EF 5+ 2+
STX
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT oF 5 2
EXTENDED BF 6 3
INDEXED AF 5+ 2+
STY
ADDRESSING MODE OPCODE | MPU NO OF
CYCYLES | BYTES
DIRECT 10 6 3
9F
EXTENDED 10 7 4
DF
INDEXED 10
AF 6+ 3+
SUB Subtract Memory from Register—8 bit
SOURCE FORMS SUBA P, SUBB P
OPERATION: R e= R-M;M+1
CONDITION CODES
H: Undefined
N: Set if but 7 of the result is Set
Z Set if dl bits of the result are Clear
V: Set if the operation caused an 8-bit two's com-
plement overflow
C Set if the operation did not cause a carry from
bit 7 in the ALU
DESCRIPTION:

Subtracts the value in M from the contents of an 8-bit
register. The Cflag represents a borrow and is set inverse
to the resulting carry.
REGISTER ADDRESSING MODE: Accumulator
FLAG RESULTS
(N®V)=1if R .LT. M (two's comp)
C=1ifR.LO. M (unsigned)
Z=1ifR.EQ. M

103

SUBA

MPU NO OF
ADDRESSING MODE OPCODE CYCLES BVTES
DIRECT 90 4 2
EXTENDED BC 5 3
IMMEDIATE 80 2 2
INDEXED A0 4+ 2+

SUBB
ADDRESSING MODE OPCODE | MPU NOOF
CYCLES | BYTES
DIRECT DO 4 2
EXTENDED FO 5 3
IMMEDIATE co 2 2
INDEXED EO 4+ 2+
SUB Subtract Memory from Register—16-Bit
SOURCE FORM: SUBD P

OPERATION: R =R - M:M+1 [i.e, R; = R+ M:M+1+]

CONDITION CODES
H: Unaffected
N: Set if bit 15 of result is Set
Z: Set if dl bits of result are Clear
V: Set if the operation caused a 16-bit two's
complement overflow.
C Set if the operation on the MS byte did not cause
acarry frombit 7 in the ALU
DESCRIPTION:
This information subtracts the value in M:M+1 from the
16-bit accumulator. The C flag represents a borrow and is
set inverse to the resulting binary carry.
REGISTER ADDRESSING MODE: Double Accumulator
SUBTRACT SETS
(NOV)=1ifR.LT. M (two's comp)
C=1if R.LO. M (unsigned)
Z=1ifR.EQ. M

SUBD
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
DIRECT 93 6 2
EXTENDED B3 7 3
IMMEDIATE 83 4 3
INDEXED A3 6+ 2+

104

= —— ———

o —

SWiI Software Interrupt
SOURCE FORM: SWI
OPERATION: Set E (entire state will be saved)

SP — SP-1 (SP) = PCL
SP —~ SP- 1 (SP) «~ PCH
SP' = SP- 1 (SP) = UL
SP = SP- 1 (SP) = UH
SP~ SP-1 () = IYL
SP — SP-1, () = IYH
SP — SP-1(SP) — IXL
SP = SP-1 () = IXH
SP = SP- 1 (SP) - DR
SP ~ SP-1 (S =~ ACCB
SP — SP- 1 (SP) = ACCA
SP— SP- 1 (SP) - CCR

Set I, F (mask interrupts)
PC (FFFA):(FFFB)
CONDITION CODES Not affected
DESCRIPTION:
All of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itsdlf),
and contral is transferred through the SWI vector.

SM SETS| AND F BITS

ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 3F 19 i
SWI2 Software Interrupt 2

SOURCE FORM: SWi2
OPERATION: Set E (entire state saved)

SP = SP-1 (S = PCL
SP = SP- 1, (SP) e= PCH
SP e SP-1 (SP) = UL
SP e SP-1, (SP) e UH
SP = SP-1 (P = IYL
SP— SP- 1 (SP) = IYH
SP = SP- 1 (SP) « IXL
SP = SP-1 (P = IXH
SP ~ SP- 1, (SP) = DPR
SP = SP- 1 (SP) = ACCB
SP = SP- 1 (SP) = ACCA
SP ~ SP-1 (8P = CCR
PC' = (FFF4):(FFF5)

105

CONDITION CODES: Not afected

DESCRIPTION:

All of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itsdlf),
and control is transferred through the SWI2 vector. SWI2
is avalable to the end user and must not be used in

packaged software.
SWM2 DOES NOT AFFECT | AND F BITS
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 10 20 2

3F

SWI3
SOURCE FORM:

Software Interrupt

SWI3

OPERATION: Set E (entire state will be saved)

SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
PC

CONDITION CODES

DESCRIPTION:

All of the MPU registers are pushed onto the hardware

- $-1(P) - PL

= SP-1(SH) -~ Ul
- SP- 1 (S = USH
— SP-1,(SP) = IYL
- SP-1,(P) «~ IYH
- SP-1 () ~ IXL
- SP-1 () = IXd
- SP-1 (P «~ DR
~ SP-1 () ~ ACCB
- SP-1 () = ACCA
- P-1() = R
(FFF2):(FFF3)
Not Affected

stack (excepting only the hardware stack pointer itsdlf),
and contral is transferred through the SWI3 vector.

SWM3 DOES NOT AFFECT | AND F BITS

ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
INHERENT 11 20 2

3F

106

SYNC Synchronize to External Event
SOURCE FORM: SYNC
OPERATION: Stop processing instructions
CONDITION CODES Uneffected
DESCRIPTION:
When a SYNC ingtruction is executed, the MPU enters a
SYNCING state, stops processing instructions and waits
on an interrupt. When an interrupt occurs, the SYNCING
stateis cleared and processing continues. IF the interrupt
is enabled, and the interrupt lasts 3 cycles or more, the
processor will perform the interrupt routine. If the inter-
rupt is masked or is shorter than 3 cycles long, the proces-
sor simply continuesto the next instruction (without stack-
ing registers). While SYNCING, the address and data
buses are tri-state.
COMMENTS
This instruction provides software synchronization with
ahardware process. Consder the high-peed acquisition

of datax
FOR DATA
FAST SYNC WAIT FOR DATA
-— interrupt!
LDA DISC DATA FROM DISC AND CLEAR
INTERRUPT
STA X+ PUT IN BUFFER
DECB COUNT IT, DONE?

BNE FAST GO AGAIN IF NOT.

The SYNCING state is cleared by any interrupt, and any
enabled interrupt will probably destroy the transfer (this
may be used to provide MPU response to an emergency
condition).

The same connection used for interrupt-driven I/O ser-
vice may thus be used for high-speed data transfers by
setting the interrupt mask and using SYNC.

SYNC
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
INHERENT 13 > =2 1

107

TFR Transfer Register to Register
SOURCE FORM: TFRRy, Ry,
OPERATION: R, = R
CONDITION CODES Not affected (Unless R, = CCR)
DESCRIPTION:
Bits 7-4 of theimmediate byte of the ingtruction define the
source register, while bits 3-0 define the destination re-
gister, as falows

0000 = A:B 1000 = A

0001 = X 1001 = B

0010 = Y 1010 =CCR

0011 = us 1011 = DPR
0100 = SP 1100 = Undefined
0101 = PC 1101 = Undefined

0110 = Undefined 1110 = Undefined
0111 = Undefined 1111 = Undefined

Registers may only be transferred between registers of
like size; i.e., 8-bit to 8-hit, and 16 to 16.

TFR RL.R2
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 1F 7 2
TST Test

SOURCEFORM: TSTQ
OPERATION: TEMP = M-0
CONDITION CODES

H: Not afected

N: Set if bit 7 of the result is Set

Z: Set if dl bits of the result are Clear

V: Cleared
C Not afected
DESCRIPTION:

Set condition codeflags N and Z according to the contents

of M, and clear the V flag. The 6800 processor clearsthe C

flag.

COMMENTS

The TST ingtruction provides only minimum information
when testing ungigned values; since no unsigned vaueis
lessthan zero, BLO and BLS have no utility. While BHI
could be used dfter TST, it provides exactly the same
control as BNE, whichispreferred. The signed branches
are available.

108

TSTA

ADDRESSI NG MODE OPCODE | MPU NO OF
CYCLES | BYTES
| NHERENT 4D 2 1
TSTB
ADDRESSI NG MODE OPCODE | MPU NO OF
CYCLES | BYTES
| NHERENT 5D 2 1
TST
ADDRESSI NG MODE OPCODE | MPU NO OF
CYCLES | BYTES
DI RECT a 6 2
EXTENDED 7D 7 3
| NDEXED 6D 6+ 2+

HARDWARE INSTRUCTION FIRQ Fast Interrupt Re-

quest

OPERATION: if F bit CLEAR, then:

SP=SP- 1, (SP)~PCL
SP+~SP - 1, (SP)~PCH

Clear E (subset state is saved)
SP~=SP- 1, (SP)=CCR

Set if, | (mask further interrupts)
PC — (FFF6):(FFF7)

CONDITION CODES Not afected
DESCRIPTION:

A low leve on the FIRQ input with the F bit clear causes
this interrupt sequence to occur at the end of the current
ingtruction. The program counter and condition code re-
gister are pushed onto the hardware stack. Program con-
tral is transferred through the FIRQ vector. An RTI re-
turns to the origind task. It is possible to enter an FIRQ
handler with the entire state saved if the FIRQ occurs after
CWAIL.

ADDRESSING MODE: Absolute Indirect
COMMENTS

AnIRQ interrupt, having lower priority than the FIRQ, is
prevented from interrupting the FIRQ handling routine
by automatic setting of thel flag. Thismask bit could then

109

be reset if priority was not desired. the FIRQ alows+
operations on memory, TST, INC, DEC, etc, without
the overhead of saving the entire machine state on the
stack.
HARDWARE INSTRUCTION IRQ Interrupt Request
OPERATION: IFF | bit CLEAR, then:

SP = SP -1 (SF)SeECH

SPe=SP - 1, (SP)e=PCH

SP=—SP - L(SR)—

SPe=SP- 1, (SP)*=UH

SPe=SP - 1, (SP)==IYL

SPe=SP- 1 (SP=IYH

SP =SSP -1 (SP)*=IXL

SP*=SP- 1 (SP)*=IXH

SP=SP- 1, (SP)=DPR

SP+SP- 1, (SP)=ACCB

SP =SP - 1, (SP)=ACCA

Set E (entire state saved)

SP=SP- 1, (3P =CCR

Set | (mask further IRQ interrupts)

PC « (FFF8):(FFF9)

CONDITION CODES Not affected

DESCRIPTION:
If the IRQ mesk bit | isclear, alow level on the IRQ input
causes this interrupt sequence to occur a the end of the
current instruction. Contral is returned to the interrupted
programviaan RTI. An FIRQ may interrupt an IRQ handl-
ing routine and be recognized anytime after the IRQ vector
is taken.

ADDRESSNG MODE: Absolute Indirect

HARDWARE INSTRUCTION NMI Non-Maskable Interrupt

OPERATION: SP = SP- 1, (SP) = PCL
SP «— SP-1, (SP) « PCH
SP = SP- 1, (SP) = USL
SP' « SP- 1, (SP) «— USH
SP' = SP- 1, (SP) = IYL
SF = SP- 1, (SP) = IYH
SP = SP- 1, (SP) = IXL
SP = SP- 1 (SP) = IXH

110

S~ SP-1 (8P —DMR
P — SP-1, (SP) — ACCB
S = SP-1 (SP) -~ ACCA
Set E (entire state save)
SP' += SP- 1, (SP) = CCR
Set |, F (mask interrupts)
PC < (FFFC):(FFFD)
CONDITION CODES Not affected
DESCRIPTION:
A negative edge on the NMI input causes all of the MPU
registers (except the hardware stack pointer SP) to be
pushed onto the hardware stack, starting at the end of the
current instruction. Program control is transferred
through the NMI vector. Successive negative edges on the
NMI input will cause successive NMI operations. The
NMI operation is internally blocked by RESET, any
NMI-edge will be latched, and the operation will occur
after the first load into the stack pointer (LDS; TFR,s;

EXGr,s; etc.).
ADDRESSING MODE: Absolute Indirect
HARDWARE INSTRUCTION RESTART
OPERATION: CCR' = XIXIXXXX
DPRI - 0016
PC = (FFFE):(FFFF)
CONDITION CODES Not affected
DESCRIPTION:

The MPU is initialized (required after power-on) to start
program execution.
ADDRESSING MODE: Absolute Indirect

111

5‘:“"’“””__

LAY

MEKG6809EA Assembler

Moatorolahas not only developed the 6809D4 evauation unit, but is
supporting it with a variety of software. One piece of software
avalable from Motorola is the MEKG809EA assembler. Thisisa
speciaized program that is designed to process source programs
written in M6809 assembly language. This "source” isthen trans-
lated into object programs that the firmware loaders on the D4
evauation unit can understand.

The previous chapter gave you definitions to the various
instruction codes that the 6809 understands and, in some cases,
examples of an assembly code. | will attempt inthis chapter to give
you only the basics of the assembler. Should you desire to learn
more, the supporting software and D4 unit should be purchased
from Motorola, or the Radio Shack TRS-80 Color Computer or
Videotex should be bought.

BASICS OF THE ASSEMBLER

The assembler, as stated before, performs operaions on
source code that contains specific operations which determine
what will happen when the program executes as an object, or
run-time, program. Some of these internals of the source file are
operations such as ingtruction codes, or assembler directives, ad
labels—sometimes caled symbolic names, special operators and
specid symbols. Directives, which are part of the assembler's
operation, are pecid codes that are entered into the sourcefile to
tell the assembler to perform a specific operation.

112

Essentially, the role of the assembler is to translate source
programs into object code in a format required by the systems'
loader. As you will seein Chapter 6, this will be for the D4. The
assembler is also used for archival purposes. Debugging the as-
sembler provides alisting which contains dl the information about
the program in logical fashion.

TYPICAL REQUIREMENTS

The assembler takes information in source form and trans-
lates it into object form. To do this, however, certain rules are
usually followed.

First, the source form of the program is a sequence of state-
ments written in ASCII characters following conventions that the
specific assembler requires. Each input source line is terminated
with a carriage return. The source form usually consists of five
fields:

e Sequence number. This is not always required, but is
useful especially in the editing function.

e Label or an asterik (*) implying a comment.

* Operation.

e Operand.

e Optional comment.

Sequence Number

This is an option for programmer convenience for the
Motorola assembler. A sequence number can consist of up to five
decima digits but less than 65,536. When used, the sequence
number must be followed by a space.

Label Field

Thisfidd is right after the sequence number, or it can appear
asthefirst field. When an asterisk (*) isused, the lineis considered
by the assembler to be comment and is thus ignored. A blank
indicates that the field is empty and the line contains no label.

The symboal is a specia form of a label and has the following
attributes:

e Usually consists of 1 to 6 characters.

» Only the following are considered valid symbol charac-
ters: A through Z, 0through 9, "."—period, and adollar sign "$".

e A symbol must conS|st of either a period ".", or an
alphanumeric character as the first character.

113

-+

e Certain symbols: A, B, D, X, Y, U, S, CC, PC, PCR and
DP are reserved symbols used by the assembler and are never
used in the label fidd.

When a symbol is used, it may occur only once in the label
field. If it occurs in more than one label fidld, a reference to that
symbol will cause an error, sincethe assembler will have noideato
what you are referring.

A typical label can be used in an equate statement, that unique
statement that setsalabel equa to a specific value. Some examples
of labels are:

INCH EQU $FC00
.Gl LDA #341

Operating Field

The operation field occurs directly after the label field in an
assembly language source statement. This field consists of an
operation code of three or four characters. Entriesin the operation
code field may be one of two types. Machine mnemonic operation
code entries correspond directly to M6809 machine instructions.
This operation code field includes the "A" or "B" character for the
"dual" or "accumulator" addressing modes. Directives are special
operation codes known to the assembler which control the assem-
bly process rather than being translated directly to machine lan-
guage.

The assembler searches for operation codes in the table of
machine operation codes and directives. If not found, an error
message is printed.

Operand Field

Interpretation of the operand field is dependent on the opera-
tion field. For the M6809 machine instructions, the operand field
must specify the addressing mode. The operand field formats and
the corresponding addressing modes are in Table 5-1.

Comment Field

The last field of an M6809 Assembly Language source line is
the comment field. This field is optional and is ignored by the
assembler except for being included in the listing. The comment
field is separated from the operand field (or the operator fidd if
there is no operand) by one or more blanks and may consist of any

114

Table 5-1. Operand Field Formats and Corresponding Addressing Modes.

M6809 Machine Instruction
Operand Format Addressing Mode

inherent and accumulator

IE EESEie direct or extended

By eSO (direct will be used if possible)
; immediate
?e)ggi(gsrgijsr:(;né indexed (where "R" is an indexable
: register)

ASCII character. Thisfield isimportant in documenting the opera-
tion of a program.

EXPRESSIONS

An expression is a combination of symbols and/or numbers
separated by one of the arithmetic operators (+ ,-, *, or /). The
assembler evaluates expressions algebraically from left to right
without parenthetical grouping. There is no precedence hierarchy
among the arithmetic operators. A fractional result, or inter-
mediate result obtained during the evaluation of an expression, will
be truncated to an integer value.

Constants

Decimal: < number >

Hexadecimal: $ < number > or < number > H (first digit in
latter case must be 0 - 9)

Octal: @ < number > or < number > 0 or < number > Q

Binary: % < number > or < number > B

ASCII| Literals

' <character>: apostrophe followed by an ASCII character, except
carriage return. The result is the numeric value for the ASCII
character.

SYMBOLS

A symbol in an expression is similar to a symbol in the label
field except that the value of the symbol is referenced instead of
defined. An asterisk "*" is a special symbol recognized by the

115

Table 5-2. Assembly Listing.

00001
00002
00004
00005
00006
00007
00008

00010

TOTAL
TOTAL

$ 2
& §
g Jsé' s o & IS &
S & FEE s FF N
g § &8 § &5 & §
& § & I & & $
NAM ENDST
OPT LLEN=80
2000 ORG
2000 10CE E0000 4 START $2000
2004 10AE E4 6 LDY +$FO000
2007 10AF 84 6 STY S
200A 32 16 5 LEAS X
2000 END -10X
ERRORS 00000
WARNINGS 00000
001 ENDST1 *PROGRAM NOT INDICATING EXECUTION START*

NAM ENDST1
OPT LLEN
2000 ORG 140080
2000 10CE E0000 $2000
2004 10AE E4 6 LDY +$E000
2007 10AF 84 6 STY s
200A 32 16 5 LEAS X
0000 END -10,X
ERRORS 0000
WARNINGS 00000

assembler and represents the value of the current location counter
(first byte of an ingtruction), when used in the context of the

symbol.

A 16-bit integer vaue is associated with each symbol. This

valueisused in place of the symbol during expression evaluation.
Table 5-3. Standard Format for Assembly Listings.

Column Contents

15 Source line 1 - 5 digit decimal counter kept
by assembler.

7-10 Current Location Counter value (in hex).

12-15 Machine Operation Code (hex).

17-23 Operand Machine Code (if any) (hex).

25-26 Cycle Count of Execution Time (decimal).

28-33 Label Field.

35-39 Operation Field.

41-48 Operand Field (longer operand extends into
comment field).

50-Last Comment Field.

Column

116

The MEKGB09EA assembler is a two-pass assembler. The
symbol tableisbuilt onthefirgt pass. Object recordsand listing are
produced on the second pass. Certain expressions cannot be fully
evaluated during the first pass because they may contain (forward)
references to symbols which have not yet been defined. In some
cases, asymbol may not be defined before being used in the second
pass. Since the assembler cannot evaluate such symbols, these
cases are treated as errors. Only one level of forward referencing
is alowed.

ASSEMBLER LISTING

Assembler outputs include an assembly listing and an object
program (Table 5-2). The assembly listing includes the source
program as well as additiona information generated by the assem-
bler. Mog lines in the liging correspond directly to a source
statement. Lines which do not correspond directly to a sourceline
include: page header line, error lines and expansion lines for the
FCC, FDB and FCB directives. Mog ligting lines fdlow the
standard format shown in Table 5-3.

117

kg g ggWinl (o

2 6 =
AL
SA T

Implementation of VTL-09

The implementation of BASIC that is to be presented in the next
few pagesis based on adesign created by Gary Shannon and Frank
McCoy for the MITs 680b microcomputer. Their implementation
was named VTL-2 for Very Tiny Language, and permitted users of
the 680b to have high-level language capability with only 1K bytes
of working memory space. VTL-2, origindly implemented, re-
quired only 768 bytes of memory and was written in such amanner
to be ROMable

As you proceed through this chapter, you will reglize that the
smdl BASIC-like language we are talking about is quite powerful.
In fact, it most likely is still the most powerful small interpreter
avalable today. The origind copyright was 1977 for the 6800
version of VTL-2 and is still held by the Computer Store of Santa
Monica, Cdifornia The following pages are designed to assist you
in how to use what | call VTL-09.

DIRECT AND PROGRAM STATEMENTS

The statements that may be entered as input to the VTL-09
interpreter are of two types: the direct statement, which has no
line number and is executed immediately after being entered; and
the program statement, which requires line numbers used to build
aprogram. Program statements are not executed until the program
isrun as opposed to theimmediate execution of direct statements.

118

The design of VTL-09 is simple, making it ideal for the
beginner and powerful enough for advanced purposes. An impor-
tant feature, not found with other versions of VTL, is the inclusion
of calls to permit loading and dumping of programs to tape. The
implementation that is presented in this book is strictly for the
Motorola 6809D4 unit which is designed to load at $2000 hex.

PRELIMINARY CONCEPTS

Line numbers must precede each program statement. The
statements following the line number must be separated from the
number by at |east one space. As designed, each line must end with
a carriage return and be less than 73 characters in length.

Typically, line numbers are incremented in steps of 10. This
permits the addition of other statements if necessary. No line
renumbering utility is included, so care must be taken when first
beginning the program process.

Variables may be represented by any single aphabetic or
special character such as !"#$%&'()=-+*:;?/.><[]. Most of
these are available for the user to define as he wishes. A few of the
variable names, however, have been set aside for special pur-
poses. These so-called system variables will be discussed in detail
later.

The value assigned to a variable may be either anumeric value
in the range 0-65535, or asingle ASCII character, including control
characters. Numeric and string values may be freely interchanged,
in which case the characters are equivalent to the decimal value of
their ASCII code representation. Thus, it becomes possible to add
1 to the letter A, giving as a result the letter B.

ARITHMETIC OPERATIONS

The arithmetic operations permitted for use in expressions
are:

. + addition

e - subtraction

* * multiplication

+ /[divison

o = test for equality

e > test for greater than or equa to

e < test for less than

119

The test operations—equal to, greater than or equal to and less
than—all return avalue of zero if the test fails and a value of one if
the test is successful.

Expressions in VTL-09 may contain any number of variables
or numeric values—Iiterals—connected by any of the above opera-
tions. Parentheses may be used to alter the order of execution of
the operations. If no parentheses are included, the operations
proceed in strictly right to left order.

The value resulting from the expression must be assigned to
some variable name. Thisisdone with the equa sign. Note that the
symbol has two meanings depending on where it occurs in the
expression. The expression "A=B=C" means test b and c for
equality. If they are equal put aone in A; if they are unequal, put a
zero in A. Some of the examples of valid arithmetic expressions
would be:

Y=A*(X*X)+B*X+C with left to right execution. This is
equivalent to Y=(A*X*X+B)*X+C

Y=(A*X*X)+(B*X)+C which is equivalent 0 AX*+BX+C

Notice how the absence of parentheses around the quantity
B*X in the first expression has completely altered its meaning.
Keep the right to left order in mind, and when in doubt use
parentheses to control the order of evaluation.

SYSTEM VARIABLES

In order to conserve space and to provide a more consistent
syntax, VTL-09, like VTL-2 uses system variables to accomplish
functions usually done with special key words in other languages.
This convention is probably the single most important reason for
itstiny size. These special variables are used for such functions as
the BASIC PRINT, GOTO, GOSUB, RETURN, IF AND RAN-
DOM functions.

Pound Sign

The system variable number or pound sign (#) represents the
line number of the line being executed. Until the statement has
been completed, it will contain the current line number. For exam-
ple, the statement 100 A=# is equivalent to simply writing 100
A=100. After completion of aline, this variable will contain the
number of the next line to be executed. If nothing is done to the
variable, this will be the next line in the program text. If a state-

120

ment changes #, however, the next line executed will be the line
with the number that matches the value of #. Thus, the variable #
may be used to transfer control to a different part of the program.
This then becomes the VTL-09 equivaent to the BASC GOTO:
#=300 means GOTO 300.

If the# variable should ever be set to zero by some statement,
thisvauewill beignored. The program will proceed asif no change
hed taken place. This fact dlows us to write IF statements in
VTL-09. Consder the falowing example:

10 X =| Set X equd to 1
20 #=(X=25)*50 If X=25 goto 50
30 X=X+1 add 1 tox

40 #=20 goto 20

50 : : and so on

Notice that the quantity (X=25) will havethevdueone, if it is
truethat X isequd to 25, and thevalue zero if it isfalse. When this
logicd vadueismultiplied times 50, theresult will either be zero or
50. If it is 50, the statement causes a goto 50 to occur. If the
statement is zero, then a goto 0 occurs, which is a dummy opera-
tion causng the next statement to be executed.

Exdamation Point

Teking advantage of left-to-right evauation, two bytes of
memory could be saved by writing 20 #=x=25*50. Each time the
vaue of #is changed by aprogram statement, the old value +1 is
saved in the system varidble—exclamation point (!). In other
words, after executing a goto, the line number of the line that
follows the goto is saved so that a subroutine will know where to
return to whenfinished. Thus, the # variable is used for both goto
and gosub operations.

10X=1
20 #=100
3030 X=2
40 #=100
50x=3
60 #=100

110 #=! goto where you came from
In this example, control proceeds from line 20 to line 100.
After that, line 110 causes control to returnto line 30. Whenline 40
is executed, the subroutine at 100 will return to line 50.

bl

The actua value storedinthe! variableis old line number +1.
If VTL doesn't find the exact line number, it will GO to the next
higher line number.

Question Mark

The system variable question mark (?) represents the user's
terminal. It can be either an input or an output, depending on which
side of the equal sign it appears.

The statement ?=A' is interpreted as PRINT A, and the
statement X=7 is interpreted as INPUT X. A ? can be included
anywhere within an expression.

10 ?=" ENTER THREE VAL UES"
20 A=(747+7)1 3

30 ?7=" THE AVERAGE| S'

40 ?=A

This program will request three inputs while executing line 20.

When typing in a reply to a request for input, the user may
enter any one of three different types of data: a decimal number, a
variable name or any valid VTL-09 expression. Thus, for example,
the user may reply with such things as "1004" or A+B*(9/X). In
each case the expression is completely evaluated before the result
is passed to the input statement. The only exception isthat you are
not allowed to respond with another question mark as this will
mess up the line pointer in the interpreter, causing it to return an
improper value. 2

When the question mark is on the Ieft side of the first equal
sign, it represents a print statement; on theright it isan input. The
formatting of printing output can be controlled by either the inclu-
sion or omission of leading or trailing blanks, thus giving a similar
operation and PRINT USING.

Percent and Apostrophe

The system variable percent (%) contains the value of the
remainder of the last division operation. This valuewill remain the
same until the next division takes place.

The system variable apostrophe () represents a random
number. This number will have an unpredictable value in the range
0-65535. If called twice on the same linge, the same value will be

122

returned both times. The value of the variable is scrambled each
time any statement is executed. Therefore, for best results it is
highly recommended that at least one computation be performed
before calling for the random value again.

Dalar Sign

In addition to decimal numeric input and output, the system
variable dollar sign ($) is used to input and output single characters.
As with the question mark variable, A=$ means input a single
ASCII character and place its numeric value in A. Similarly, $=X
means PRINT the single ASCII character whose value is stored in
X.

10 A=65

20 $=A

30 A=A+1

40 #=A<91*20
50 ?=""

This example will print out as one continuous string al the
letters of the alphabet. If you wish to find out what decimal values
correspond to which characters, these can be found in any conver-
sion chart. Simply compute by typing the direct statement ?=$ and
then entering the character whose decimal value is to be found.

Asterisk

The system variable asterisk (*) represents the memory size
of your computer. For a system with 1K, this would be 1024.
Entering ?=* will give the amount of memory.

The system will accept a different definition to the amount of
memory. This can be entered by typing *=1024* 17, for example,
for a 17K system that reserves IK for user space.

Ampersand

The system variableampersand (&) represents the next avail-
able byte of memory in the program buffer. When first initilized,
VTL-09 must be set to 264. Enter & =264 to set the buffer to first
byte. You will be abletofind out how much remaining memory you
have after entering programs by typing ?=*-&.

Greater Than

The system variable greater than > isused to passavalueto a
machine language subroutine. When encountered on the left side of

123

the equd sgn the expression is evauated, the vaueisplaced as a
16-hit integer inthe A and B registers, and a oftware interrupt is
generated. The vaue stored in > is pulled df the stack by the RTI
ingtruction. If you wish to change the va ue placed into the variable
you should first pull the condition of the stack. Then reset the
registers. See Chapters 3 and 4.

Cassette In (Cl) and Cassette Out (CO)

Two very specid variables used by the VTL-09 are Cl for
cassette in, which permits loading of programs from the tape
cassette; and CO for cassette out, which permits the saving of
programs. Programs and data can be saved using these commands.
For programs, they are entered in the direct mode, or they can be
embedded in a program. For example, to load data from a program,
the program must first spec space for the data using the & =xxxx.
Then Cl isinvoked in concert with the 2.

10 &=2492 Some vaue that will dlow sufficient
space for the data
207=Cl Load the data

Notice no names are permitted—only very fundamentd loading
and saving.

SAMPLE PROGRAMS

As you can see, VTL-09 is easy as pie with no big surprises
built in. The purpose of it isto show you how easy itisto program a
6809 with avery ussful application. The next severd pages serve
asasummary to this chapter, on how to use VTL, and aroundup to
put this book in proper perspective (Table 6-1).

Relocatable Program

el 64100 J=0

e 64120 G=&+/2+G

64030 &=B e

64040 ?="STARTING#?'; 84140 #=:G)>A*5*(C-A)+#
64050 D=7 64150 #=D->(A-1)+(>>D)>1*C
64060 ?="STEP SizE?"; 64160 :G)=D

o 64180 J=D

64090 G=131 64100 DRV

124

64200 K=#+l 64230 #=H
64210 & =&+l 64240 &=B
64220 #=:G)>256*K 64250 ?="DONE"

This program is relocatable. It can be renumbered and will
dtill run. However, the step size between program steps must
remain constant or line 64140 will not work right. Also, the largest
number of the program to be renumbered must belessthan thefirst
number of the renumber program.

Table 6-1. List of VTL-09 Features.

VARIABLE

A-Z COMMON VARIABLES
USE FREELY FOR STORING VALUES

SYSTEM VARIABLES

! RETURN ADDRESS

POINTS TO THE LINE # AFTER THE LAST #= STATEMENT

POINTER FOR LITERAL PRINT STATEMENTS

LINE NUMBER

SINGLE CHARACTER STRING (INPUT OR OUTPUT)

REMAINDER AFTER THE LAST DIVIDE OPERATION

POINTS TO THE LAST BYTE OF PROGRAM

RANDOM NUMBER

SETS START OF PARENTHESIZED EXPRESSION

END

SETS END OF LINE

SETS END OF PARENTHESIZED EXPRESSION

SETS END OF ARRAY DESCRIPTION

5 USED ALSO FOR REMARK STATEMENT
POINTS TO END OF MEMORY

> MACHINE LANGUAGE SUBROUTINE

? PRINT STATEMENT WHEN ON LEFT OF EQUAL SIGN
INPUT STATEMENT WHEN ON RIGHT OF EQUAL SIGN
DEFINES START OF ARRAY DESCRIPTION
WHEN FOLLOWING A LITERAL PRINT STATEMENT,
SAYS DO NOT PRINT CARRIAGE-RETURN LINE-FEED

T RSLAY

—_

.-=; + MAY BE USED FREELY AS STANDARD VARIABLES
.(/ *][BUT USE IS NOT RECOMMENDED FOR LEGIBILITY REASONS

OPERATORS

ADD TO PREVIOUS VALUE

SUBTRACT FROM PREVIOUS VALUE

MULTIPLY TIME PREVIOUS VALUUE

DIVIDE PREVIOUS VALUE BY

IS PREVIOUS VALUE EQUAL TO (YES = 1, NO =0)

IS PREVIOUS VALUE LESS THAN (YES = 1, NO = 0)

IS PREVIOUS VALUE EQUAL TO OR GREATER THAN (Y=1, N=0)
‘FHE DEFAULT OPERATOR IS THE LESS THAN TEST.

AN =1 4

125

Hurkle Program

BBIBNENNEEEEIEEEERER

ByE

Time of Day Digital Clock Programs

126

H—nu

2="A HURKLE IS HIDING ON A"
?="10 BY 10 GRID. HOMEBASE!

?="ON THE GRID IS POINT 00"
?="AND A GRIDPOINTIS ANY"

2="SOUTH";
#=370

2="NORTH";
H=X=A*410+(X<A*400)
2="WEST":

?="PAIR OF WHOLE NUMBERS'

?="TRY TO GUESS THE HURKLES'
?="GRIDPOINT. YQU GET 5 GUESSES'

R=7100% 0+%

A=R/10
8=%

K=1I

?="GUESSH",

=K
= o
X=2/10
Y=%

#=X*10+Y =R*540

K=K+1
#=K=6*440
=GO

#=Y=B*370+(4<B*360)

JBESEKELEEBI38E888888Y84Y

#=410

?="EAST";

oo

o

#=230

)

?="SORRY THAT'S 5 GUESSES'
?="THE HURKLE ISAT *;
?=A

=B

T

o

?="LETS HAY AGAIN."
?="HURKLE ISHIDING"
#= 180

?="YOU FOUND HIM IN *;
=K

?=" GUESSES'

#=490

FOR 300 BAUD TERMINALS

10 ?="HOUR?', 150 ?="TIME: *;
20 H=? 160 ?=H/10
30 ?="MINUTE?", 170 =%
40 M=? 180 f=x. »
50 7?="SECOND?'; 190 ?=M/10
60 S=? 200 =%
70 ?="READY" 2L e
80 A=$ 220 ?=510
90 S=St+1 230 =%
100 M=S/60+M 240 $=13
110 S=% 250 A=B
120 H=M/60+H 260 T=31
130 M=% 205 =T -1
140 H=H/24*0+% 280 #=T=0*90
290 #=270
FOR 110 BAUD TERMINALS
10 ?="HOUR 7 70 ?="READY"
20 H=? 80 A=$%
30 ?>="MINUTE 7, 90 S=S+1
40 M=? 100 M=S/60+M
50 ?="SECOND 7, 110 S=%
60 S=? 120 H=M/60+H

130
140
150
160
170
180
190
200
210

M=%
H=H/24*0+%
?=H/10

=%
..

2=M/10
=%

?:“: ,|?:": ",
2=5/10

Factorials Program

220
230
240
250
260
270
280
290
300
310

This program calcul ates factorial s until
For IK of memory, this is about 208!

10

20

30

40

50

60

70

80

90

i00
110
120
130
140
150
160 ?=:1)

170 1=1-1

180 #=1=0*220

A=l
L=2
1)=1
1=2
:1)=0
1=1+1
#=L>I*50
="
?=""
?=A
?="1="
="
I=L+1
1=1-1

Weekday Program
10 #=440
20
30
40
50
60
70
80

=
2="MONTH?
M=7?

#=M> 13+40
#=M=0*40

#=: 1)=0*140

?="DAY OF THE WEEK"

1,
7

?=DAY OF MONTH?

”,

'

190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

90

100
110
120
130
140
150
160

> > >
T LTI 1|

w W w

+

w

HHHH

it runs out of memory.

?=:1)/10

=%

#=170
A=A+1

1=1

C=0

X=:1)

)=A*X

#=: 1)<X*320
1)-:DH)+C
C=: D/100
:1)=%

I=1+1
#=L>1*250
#=C=0*80
L=L+1
#=*-&/2<L*380
:1)=C

#=290

D=2

2="YEAR?" "
Y=2

#=Y > 1800230
#=Y <100* 150
#=70

e

7="1S THAT 19";

127

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

Starshooter Program

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

128

=Y
?="7? {
K=$

#=K=89=0*70

?="ES"
Y=Y+1900
C=Y/100
Y=%

#=Y /4* 0+% =0*280

: 1)=6
12 =2

N=Y/4+Y +D+:M)+(2*i{C=18))/7*0+%

#=300+(20% W)

?="SUN";
#=430
?="MON";
#=430
?="TUES";
#=430

?="WEDNES";

1=0
1=1+1

. 1) =46

#=1<41* 20

:25)=42

1=8

J=I

$=1-/7+64

2=Fg
S=1+J
$=:5)
J=J+1
#=J=6* 160
?=" o
#=100
1=1+7
=""
7=
#=1<43*70
=

210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

7=ty =)

T):(0>>

370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560

3

#=340
?="THURS";
#=430
?="FRI";
#=430
?="SATUR";
?="DAY"
:1)=0

:2)=3

:3)=3

:4)=6

:5)=1

:6)=4

:7)=6

:8)=2

:9)=5
:10)=0
:11)=3
:12)=5
#=20

4 5"

?="YOURMOVE--";

1=42
1=1+1
1)=%

#=: 1)=13*320

#=: 1)=3*580
#=: 1)=95=0*250

=14
#=260
A=:43)-64
2=
#=A>6*230
B=:44)-48
#=B>6* 230
S=A*7+1+B

?::llﬂ

#=:5)=42* 420
2="THAT'S NOT A STAR!"

410
420
430
440
450
460
470
480

The object of the game is to change this:

#=230 490 C=S+7
:S)=46 500 #=520
C=S-7 510 #=60
#=520 520 .
=S 530 #=: C)=42*560
#=520 540 :C)=42
C=S+1 550 #=
#=520 560 :C)=46

570 #=

to

Factors of a Number Program

170

190

This version is for the TVT:
#=200
D=D+2/3* 0+%=0* 2+(D>3)+D+l
Q=N/D
#=0Q<D*300
#=%>1* 20
?_<_<<»
?=D
N=Q
Q=N/D
#=%>1* 20
2=
P=I
N=Q
Q=N/D
P=P+1
#=% =0*140
=P
#=20

Primes Program
This version is for the 32 Char Terminal:

10
20

#=100

#=D>Q*150 40 Q=N/D

200
210
220
230
240
250
260
270
280
300
310
320
330
340
350
360
370
380

?="NUMBER? ";
N=?
X=N
$=22
B
?=N
?="
D=2
#=30
#=N=X*370
#=N=1*340
oz

?=N
?="DONE"
#=200
?="PRIME"
#=200

IS -

30 D=D+2/3*0+%=0*2+(D>3)+D+|

129

50 #=%>1*20

60 N=N+2/3*0+%=0*2+(N>3)+N+I

70 D=2

80 #=N<65533*40
90 #=N

100 $=28

101 #=102

102 ?="

104 ="

106 ?=" g
o=
(5 s Htialis

120 N=2

Craps! Program
T=100

$=22
?="CRAPS"
A

B="

#=B=0*90

2="GOOD LUCK!"

#=B=8*480
#=T>B*160
2="TOO MUCH!"
2="YOU HAVE $";
=

2=" LEFT. "

#=40

S

2="ROLL-";

A=?

$=22

2="FIRST ROLL: ";

#=500

#=R=7*360

#=R11*360

#=R<4*390

#=R=12*390

s

=R

2=" 1S YOUR POINT"
P=R

2="ROLL-":

£88IBLE8E

=
=
o

SEBIBEEEBEEEESREEESR

Cipher Game Program

10 1=0
20 I=1+1
30 :-)=1+64

130

22"HOW MUCH DO YOU BET? - °3

PRIMES'

40
50
60

130
150
160
170
180

A=l

B=N
#=B>10000* 200
$=32

#=B> 1000*200
B*B*10

#=170

=N

=
A=A+1
#A<5*60

P

A=0

#=60

195
200
205
210
220
230

240
250

T=T-B

2="YOU LOSE"
#=T=0*430
#=120

2="YOU ARE BUSTED!"
2="MOVE OVER AND LET THE NEXT"
2="SUCKERTRY."
o

#=10

2="BE SERIOUS"
#=40
R="/6*0+%-I

=R

X=X+11213

2=" AND ";
S=76*0+%+!
X=X'56001

2=5

7= ,
R=R+S

=R

7=y

#=!

+ =1<26*20
|

NI

70 M='/26*0+%+l

80 H=:M)

Q0 :M)=:1)
100 :1)=H
110 I=1+1
120 #=1<27*70
130 2="TEXT?
(A=

150 =27

160 :1)=%

170 #=: 1)=13*220
180 #=: 1)=95=0*200
190 I=I-2

200 I=1+1

210 #=160

220 ?2=""

230 =27

240 #=: 1)<64*270
250 T=:1)-64
260 :1)=T)

270 I=1+1

280 #=:1)>14*240

Phrase Sort Program

10 $=22

20 1=0

30 I=I+1

40 :1)=%

50 L=: 1)=95+*2
60 I=I-L

70 #=: 1)>14*30
80 2=""

0 I=1

100 K=l

110 J=K

120 #=:K)=32*160
130 #=:J)=32*150
140 #=:K)>: J*160

210

230
240
250
260
270

e
?="CODE: "
o—rn

=27

$=:1

#=: 1)=13*370
I=1+1

#=330

=
2="SWITCH? - ;
A=$

B=%
#=B=64*370
=

#=: 1)=A*490
#=: 1)=B=0*460
(D=A

I=1+1

#=: 1)=13*290
#=430

:1)=B

#=460

JFK

K=K+1
#=:K)>14*120
H=:1)

(1)=:J)

:J)=H

I=1+1

#=: 1)>14*100
=0

I=1+1

$=:1)

#=: 1)>14*240
ot

131

Life (Fast Version) Program

10 #=370

20 SEY<FY+(Y=0*E)+(Y=F)-
I OH(X<Q* X+(X=0*0)+(X=Q))

25 :9)=: §+2

30 X=X+I-(I<X*3I)+(FI=X*(Y=I))

40 Y=J1=X+Y

50 #=1+1>Y*20

70 #=90

80 #=: I-1*O+J)/2*0+%*20

90 J=J+1-(0=J*0)

100 1=J=1+l

1o ="+,

120 X=J-1

130 Y=I-1

140 #=1<F*80

150 1=1

160 J=I

180 ?2=""

190 P=0

200 K=I[-1*0+J

210 : K)=: K)<5+(: K)>8)=0

220 P=P+:K)

230 $=: K)*10+32

240 J=J+1-Q=0*0)

250 #=1<J*200

260 2=""

270 1=1+1

280 #=I<F*200

290 ?="GEN =";

300 ?=G

310 G=G+1

320 ?=" POP = ";

330 ?=P

340 I=1

30 F1

360 #=0<P*110+(P=0*650)

370 I=1

380 G=0

390 ?="SIZE? ",

400 O=?

410
420
430
440
450
460
470
480
490
495
500
510
520
530
540

560
570
580
590
600
610
620
625
626
627
631
632
633
634
635
636
637
638
640

Q=0+1
?="BY?";

E=?

F=E+1
J=0O*E+2
#=J*2+& >** 390
1 1)=0

I=1+1
#=J>1*470
#=631

=1

?=""

JF1

#=10*550
=

2=l

=

L=%

: 1-1*O+J)=L=32+(L=13)+(L=95)+(L=64)=0*6
J=J+1-(L=95*2)
#=L=13*620+(L=64*510)
#=J<Q*570
I=1+1
#=KF*510
#=631

#=150

$=22

$=18

$=32

$=18

$=22

$=18

$=32

$=18

$=!

This program takes at least 2 K of memory to operate satisfac-

torily.

133

—{ Appendix A F
e

Motorola 6809D4

The MEK6809D4 advanced microcomputer evauation board and
MEKG8KPD keypad/display unit provide the necessary hardware
and firmware for a computer system based on the Motorola
MC6809 high performance microprocessor (Fig. A-l). The system
forms an evaluation toal to facilitate the gpplication of Motorola
microprocessors and associated components.

The MEK6809D4A is used with an MEKG8KPD and is com-
pletewith apower supply (Fig. A-2). The MEKG809D4B requires
an external power supply and is used with RS-232 terminal or an
MEKG8R2D CRT interface plus a CRT and an ASCll keyboard.
See Table A-I.

The user can prototype dedicated systems plus write ad
evaluate software programs in machine language, using a cassette
recorder/player for data storage. Provisons are made for exten-
sive system expansion.

HIGHLIGHTS

e System buffers are used between sections of the
MEK6809D4 board and between the board and its edge connectors.

e Hardware RAM and ROM page select register.

* 4K dstatic user RAM (eight sockets) may be mapped with
jumpers to gppear a any 4K block in the 64K basic memory space,
and in addition may be jumpered to gppear on a selected "RAM
page/or pages' as controlled by a 3-bit hardware RAM pageregis-
ter.

e Eight 24-pin ROM sockets may be configured to accept
combinations of ROM/EPROM types including 1K x 8 single or

134

Fig. A-1. The MEK6809KPD keypad/display unit (courtesy of Motorola
Semiconductor Products Inc.).

triple supply EPROMs or ROMs, 2K x 8 single or triple supply
EPROMs or ROMs, 4K x 8 ROMs ar EPROMSs, or 8K x 8 ROMs
or EPROMs.

* A ROM-based mapping technique is used to alow com-
pletely general address mapping of the eight ROM sockets any-
where in the 64K basic memory space with IK resolution. In
addition, the sockets may be mapped on any "ROM page/or pages'
as controlled by a 3-bit hardware ROM page register.

e All memory and I/O on the board isfully decoded, so that
address space not specificaly required on the D4 is available for
off-board mapping.

* A-12voltto-5voltregulator isprovided to alow use of
3-supply EPROMSs on the D4. Supply voltages of +12, -12, ad
+5 must be provided by the user.

e Hardware is provided which adlows Monitor software to
store and recover Kansas City Standard 300-baud or 1200-baud
format cassette tape data.

* Interrupt driven stop-on-address comparator.

o System dock derived from 3.579 MHz on-board XTAL or
froma4 x TTL compatible external source.

e "Test" 9gnd and logic provided to dlow control of on-
board memory and 1/0O from an external processor through the
70-pin edge connector.

e Contral and status lines provided for flexible hardware
control of MPU and bus decode drive logic. This alows for:
—Tegting and debug
-Interrupts (RESET, NMI, IRQ, FIRQ)

135

—Interrupt vectoring by device (IVE, STKOP)
—Interrupt disable (IRQE, FIRQE)

—Halt and bus request (BREQ)

—Sow memory (MEMRDY)

-DMA

Thefollowing features are standard on the MEK6809D4B and
may be included as options on the MEK6809D4A: RS-232 compat-
ible seriad port including buffered handsheke signas, baud rate
generator providing baud rate clocks for 110, 300, 600,1200, 4800,
and 9600 baud rates; and address, data and contral lines fully
buffered at bus interface.

MODEL TYPES

The MEKB909D4A has no RS-232 circuitry or address and
data buffers to the edge connector. The D4A is intended for use
with the MEKG8KPD keypad/display unit which has an on-board
power supply to operate the system. No RAMs are provided in the
"user RAM" array. A 4K monitor program is provided (Fig. A-3
and Table A-2).

The MEK6809D4B is intended for use with an RS-232 seria
terminal or an MEKG8R2D CRT interface as the system terminal.
The D4B has RS-232 circuitry and data and address buffers.

To operate the RS-232 interface, the user must supply +12V,
+5V,and-12V power. A 4K + 2K monitor is provided. No RAMs
are provided in the "user RAM" array.

Fig. A-2. The basic MEK6809D4 advanced microcomputer evaluation board
(courtesy of Motorola Semiconductor Products Inc.).

136

Table A-1. Product Features of the MEK6809D4 and
MEKG68KPD (courtesy of Motorola Semconductor Products Inc.)-

MEKE809D4

« MC6809 High Performance Microprocessor

+ D4BUG Monitor Firmware (4K) Expandable to 6K
+ Direct Memory Access

« Interrupt by Device

Audio Cassette Interface, 300 or 1200 Baud
Optional RS-232 Port with MCB8850 ACIA
System RAM, 512 Bytes Expandable to 1K

+ User RAM, 512 Bytes Expandable to 4K

+ RAM/ROM Page Select Register

+ ROM Mapping Technique

+ All /O and Memory Fully Decoded

» Stop-On-Address Compararor

System Clock Internal or External

Test Signal and Control Logic for Bidirectional Address
Bus

Control and Status Lines

System Buffers

MEKBBKPD: FEight 7-Segment Displays
+ 25-Key Keypad

- On-Board Power Supply

+ User PIA, MCB821

» Wire-Wrap Area

+ 16-Pin Auxiliary Socket

DIMENSIONS
« MEKB809D4
Two-sided PC Board
309.8 mm (12 in) Wide by
177.8 (7 in) High by
1.59 mm (0.062 in) Thick
+ MEKB8KPD:
Two-sided PC Board
3048 mm (12 in) Wide by
167.5 mm (6.2 in) High by
1.59 mm (0.062 in) Thick

SUPPLY VOLTAGES {+5%)
+ MEK6809D4:
5 Vdc at 2.0 A max (with all options)
+ 12 Vdc at 25 mA max
12 vdc at —23 mA max
+ MEKEBKPD:
120 Vac 60 Hz, produces 18 Vac (ct) input to board. An
on-board requlator provides power required to operate
the KPD plus D4 board in minimum configuration.

ENVIRONMENTAL
Operating Temperature: 0°C to 55°C (32°F 1o 131°F)

Relative Humidity: to 80% without condensation.

MOKEP M-60 and M-70 products are compatible with the
D4B, thus dlowing expansion to an ASCII keyboard interface to
the microcomputer system. The MEKG8KPD (with its onboard
power supply disconnected) may be used with the MEK6809D4B.

The MEKG8KPD is the keypad/display unit intended for use
with the MEK6809D4 board and interfaces eectricaly with the
MEK®6809D4. Standard interface to the D4 is via a 24-conductor
cable and plug assembly supplied with the KPD unit.

Table A-2. MEK6809D4 ac Operating Conditions and
Characteristics (courtesy of Motorola Semiconductor Products Inc.).

AC OPERATING CHARACTERISTICS (Bus)

Parameter [Symbol | Min | Nom | Max | unit |
Cycte Time -]ch 1100 - 1130 ns
Address Setup tAQ 25 - - ns
Address Hold 3 1AH 10 30 - ns
Write Data Vald IDVW - - 250 ns
Write Data Hold MW 1) SOR - rs
E (¢2] Low Time lgZL 500 — - ns
E (¢2) High Time teaH 500 ns
E Low to Q High e} 275 - B ns
Q High Time 10H 500 ns

AC OPERATING CONDITIONS (Bus)

Parameter | Symbol Min Nom | Max Unit
Access Time IACCH -] 220 2
tacc2 . [720 ns
Read Data Hold3 \DHR ; : =7 rs

NOTES: 1) Operating temperatures TA = 25°C

2) Timing measured at edge connector (50% points)

3) Measured from falling edge of E (02)
4) Measured from rising edge of (02)

137

MEK6809D4 TIMING DIAGRAM

< Wioh gl
- SR P2]4-———*1‘»%{——)1
E(62) _\L\ N
t€Q >l —

tQH
Q—
tAQ ‘ —ﬂ)RAH
AO-A15
RIW
e

' 00-D7
(Write)

le—tacci>] __)l
i tACCI——————> >RDHR
(Read) >K

Fig. A-3. MEK6809D4 timing diagram (courtesy of Motorola Semiconductor
Products Inc.).

EXPANSION

With the rapid advancements in the microprocessor industry,
thereisvital need to provide educational and evaluation materia to
help engineering/technical personndl stay abreast of this technol-

ogy.

In response to this need Motorola Memory Systems has
evolved a series of kit boards intended for the educational evalua
tion of the MC6800 family of integrated circuits. The series is
caled "MOKEP" (for Matorola Kit Expansgon Products) and in-
cludes the following wide range of boards.

MEKG8CC Card Cage. The MEKGSCC is used with the
MEK68MB5 motherboard.

MEK68MB5 Motherboard Module. The MEK68MB5
motherboard module has provisions for 10 card slots on g cen-
ters, with alternate sots populated with 70-Pin connectors.

MEKGS8CMB Card Cage/Motherboard. The MEKGSCMB
can accommodate ten cards of the MOKEP series. The card cageis
identical to the MEKG8CC. The motherboard is a fully populated
version of the MEK68MBS5 without the stand-alone card guides.
The completed assembly measures 8Vi" high by 7-/," wide by
13Y," deep.

MEKG68R2/R2D/R2M Programmable CRT Interface
Modules. The MEKG68R2/R2D/R2M programmable CRT inter-

138

face modules are used in conjunction with other products in the
MOKEP family to form amicrocomputer system. The MEK68R2D
is to be used with the MEK6809D4 microcomputer module and an
MEKG68MB series motherboard. All units feature software pro-
grammable line and character format, upper and lower case 5x7
matrix display, semigraphics, and up to 4K of screen diolay
memory. All modules provide an interface for an ASCII keyboard.

MEK 6810 Input/Output Module. The MEK®6810 is
supplied with a 300/1200 baud cassette interface, two MC6350
ACIAs an MC14411 baud rate generator and one MC6821 PIA.

MEKG68EP EPROM Programmer Module. The
MEKG68EP has provisions for programming both single and triple
power supply types of 1K, 2K and 4K EPROMS.

MEK68RR ROM/RAM Module. The MEKG8RR has pro-
visions for eight ROM sockets which may be configured to accept
1K, 2K 4K or 8K single or triple supply ROMs or EPROMs. The
board also has sockets for up to 8K bytes of static RAM.

MEKG68MM16/MM 32 16K/32K Memory Modules. The
MEK638MM16 has 16K bytes of RAM and the MEK68MM32 has
32K bytes. The MEK68MM boards employ 16K dynamic RAMs
and a hidden refresh technique to achieve the low cost, low power
consumption and high density of dynamic memory systems, while
appearing as static memory to the system. The MEK68MM fully
supports the RAM paging technique of the D4 microcomputer
module, dlowing up to eight boards or 256K bytes of RAM to be
used in one system.

MEKG6809A Editor/Assembler. The MEKG6809EA
editor/assembler provides the user of the MEK6809D4B with the
ability to enter, assemble, edit and save assembly language pro-
grams for execution on the M6809. The editor may also be used to
enter and edit text files that will not be assembled for execution.
The assembler will accept both M6800 and M6809 mnemonics.
The object code from the assembler can be placed in memory or
saved on tape. The MEKG8R2D display and stand done terminals
are supported by software.

MEK 68WW/WW1 Wirewrap M odules. The MEKGBWW
is used with the MEK6800AD adapter motherboard, and interfaces
directly with the 60-Pin bus of the AB. The MEKG3W\W.1 utilizesa
70-pin bus, directly interfacing with the MEK68MB series
motherboards. Either product can be used asacard extender. Both
are supplied with components required for buffering of address,
data and control buses.

139

SOFTWARE FEATURES

e Memory change display
* Register change/display
e Breakpoint editor
e 4K monitor in position independent code (6K for
MEK6809D4B version)
Trace single step and user line
Go to user program
Cdculate offset
Cassette punch/load/verify
Stop on address
Escape from dl functions
16 User gpecid functions
e Additiond features on D48 incdude memory dump to
examine blocks of data, memory fill, memory search, memory
move and ASCII entry

The MEK6809D4 operating system dlows the development
and operation of user-defined programs. The basic monitor pro-
gram interfaces with an MEKG8KPD keypad/display unit and is
contained in a 4K byte ROM (MCM68332 or equivaent). This
ROM isfactory ingtdled in dl versions of the MEK6809D4 assem-
bled units.

A second 2K byte ROM (MCM68316E or equivaent) is used
with an MEKG8R2D CRT monitor/ASCI| keyboard interface or
RS-232 compatible terminal. This additiond 2K ROM is provided
in the MEK6809D4B version.

The monitor program source listings, complete with com-
ments, are available from Motorola. The monitor program is writ-
ten in highly subroutined, postion independent code. These
source listings provide avauable starting point for many types of
user programs.

The monitor program provides the following functions.

Examine/Change Memory Location

This dlows the user to open any memory location and display
the contents. New data may then be entered if desired, assuming
read/write memory is present a the selected location: If an at-
tempt is made to write into an invadid locetion, the new data will be
displayed together with the fixed data et the invdid location. Only
the new datais displayed when a vaid change of read/write mem-
ory is accomplished. After the examine/change step, the user has

140

the option of automatically opening either the next or previous
location—or escaping to the monitor program.

Examine—Change Registers

This function allows the user to examine/change two external
registers plus those areas of the stack RAM corresponding to the
storage locations of the nine internal registers of the MC6809. This
has the effect of allowing the user to examine/change these regis-
ters.

Thisfunction differs from memory examine/changein that the
registers are displayed in a set sequence. Register designation as
well as contents are displayed to facilitate use of the function. The
two external registers are incorporated on the MEK6809D4 to
perform operations not inherent with the MC6809.

Stop on Address

In de-bugging programs, it is often advantageous to be able to
halt the machine when a specific address is encountered. A typical
example of the use of thisfunction is to determine the reason for an
inadvertent (or incorrect) change of a memory location during the
running of a User program.

The stop on address function (SOA) function is implemented
onthe MEK6809D4 by circuitry which compares the MPU address
outputs with user-entered data in the stop on address register.
Providing the SOA function is armed, a non-maskable interrupt is
generated when a comparison is achieved.

Depending on the type of instruction (more specifically, upon
the timing relationship of the address assertion in the instruction
cycles), the NMI may be recognized at the end of the previous
instruction. Control then passes to the monitor, alowing the user
to determine that one of two specific instructions has accessed the
specified memory location.

In some instances it is desirable to allow the program to stop
only on the N™ time an addressis encountered. The MEK 6809D4
can implement this function. It is also possible to output a trigger
pulse each time the address is encountered, rather than stopping
program execution.

Breakpoints
The SOA function is implemented in hardware. Software

methods of program execution interruptions include the setting of

141

breakpoints a desired locations in the program. This effectively
substitutes a software interrupt for the ingtruction at that location.

Up to eight breskpoints can be set in the user program (pro-
vided the program is in RAM). As with SOA, the user has the
option of dlowing N-I breskpoints to be bypassed if desired. (The
maximum vaue of N for either SOA or breakpoints is 255). The
User can set, clear or examine breakpoints via the breskpoint
editor function.

Trace Instruction

This function dlows the User to step through a program one
ingtruction at atime. At the end of each ingtruction, the examine/
change register routine is automaticaly entered, and the new
program counter value is displayed.

Trace Line

Itisoften desirableto trace through a program whiletreating a
subroutine as a Sngle ingtruction. One obvious example of thisis
the situation wherein dl subroutines have previously been
thoroughly de-bugged. The MEK6809D4 debug routinesdlow this
to be accomplished in either of two ways.

One of these (software method) involves a comparison of each
instruction in a subroutine until the instruction following the sub-
routine is encountered. Thus, the portion of the program from a
subroutine cdl to its return is treated as one ingtruction as far as
the trace function is concerned. Nested subroutines are automati-
cdly handled by the monitor program.

The second trace line option uses the SOA circuitry. Thishas
an advantage over the software method in that subroutine execu-
tion is in rea time. This is particularly hdpful in de-bugging
time-dependent 1/0 routines. (It is aso desirable for long sub-
routines, since the software method greetly increases the run time
of a subrouting). Its disadvantage is that program execution often
continues for one ingtruction after the return.

User Program Control

The MEK6809D4 de-bug routines include functions to dlow
the user to go to, continue, or abort user programs.

Offset Calculation

In generation or modification of programs, it is often neces-
sary to caculate the offsat from the location of ajump or branch

142

ingtruction to its destination. Someindexed modeinstructions aso
use relative offsets. The examine/change memory location in-
cludes a subfunction to dlow this to be easily accomplished.

The user opens the location of the offsat, types the offst
command, then enters the desired destination address. The
MEK®6809D4 calculates the required offset, displaysit, and enters
the data in the appropriate memory location(s). The offsat cacula
tion supports both short and long offsets,

Punch/Load/Verify Audio Cassette

The audio cassette interface is a modified Kansas City Stan-
dard version capable of operation at either 300 or 1200 baud. The
interface dlows any of the three functions (punch, load or verify
with memory) to operate with or without an optiond offsat. Thisis
particularly useful for user programs written in position indepen-
dent code.

ADDED D4B SOFTWARE FEATURES

Thememory dump commeand dlowsthe user to display blocks
of memory with ASCIl equivaents. The display for mats differ
dightly depending on the display device configuration. The ending
address mugt be a larger hexadecima number than the beginning
address or awarning will beissued, followed by anew request for a
begin address. The dump command cannot proceed until a satisfac-
torily address range has been specified.

Memory fill dlowsthe user tofill ablock of memory with afour
byte pattern. The beginning and ending addresses are entered asin
the memory dump command.

Memory search dlows search of a gpecified block of memory
for a4 byte pattern subject to acorresponding 4 byte mask. For dl
bitsin the mask which are zero, the corresponding bit in the pattern
Is considered to be "don't care."

After the mask has been specified, the search function will be
performed over the specified address range. Each time the com-
parison dogrithm is successful, the address of the first location of
the match is displayed. If the list of successful addresses is being
dislayed too quickly, the listing may be temporarily halted by
typing (ESCAPE) as in the memory dump command.

Memory Movealowsthe user to move ablock of datafrom one
areain memory to anew area. The beginning and ending addresses
are entered the same way as in memory dump. Following entry of

143

the end address, amessage will appear requesting entry of the new
beginning address where the block of data is to be moved.

ASCII Entry alows a user to store ASCIl data to memory
quickly and easily without having to look up each ASCII character
to determine its hexadecima equivalent. Features are incorpo-
rated to assist in setting up messages for the D4ABUG cdlable
subroutine "PDATA."

MEK6809D4 DESCRIPTION

The CPU condists of an MC6809 high performance micro-
procesor, a 3.579 HMz crystal, and buffers which interface the
MC6809 to other circuit blocks on the D4 board.

The MC6809 supports programming techniques such as posi-
tion independence, re-entrancy and modular programming. The
MC6809 has hardware and software features which make it a
suitable processor for higher level language execution or standard
controller application (Fig. A-4).

Rom

The ROM system consists of eight ROM sockets which may
be configured to accept various combinations of ROM types. These
includesingleor triple power supply varietiesof 1K, 2K, 4K, or 8K
X 8 ROMs or EPROMs. The ROM type configurations are control-
led by mini-jumpers which may be easily moved without the need
for any tools.

Mapping of the eight ROMsin memory space is accomplished
by a mapping ROM which is used as a programmed logic array. A
paging technique alows up to 192K bytesof ROM to be usedinthe
D4 system.

Ram

Therearetwo groupsof 1K x 4 RAMs One group isthe stack
RAM and the other is the user RAM.

The stack RAM is used mainly for the D4 operating system
stack and scratch RAM. Also, 512 bytesare available for user RAM
goplication. This RAM is dways located in the D4 system &t
memory |ocation $£400 through $E7FF. Theuser RAM isa4K x 8
block of memory that can be positioned anywhere in the D4 mem-
ory map, using jumper connections.

Itis possible to disable the eight user RAM sockets to dlow
use of aMOKEP MEKG68MM memory board for system expansion.

144

*(-au] S1oNpOId J0}ONPUODILIBS BJOIOION JO ASaunod) wieiBeip %9019 $A6089MIN “+-V ‘614

SS '¥S ‘€S 2S5 LS 'B¥N

T AT P SH344Ng SNLVLS ¥ TOHLINOD J_O B i e r R o
i § 100 B Siv-0v @E
(AV1dSIO QIVEA3N) b s L

IYNIWG3L 2€284 SS "¥S €G2S LS 6YN 95N 85N "LSN
SH344N8 51LY1S ® TOHINOD viva SH343N8 SS3HAAY

|
(QY¥CEA3Y LHD) |
|
|

1
|
I Qd 89¥3N
|
|

(I¥NOILdO) AR @ siva-ove MW_
EER fa)
' o wamod Lrdn ST0HINOD, z
434408 STOHINOD 34408 iz
) S3NM ¥ 300030 SS34aav , m
HOLVH3NIO 103738 I3
31vy 2
T anva S _l, L
SHOLT S r . L Sive-ova 7 Ss35aav ! T sivaova
WIX L aroal . mm: L £08-008 viva | /
LA viva VIL|A
B, 8_ i
ze28y alodl | ,
W 1
Xw Slve-ova 9i
s A Wm clvg-ove <as-0as /3 |
SHOLVHVAWOD STvaova 9k) CISV Ben | Th2on
viva [k Sy343Ng $S34aav
sau-oay §p o
ST 4 |cawoante 5 yi-ovy
o1
vid
“Jao1s 8 9k
sS38aav |
-NO-dOLS e
o an NdiN 60830
2 JOV4H3ILNI
R
MOVLS w3sn
E“m 311355vD ndo

145

Another jumper, when removed, prevents the user RAM from
being written into (write protect), but the stack RAM is not &-
fected. With thejumper in place, read and write to the user RAM is
normal.

Address Bus System

In some microprocessor systems, the address flow is from the
microprocessor through buffers and to the motherboard bus. The
D4 uses a more complex arrangement that permits disabling the
microprocessor. This alows addresses to be fed to the D4 from an
external source, to access board components and permits DMA
(direct memory access) for some applications.

The Data Bus System

There are four bi-directional data buffers used in the D4; a
ROM buffer, RAM/IO buffer, edge buffer, and MPU buffer. Each
buffer has an enable and a direction input. Control logic configures
these buffers to route data between sections of the D4 board.

The Stop-On-Address Circuit

The purpose of astop addressisto enable a user program to be
executed until a certain address is reached. The address to be
stopped on is stored and when the board address bus bits coincide,
an output results. This causes a nonmaskable interrupt to occur
which switches the microprocesor to a service routine.

When a coincidence of address occurs, an NMI is not neces-
sarily generated. In these cases, the comparator output is available
at a test point to provide a trigger signal to an oscilloscope.

The RS-232 Circuit

The RS-232 specification defines a standard for interconnect-
ing computer terminals of different makes. The ACIA convertsthe
paralel data on the buses to serial data. The serial data is then
translated into RS-232 levels.

The Cassette Circuit Interface

The D4 uses very few components to interface atape recorder
to its operating system. Most of the cassette operation occurs in
software, to create tapes and recover data from tapes. The tape
information consists of a stream of 1200 and 2400 Hz serial audio
data.

146

IDISPLAYS ~———

—
’LED' ILEDI [LEDI ILED' LED] LED] LED] LED]
Ui U2 U3 U4 U5 U U7 us

e— ANODE CATHODE
KPD b——"4 pRIVERS)| DRIVERS
PIA 7 Q1-Q8 U11, 13, 15, 16

6

b 6-ROWS
2

a-coL
== [KEYPAD

MATRIX

al
&l / KEY 6-ROWS BY
D‘ : USER " 4-COLUMNS

PD |~ A =
1D0-1D7 u10

WIRE-WRAP

AUXS sl
CONN AREA

18 VAC
MR,
CR1.CR2
120 VAC +5V DISP. DISPLAY
Jt REGULATOR BUFFERS
VA

+5
(OPTION)
+5V LOGIC DRIVE LOGIC
REGULATOR
VA1

Fig. A-5. MEK68KPD block diagram (courtesy of Motorola Semiconductor
Products Inc.).

DRIVE DISPLAYS

EDGE CONNECTOR

1%

MEKG68KPD DESCRIPTION
The MEKG8KPD includes a 25-key keypad, eight 7-segment
LED displays, an on-board +5 volt power supply, and an uncom-
mitted MC6821 PIA. Provisionsare madeto alow disconnection of
the on-board regulatorswhen an external +5 volt supply isused. A 1
wire-wrap areais provided for custom circuitry and a16-pin socket |
dlowsfor additiona signalsto be brought to or from thiswire-wrap
area (Fig. A-5).
The diglay congists of eight seven-segment LEDs with a
character height of 0.5 inches. The grouping of the displaysisina
4-2-2 linear array. A suitable anti-glarefilter is provided with each
MEKG8KPD.
The PIAs used on the KPD are fully decoded via a periphera
chip select sgnd and address lines AG-A2 from the MEK6809D4.
Datais furnished via the input cable.

147

e
Appendix B

Hexadecimal

Values of Machine Codes

0P Mnem Mode ~ ¥ OP Mnem Mode ~ #

113F SWi/3 Inherent 20 2 119C CMPS Direct 7 3
1183 CMPU Immed 5 4 11A3 CMPU Indexed 7+ 3+
118C CMPS immed 5 4 11AC CMPS Indexed TSt

1193 CMPU Direct 7 3 1183 CMPU Extended 8 4

118C CMPS Extended 8 4

NOTE: All unused opcodes are both undefined and illegal
Courtesy of American Microsystems, Inc.

149

B 104 62 L V104 6¢ [SD 1uasayuy W@ 64
(SHat] 1S1/1SY 82 B V1S1/YISY 89 .8l
Gl YsY L4 V2R VHSY Lt (6 anelsy 4sal /1
€ ! HOH 92 e VY40 9y € S aNERY v4a1 91
.5l .Gy . Gl

o) N2 e 7 v4S1 oy . bl
£y WO €L LR YINOD € B2 luaayu| INAS €1

. 0L ra4 i ¢ pUEIEV] dON ¢I

L/ 5 v At = = = € abed (|

SRR P3pUBP3 93N 0/ Lo 1asayu| v93N 0% = = = 2 abed 01
+7 49 paxapul 419 49 I 6l luasayy IMS 3¢ z 9 132110 4§12 40
s) dWr 39 .3 2h e A 4We 30
SETRD 1S1 09 R W Qe gy 181 00
+2 49 INI 29 Zheoe IYMD 9€ Chning INI 90
. 89 L Gi/9 114 8¢ . 80

+2 49 230 v9 e Xav ve z2 9 230 v0
+2 9 104 69 b6 S14 6¢ (danie) 104 60
+2 +9 1 17718V 89 . 88 z 9 181/15V 80
+2 +9 ysv 29 2 46 nind L€ R) 4SV 20
+2 49 4O 99 2 +5 NHSd 9¢ z 9 H0Y 90
.59 z +§ SINd 6€ . 50

+2 49 S v9 2 +S 1uaJayuy SHSd € G 457 v0
+2 +9 WO0J €9 +2 +y paxapu| nval €€ gitng WO0J £0
.29 +2 +v Sva1 2¢ .20

L‘ .19 +2 4y AVIT 16 Y .10

+2 49 paxapu 93N 09 +2 +y paxapuy X¥31 0F 2 g 11 93N 00
4 - pon waul d0 s s apop waup 4o s apoyy wauly do

150

3p0ado pasnun Sssjousq

sajAg weiboid jo ssquiny #

(s8}042 apow-paxapul Jo jnd/ysnd 3)q1ssod sSaj) $819A0 NdW 0 JaquinN ~

puabay

1pB3;

DUP PaUIBpUN (y)oqg 3Je S3P0200 pasnufn

¥ ‘310N

NN NN N ™

NN N MmN NN

™ ™ O™

pawwy
aneiay
pawuw|

A

\/

patL)

papualx3

. 48
XQ1 38
4sg 08
XdWJ 38
vaay 88

V40 v8
voQay 68
V403 88

. 18
Va1 98
viig 68

VYONY ¥8
asans €8
v28s ¢8
YdND 18
vans 08

410 44
dWr 32
181 02
ONI 02

- 8L
330 VL

[I N R N

U1y

A

v

UENI

juaiayu|

A

8410 45
=
8151 QS
8ONI 26
.« 86
8030 VS
87104 6S
81571/81SY 85
vysy LS
8404 95
w88
- GG
8487 v
W07 €5
+ S
« 16
893N 05

vd10 4y
. 3
VIS1 Qv
YONI O
. 8y
v030 v

NN NN NN NN oy

NN NN Ny

L T o T o T o T o B o J o S s o T o T+ o T o T 2 T o TR0 o}

™ o~ o ©

anije|aY

A

y

EINEY
JuaJssyu)

\uaJayu|
paww|

Patli)

318 42
19§ 3¢
178 02
398 2¢
INg 8¢
48 ve
SA8 6¢
JA8 8¢
039 Z¢
IN§ 9¢
S28/018 G2
J08/SHE v
S8 €¢
{Hg 2¢
NHg§ 1
vdg 0¢

y3l di
9x3 31
X3S Q1
330NV 31
« 8

151

by IWg 820t eeniig 401 20 +2 +p 20V 6Y
by (9 481 w20l ey 800V 80 +2 +b V03 8v
v SAG1 6204 Ay 840 VO +7 +p VIS 2¥
v (s 3781 8201 iy 800V 60 +2 +p Va1 9v
vk 0381 20t iy 8403 80 42 +p viig sv
y (9 INGT 9201 by 81s £q +2 +p VONY bY
v {9k 0187/5081 5201 d 807 90 +z +9 asns ev
y(9) 087/SHET 1204 7y 8118 S0 +2 4y V8S 2V
v (9 $187 €204 Jasiy 4ON 0 +2 +p ¥ VWD bV
y (o v H81 220! 74 aaay £a +2 +v paxapul vans ov
v G ameay N8 1204 2 898S 20
¢ 14 4‘ 84dWJ ia Z < 123:1g X1S 46
Zhy 108110 88NS 00 chite A Xa1 36
) ¥Sr 06
.4 g XdD 26
€ £ puw na1 3 Al vaav 86
i) At VH0 V6
£ 9 pepuana s 44 et g 001 99 cah YO0V 66
£ 9 A na1 34 2 80QY 89 gy vH03 86
gy a1s a4 a2 840 V0 B viS 26
3 007 94 any 00V 60 a0 Va1 %
g 800 84 hg D403 80 Pty V118 56
& 850 v4 .20 Ry : VONY 16
e g 80Y 64 5008 80199 ¢ 9 asns €6
e 8403 84 Ao 8118 § 2 S v8S 26
B a1s 4 7B 8aNY 10 Zy v YIWD 16
e S papuarg 807 94 € v paww aaay €9 2 v ang vans 06
s 3pon waup 40 i~ Ppon wauy dp i 3pow woul do

152

1eBajii pue pauyapun uloq aJe Sapoado pasnun 1y :3LON

14
14
6
+¢

T T T T ®

i o ¢ N T T T O OD

L
L
+9
+9

© ~ ~ T ©

papuaixy
papuaxy
paxapu|
paxapuj
190410
aia
paww
papuaix3

papuaixy
paxapuj

paxaput
10210

10anQ
pawwj

paluwy
Juaiayu}
annRIaY
anjesay
anIR|aY

SIS 3401
SQ1 3404
SIS 4301
Sa1 3301
S1S 4004
Sa1 3004
Sa1 3904
ALS 4801
AGT 3804
AdWJ 2801
QGdd €804
ALS 4v01
AQ1 3V0
AJWJ JV01
QdWD EV0!
ALS 4601
AQ7 3601
AdWJ 0601
QadWD €601
AQ7 3801
AdW) 0801
QdWJ €801
2/IMS 3201
3187 3201
19871 3201
1187 qeot
3981 920t

Ol s coE o ey ey

¢
i+
+e
+
+¢
+2
+e
+¢
+¢
+¢
+z
+e
+¢
+¢
+

W W Wb~ » v

w0

p3pusixy

papusixy

paxapu|

A

paxapuj

Yaing

118 64
LR Z]
3aav €4
828S ¢4
840 14
34ns 04

nis 43
nal 33
ai1s a3
00793
400y &3
840 v3
400y 63
403 83
818 23
801 93
a118 3
40Ny 3
Qaaay €3
8088 ¢3
8dW0 13
88Ns 03

nis 40
{41 30
ais aa

e Tt Eo oo o co el co B en i coS 6o M c I 0O

+2
+¢
+¢
+¢
+2

o~

W W W~ DWW YW WD W WD N~ W ©

56
nell
+9
+v
+v

palw|

\

pawy)

papua)x3

A

\/

pspusp3

paxapu|

A

808S 29
84D 1D
88ns 09

X1S 48
X071 38
ysr a8
XdW0 08
vaav 98
v40.ve
voQv 68
V403 88
V1S /8
Va1 98
v1iig S8
VaNY v8
asns €8
vo8s ¢8
VdWO 18
vans 08

XLS 4V
X071 3v
4sr av
XdWO OV
vaay 8y
V40 W

153

Appendix C

Programmer's Card

| x—INDEX REg

[Y—INDEX REG

[U—USER STACK

1

| S—HARDWARE STACK

N\

b POINTER REGISTERS

J
| PC | PROGRAM COUNTER
B B | AccumuLaToRs
(& J
SV
D
| DP | DIRECT PAGE REGISTER

Leelufenfz]v]e]

CC—CONDITION CODE

‘— CARRY-BORROW

OVERFLOW

ZERO

NEGATIVE

IRQ INTERRUPT MASK
HALF CARRY

FAST INTERRUPT MASK

ENTIRE STATE ON STACK

Courtesy of American Microsystems, Inc.

154

5809 STACKING ORDER SIMPLE CONDITIONAL BRANCHES
Condition Complement
PULL ORDER BEQ BNE
y BMI BPL
66 6809 VECTORS BCS BCC
A FFFE RESTART BVS BVC
B FFFC NMI
INCREASING pp FFFA SWI SIGNED CONDITIONAL BRANCHES
MEMORY X Hi FFF8 IRQ Condition Compiement
3 X Lo FFF6 FIRQ BGT BLE
Y Hi FFF4 SWi2 BGE BLT
Ylo FFF2 SWI3 BEQ BNE
U/S Hi FFFO RESERVED BLE BGT
/s Lo BLT BGE
PC Hi UNSIGNED CONDITIONAL BRANCHES
PC Lo Condition Complement
D BHI BLS
PUSH ORDER BHS BLO
BEQ BNE
BLS BHI
HEXADECIMAL AND DECIMAL CONVERSION BLO Bis

HOW TO USE THE TABLES

CONVERSION TO DECIMAL: Find the decimal weights for cor-
responding hexadecimal characters beginning with the least
significant character. The sum of the decimal weight is the
decimal value of the hexadecimal number.

CONVERSION TO HEXADECIMAL: Find the highest decimal
value in the table which is lower than or equal to the decimal
number to be converted. The corresponding hexadecimal
character is the most significant character. Subtract the
decimal value found from the decimal number to be converted.
With the difference. repeat the process to find subsequent
hexadecimal characters.

HEXADECIMAL AND DECIMAL CONVERSION POWERS OF TWO

15 BYTE 8|7 BYTE 0 n n
15 CHAR 12 | 11 CHAR 8 |7 CHAR 4 |3 CHAR D i
HEX DEC (HEX DEC|HEX DEC [HEX DEC 27
0 0|0 0| 0 0|0 0 g g
14 096] 1 256| 1 16| 1 1 i
2 8 192) 2 512] 2 32| 2 2 32| 5
g inEEpailes 768| 3 48| 3 3 sl 6
4 16 384 4 1 024 4 64| 4 4 (e
5 20 480| 5 1 280 5 80| 5 5 256 | g
6 24 576/ 6 1 536(6 %| 6 6 19| g
7 28 6721 7 1 792| 7 127 7 e O
8 32 768| 8 2 048 8 128 8 8 S
9 36 864] 9 2 304] 9 144 9 9 il
A 40 960| A 2 560 A 160| A 10 |
B 45 056| B 2 816| B 176| B 1 oo o
C 49 152| C 3 072| C 192| ¢ 12 i el
D 53 248{ 0 3 328/ D 208(O 157 5 o 1;
E 57 344| E 3 584| E 224| E 14 e
F 61 440| F 3 840| F 240| F 15 o il v
524.288 | 19

| 1.048.576 |20 |

155

i

ASCIl CHARACTER SET (7-BIT CODE)

M.S.
cHAR| 0| 1 | 2 | 3l ielie 7
LS. |000|001|010| 011|100 101110111
CHAR

oovo | MUCTole | se | SaRIEGRIRRE T | o
oo S0 nenl R (o |
oo smx(meeli 7B | b |
s |Ercies E EBRREE | o |
i |(Eom| nedl el BRI |
01501 ena|NAK| % | 5 | EJu | e | u
io Aok syl & FCERERE 7
ooy | BEL ETB AR i ol
(s | Bs oanl (ASCEEERI
(o | HT | enl O |
o L lE e I
i B R |
gl <R
cor | GR | 68| = =R B
oo s i e
a [Sis e

156

R e s

INDEXED ADDRESSING ‘
POST BYTE REGISTER
BIT ASSIGNMENTS
1 INDEXED
POST-BYTE REGISTER BIT ADDRESSING }
BB AW A) MODE |
(76
0 X X X X X X X| EA= R=4BITOFFSET |
TRX e R+ |
o SREEET ﬂ
D0 E OB =
I O R
e V) B EA= R+0 OFFSET
R EA= R+ ACCB OFFSET
Rk U9 EA= R+ ACCA OFFSET e
XXX 00 00" EA= R*7 BITOFESET 0000 = D (A:B)
{ X X X 100 1] EA= R=15BIT OFFSET 0001 = X
e 0010 = Y
T %R0 wf EA= R=D OFFSET e
i X X X 1100 EA=.PC=7BITOFFSET 0100 = §
i X X X 1 1 0 1| EA=PC=15BIT OFFSET 0101 = PC
g S = 1000 = A
1 X X 1 1 1 1 1] EA= ADDRESS 1001 = B
R ‘ 1010 = CCR
! 1011 = DPR
L ADDRESSING MODE FIELD
| FIELD
FOR B7 = 1:INDIRECT
FOR B7=0:SIGN BIT
REGISTER FIELD
00 R=X PUSH/PULL POST BYTE
01 R=Y
o e
11:R=5 E CCR
A
8
DPR
=
y
SIU
PC
TRANSFER/EXCHANGE POST BYTE
g e
[Source]] oEstiation |
oP MNEM. MODE ~ # L or MNEM MODE ~ #4[oP MNEM MODE ~ #
00 NEG DIRECT GFan "c ANDCC IMMED B {zs BGT RELATIVE 3 2
03 com 6 2 10 SEX INHERENT 2 1 2F BLE RELATIVE 3 2
04 LSR 6 2 1E EXG 8 2 ‘30 LEAX INDEXED 4+ 2+
06 ROR (] 2 1F TFR INHERENT (5] 2 31 LEAY 4+ 2+
07 ASR [} 2 20 BRA RELATIVE @ 2 ‘32 LEAS 44 2+
08 ASL/LSL 6 2 ‘2‘ BRN 4 8 2851233 LEAU INDEXED 44+ 2+
09 ROL 6 2 22 BH! 3 2 34 PSHS INHERENT 5)
0A DEC 6 2 23 BLS £y 2 ‘35 PULS 5 2
0C INC 6 2 24 BHS/BCC 3 2 36 PSHU 5 2
0 TST 6 2 25 BLO/BCS 3 2 37 PULU B 2
0E JMP 3 2 ‘ 26 BNE 3 2 |39 RTS 5 1
OF CLR DIRECT 6 2 27 BEQ 3 2 3A ABX 3 1
12 NOP INHERENT 2 1 ‘ 28 BVC 3 2 ‘ 38 RTI B/31D T
13 SYNC INHERENT 2 1 9 BVS 3 2 3C CWAI 21 2
16 LBRA RELATIVE 5 3 24 BPL 3 2 3D MuL 1 1
17 LBSR RELATIVE 9 3 2B BMI 3 2 ‘BF SWI 19 1
19 DAA INHERENT 2 1 2C BGE 3 2 40 NEGA 2 1
1A QORCC IMMED 3 2 ‘ 20 BLT RELATIVE 3 2 43 COMA INHERENT 2 1

157

Erndig viS 8 | +¢ +v vilg sy | 2 9 asns €6
GG va1 98 | +2 +v VONY WY | ¢ b vo8S 26
piiE vig 58 +z +9 aanS GRS 2 VdN) 16
GHE LG VONY ¥8 | +2 +¥ vogs ev | ¢ v 193410 vans 06
Bt el agns €8 | +2 +v vdwo v | ¢ ¢ a3nmi Xa1 38
CHBUG vo8S 28 | +2 +v 03IX3aN vens ov | ¢ 2 3NV ¥sg @8
€ S 4 YdIND 19 & S 103410 X1S 46 C b A3INWNI XdWD 08
€ G (030N3LX3 vANSEN0gE |8 A 193410 XS o | AR GER vaay 8g |
oy 300W WINW d0 | # ~ 300W WINW d0 | # ~ 300W WINW d0
e QIWNI vd0 V8 | € Z Q3aN3LX3 408 92 | F ¢ IN3Y3HNI 80Nl 35
CE e A VA SRR 2 SRR/ | 9030 VS
A vH03 88 | £ £ INDORERETEN S S 8104 65
G val 98 | € 2 aionana 9N oL | b @ 8151/81SY 8§
e vilg 68 | +2 +9 Q3X3aNI HORIREIOf S vHSY £S
e VONY v8 | +2 +¢) AR @ gyod 95
B R asans €8 | +2 +9 IS ol SR 8481 ¥5
P i voas 28 | +2 +9 ONIRR ORI WD) €5
Zney ¢ VAW 18 | +2 +9 QMY OR S8 RE g9IN 05
S Q3IWWI vens 08 | +2 +9 04 69| L2 V410 4v
€/ (030N3LX3 410 42 | +2 49 WSy e vISL Qv
T L dwr 32 | +2 +9 4SRRI YONI O
SRy ISL @z | +2 +9 4o 99 | 1 2 vo3a v
By INI 9L | +2 49 B SR OR S V04 6
(I 030 VL | +2 +9 INGYRESEoR S VIS1/VISY 8p
B 08 6L | +te 49 g3Ix3IoNI SRR SEE S vHSY b
gty | I81/1SY 8L | L 2 INJYIHNI qUjoREEIGRI S vHod 9y
€/ 03aN3LX3 HSY 2L | L 2 INJY3HNI gISL QS | L 2 IN3Y3HNI vdsS1 b
¥~ 300W WINN d0 | # ~ 300W WINW d0 | # ~ 300W WaNW~ do

158

L EIEE] 840 w4 | t¢ +r Q3Ix3ONI 8403 83| ¢ v 133510 801 9G |
£ 5 8Qv 64 | +2 +¢p b ga1s 43 2 v a1g 6a
£ g 8403 84 | +¢ +r 801 93| 2 ¢ g0NY 0
£ s 1S 4| +¢ 4y aug 63| 2z 9 aooy €0
€ s 807 94 | +2 +v goNy v3 ¢ b go8s 20
£ s 8118 G4 | +z +9 000y €3] ¢ ¢ v gdN) 10
£ 5 gONY w4 | 2 +v 808s 23| ¢ ¢ 193410 88ns og
R gaay €4 | +2 +v gdwg 13 ¢ ¢ I nal 39
g & 808S 24 | +¢ +v QIAN ggns 03| ¢ ¢ a1 99
€ s 8Ny 4|z S 193410 ns 40| ¢ ¢ 800y 69
€ 5 030N3IX3 gans 04| ¢ 6 \ nol w2z ¢ g40 vd
+2 +5 03IX30NI ns 43 2 s als aa| ¢z ¢ 82av 69
+7 4% nav 33| ¢ s @l 2 ¢ ¢ 8403 89
+2 46 ais a2z ¥ goay 80| ¢ 2 807 99
+7 +5 a@v 93| 2 v gyo0 va | 2 ¢ allg 69
+2 +v gaay 83| z v iy 60 ¢ ¢ 80Ny b0
+2 +v g¥0 V3| 2 ¥ 8903 8a | ¢ ¢ v aoay €9
+2 +v QIN3NI gy 63| ¢ v 193410 a1s | ¢ 2 QINWI g28s 20
4~ 300W WINN d0 | ¢ ~ T WINW do | ¢~ 300W WINW dO
¢ 2 QINWI 8dW0 10 [+¢ +G Q3IXIONI X1S 4V | ¢ ¢ 133410 4Sr a6
AN a3nwI 88ns 00 | +2 +6 X071 | 2 9 \ XdW) 06
€ 9 Q3aN3LX3 XIS 49 |+ +! WP oav | oz v voay 86
£ 9 XQ1 38| +2 +9 XdW) ov | ¢ b veD V6
¢ 8 Hsr 09 | +2 +v vaay 8y | 2 v voav 66
] XdWD 08 | +2 +v ve0 W | 2 ¥ v403 86
£ g vaay 88 | +2 +¢ vooy 6y | ¢ v viS /6
£ g V40 v8 | +2 +v w03 8V | ¢ ¥ ¥4l 96
£ g voay 69 | 2 +v VIS v | ¢ vilg 56
£ 5 Y403 89 | +2 +v val v | ¢z ¢ YONY v

159

$ 18t el 0L+ N+CT AN R SR o SO e e T S aaay
ERta g<W+g gl hpaiad slelec eREd oNE ces e IR e [8aqvy
GRGEOR VeW+Y £7. Fraavi vo i e NeRIICRRAa S 7 S - H6 vaay Qav
(Rt 8<)+NW+8 o s R ANE) S (B R 890V
iU Y<O+N+Y et VR S (TS G G AR voav oQv
(@3ngIsSNn)
e e o o o X<X+4 TSNS . xav
3 AZNH NOILIHISIO [# c~ d0 # ~ d0 # ~ d0 # ~ d0 # ~ d0 # ~ dO SWHO04
0Lz¢EGg JAILYIIY 1G3X30NI 3LVIGIWWI 03aN3LX3 193ui0 INJHIHNI /NOLLONHLSNI
\ S300W SNISSIHAAY 6089 o
S, ¥ {7 z
[/ 03aN3LX3 ALS 480t | v (9) 3AILVIY IRERIGH
¥ l AQY 3801 | v (9) 3987 0201
4 8 (3aN3LX3 SdND 08LL| ¥ 8 AJWD 0801 | v (9)S INg1 gzol
4 8 (3AN3LX3 NdWo €gLL| ¥ 8 (3aN3LX3 QdWO €801 | ¥ (9)5 148971 veol
+€ 4/ Q3IXIONI SdWO OvLL| +¢€ +9 (3X3aNI ALS 4voL | v (9)5 SA81 6201
+€ +7/ (03X3ONI NdWO eviL| +& +9 AQT 3voL | v (9)s JA81 8201
£ L 103410 SdND 06HL| +£ 42 AJWO V0L | v (9)S 03g1 /201
€ L 193410 NdNQ €6LL| +€ +/ Q3IX3ONI GdND €Y0L | ¥ (9)S INg1 9201
14 S Q3NWI SdND 08LL| € 9 103410 ALS 4601 | ¥ (9)S 0181/52871 201
12 S QINNI NdWO €8LL| € 9 AT 3601 | ¥ (9)S 20971/SH81 v20L
2 02 IN3Y3HNI €/IMS 4HELL| € / AJWD 0601 | ¥ (9)5 $181 €204
14 L Q30N3LX3 SIS 4401 € L 193410 0dWO €601 | ¥ (9)s v IH81 220t
14 . 030N3LX3 Sa1 340L| ¥ 2 GIWWI AQT 3801 | ¥ S 3NLYIY NYE1 120t
+€ +9 (3X3aNI SIS 4301 ¥ S « AAWO 0801 | € 9 Q3aN3LX3 nis 44
+€ +9 03IX3ONI Sa1 3304 ¥ S QINWI 0dWD €80} | € 9 Nl 34
£itg 103410 SIS 400L| ¢ 02 IN3H3HNI 2/IMS €01 | € 9 als a4
Eenig 103410 Sa1 3a0L| v (9)S 3IAILVIIY 31871 4201 | € 9 @ o4
i 14 QINWI Sa1 300L| v (9 3IAILYI3Y 1987 3201 | ¢ S 03aN3LX3 q0av g4
o~ 300W WaNW do | # ~ J00W WINW d0 | # ~ 300W W3NW 40

160

—

@ O N4> er tb tr s b 0 O

B e I)

> 4b 4> ar 4> 4> O O

“> > > b s> O O

CO O OW®WM e e

3WYS 4O H3IHIIH
HONYYE 9NO1
JWYS 40
H3HIIH HINvYE
H43HOH
HONVH8 ONOT
Y3HOJH HONvY8
0437
< HONvH8 9NOT
043Z< HONvHg
0437
< HONYHE INOT
0437< HONVHE
0#2
HONVYS 9NOT
0#Z HONvYg
b=a
HONVHE 9NOT
L =0 HONvdg
0=3
HONYHE INOT
0=20 HONvY8
W

00 WWIVDD
g ve
Y WVY

ve
ot

ve
2c
(o]
e
3¢
0}
3¢
3¢
0t
22
12
0l
/it
G¢
0l
14
ve
0!
27

+¢

+¢

+2
+e

H9/Y

s 80

+y ¥3
+y vV

ol
(]
8

Ll

8/

b4
v8

L0

80

va
¥6

25
44

86
8v

SH81
SH8

1H81
1HE

1981
199

3981
398

0381
038

S081
S08

2087
RL]
4sy
4sy

VHSY

a1sy
ViSY
J0aNY
gaNY
YONY

SH8

1HE

198

398

038

S8

4SSy

sy

161

°
°
®
®

SAYM 1Y
HONYYE 9NOT
SAVMIY HONYHY
SNd
HONYYE INOT
SNd HONvYE
0=2
HONVY8 9NOT
0=7 HONVYg
SNNIW
HONYYE ONOT
SNNIA HONVHE
043z
> HONYHE 9NO1
0Y3Z> HONVHE
INVS
40 43IM01
HONYHE 9NOT
JINYS HO
43MOT HONYYE
HIMOT
HONYHE ONO1
4IMOT HONYHE
043z
S HONYYE 9NOT
0H3Z> HONVHE
(gvw)g 131 119
(YWY 1831 1I9

91
0¢
Ve
0l
Ve
92
01

g¢
QL
g¢
Qe
ot
ac

1%
ot

¢ ¢ S0 ¢ 6 64 ¢ v G0
¢ ¢ S8 € G S8 ¢ Vv 66

oo e e
N+ < ¢ o
T 0 o
e o o o

| e o o o

o
s
o
™
wn

NOILIBIS3T

sv d0
IAILYI3Y

9~ d0 # ~ d0 # ~ d0 # ~ d0

ILVIOINWL G3ON3LX3 L3360 ANJH3HNI

S300W INISSIHAAY 6089

V487

vy4g vdg
1487

48 48
INg1

3N8 3N8
IWg1

NG INg
1181

118 118
S1g1
sS4
0181

0@ 078
39

319 318
4118

vig 119
SWHO4

/NOILONYLSNI

162

—— i~

OO O

OO O«

—— -

oo o e

[©) °

R C)

1dnusjuy 1o} Nepm
00 < WIWIVI)
W<
Hisd
vey
A W0H4 | +
W W 34YdN00
X WOH4 | +
W N 34YdINOD
N Wo44 | +
W FHYdNOD
S W0g4 | +
W: 34YdW0D
a WoYd | +
W:IN 34YdIN0D
8 WOoud
W 34VYdIN0J
v W0Yd
W 34VdW0D
W<0
9«0
V<0
L=A
HONVHE ONO1
L= A HONVYHE
0=A
HONv48 9NO1
0= A HONYHE
3NILNOYENS
0L HONVHE ONOT
3NILN0Yans
0L HONYHE
43AIN
HONVHE 9NOT
H43AIN HONVYS

L1

a8
(¥4
01
¥4

+¢

)

+¢

SRE

it

e

+¢

+¢
+¢

)

kel

29

S

+

el

tv

+p
+9

€9

v
0!

v
ev
8
v
L
€Y
3

v
g

08
01

28
€8
L
08
L
€8
0}

€L

a9
0!}

04
€8
L
09
L
€8
0}

4]
Al

€0

06
0}

J6
€6
L
96
L
€6
0t

16
40

¢

0c 93¢

o -

W09
gW00
VINOD
AdWD
XdWO
NdWo
SdIND
adwo
840
VdNJ

410
8410
vy10

SAg1
SAd

aAg1
JA8

4$81
4S8

NHg1
Ng8

IYMJ

W09

dWD

410

SA8

JAd

4sg

N4g

163

A nedn SRR +¢ +9 89 SRSV)R ¢ iiteg 191
11 1 o oIl @ B 8157
ety Be o v [oy viS1 181
e ot oo A<ev3 +2 +v 1t ICER

e o} o e X<¢ev3 +2 +v 0 Xv31

© o o o N<ev3 +2 +v €8 nval

o e o 0 o S<ev3 +2 % 2 I ERRRER

38 38 36

ol 0 {Hilitie A< L+ NN Goo SR A g AQ1

S0 . X1+ W £ Eany cNg Ea g NGRS X071
GERNERCEG N<|+W:W £ el g e NGRS GG nal

El) EE L)

o0t tie S+ NN P S0 IS) SO TGS 0 WG | sa1

o OE TNt e 01+ W:W Siictiga R s SE I Iz e Ko aal

o OfitNitie 8< W ¢ i on e e ORI iy o) aa1

e 0t 4§ o V<IN giiic oS s G RO e iy SR OB val a1

3INILNOYENS

o o o o o 01 dWnr +2 +. Qv sligaliingiilia i /iGp ysr
e o e o o 0d<ev3 +¢ +¢ 39 Gl 2 e dwr
SHARHEN o W<l +N +2 +9 29 LT Sy) NI
GRAE s g<1+g AT 8ONI

O O vl 4y e VONI ONI
s s s s s ARt 2 8 3| Wy 9x3
G G d<NAag S o CERR L G SOl R q403

LI VeNAY o v eyl e iseg e ci o g iRy A6 Y403 403
O OO W<l —W +2 +9 V9 S /St ROEEY D 230
ettt il g<1—-4g R s 8230

R e el S v03a 030
$ 0 ¢ ¢ ef visnlpy jrwidag G vva
9 AZNH NOLLdIMIS3a [# o~ d0 # ~ d0 # ~ d0 # ~ d0 # ~ do # ~ d0 SWH04
0L zZ¢Es§ JALLYIIH 103X30NI 3LVICIWWI 030N3LX3 19340 INIH3IHN INDILONULSNI

$300W HNISSIHAAY 6089

164

D .

>0 0 0~ 0

- o o O

G o0 0 0

@ o0 OO0

-
-
O O

@ o o e
e o 0 0 0 o

D e e

D R
D B
WO e o e

@ o o> o
oD O e
e o o o

V OINI

8 GN31X3 N9IS
BTl ==
Vs WV
3NILNOYENS
WO04d4 N4N13y
1dNYY3LNI
W0d4 NHN13y

o Q3

<oE<m=

YOVIS N WOY4
SH31S1934 T1nNd
MOVIS S WOHS
SY31S1934 11nd
YIVLS 0 NO
SHILSI1934 HSNd
YOVIS S NO
SY31SI1934 HSNd
V<WWIADD
9<NAg
V<AV
NOILYY43d0 ON
N<L+N
g<1+4
V<l +V
(a3INDISNN)
a<gxy

0
+¢

+2

+¢

+¢

+¢

+¢

+v
=217

9

)

+y

)

+9

A

99

69

v3
vy

09

v9

¢9
a8

Vi
V9
V8

¢d
cq

92

6

V4
va

02

12

¢d
43

90

60

va
v6

00

¥0

L

G1/9

v+G

v+G

v+G

v +6

ak

6¢

a€

95
9¥

65
(14

/RS

vE

¢l

05
[0}4

ae

14
144

408S
Va8s

404
8404
vH0Y

49704
V104

nind
SNd
NHSd

SHSd
0340
940
Vd0

93IN
493N
V93N

4S7
g4s7
V4ST

X3S
08s
S1Y

iy

H0Y

04

1nd

40
dON

93N

SINW

4s1

165

o 04t e W 1531 +2 +9 09 SHaA Q) 2s 90 1S1
G 0 0e0 8 1531 Qs 8181
St v 1531 [A viSL 1Sl
° o o o o 2H< 1y 2 9 41| 24 4 4L
1dNYHILINI
o o o o o|0L 3IZINOYHINAS e ol INAS
€ 1dNYY3LINI i€
o o 0o o o JHYMLH0S @ 0 9EIMS
2 1dNYYILINI 4€
e o 0 o o JYYML40S 2 0u o) 92IMS
| 1dNYYILNI
e o o o o J4YML40S I 6l 4E 9lMS IMS
$ 41t el A-L+WN-QC s ORIGVERIC R R0 ol S on i e e OR e a8ns :
Coa oy g<w-49 S tEV R R 09 e SR B0 RN 0 88ans
tR g VeW-V ARV VA A 00 CRERG 081 v R vans ans
+¢ +9 4y 18 46
o it L+ N<A ol pAR oI Ec o)) ALS
e 0t %t e L+ WIN+=X +2 +G 4y € 9 48 ¢ G 46 X1S
B B L+ W NN +¢ +6 43 € 9 44 2 S 4a nis
43 44 10
o 0t d . L+ W N<S +¢ +9 01 v SO cE g) SIS
o () st L+ W N+Q +2 +6 a3 cR 9@ ¢ S @ als
B0t W<g +2 +v /3 SRCE Ry 818
0@ 08 O W<y +2 4+ LY S (G e viS 1S
9 AZNKH NOWdIIS3A [# o~ d0 % ~ d0 # ~ d0 # ~ d0 # ~ d0 # ~ dO SWY04
0L Z¢ES JALLYI3Y 103X30M 3LVIOIWW 03ON3LX3 JRET] LN3Y3HM /NOLLINULSNI

S300W INISSIUAAY 6089

166

SY31S193Y 118 91 JO

0d "0 'S "N A X ‘3YV SYILSI93Y 118 91 IHL
d0 '00 '8 'V 34V SY31SI193Y 118 8 3HL
HiVd ANV 4O 118 8 40 HIVd ANV 38 AVW 24 ONV 1Y ¢

378V.L .S300W INIXIANI 6089. 3HL WOYS

S3NTVA 3HL 0QY SINNOJ 3LA8 ANV S3T0AD V101 3HL INIWY3IL30 0L SLNNOD 3LAS ANV S310AD ISYE IHL 38V 318V1 IHL NI NIAID 'L

S3LON
K1 =S - powsk
YD 1.NOQ = X
@l =0 oozX S10°n A X=Y
¢ s 1itvioor e — - SS340QV 118 91 19310NI 030N31X3
280 L0 LLXXL (494 vl 28|86 L0LLOXX1 ¥d ‘U 135440 118 91
Lo 004 1iXX! [92d v} L 001 LOXX ¥0d U 13$440 118 8 Od WOY4 135440 INVISNOD
o 9| tiooiuyt lg=="11] o} ¢ [tiooouyl = 2 A9 IN3IW34030
03MOTY LON 0| 2 | 0L000Y¥YL Y- | A8 INIW3HD30
0 000ty [[++4] | o] ¢ 1000044 | ++y 2 A8 INIW3YONI
G3MOTTV LON 0|2 | 000004Y! +y | A8 INIW3IBONI ¥ INIW3BIIA/LNIWIHONI OLNY
0 ¢ 1101 1YYl {4 a) 0| v 11010YY ! 4 0 135440 ¥3151938—0
0| v 101014y 1 l4 8l O & 1010044 Y 8 135340 43151934 —8
0| v | 0LL0tYHL Iy vl 0|+ | 01100941 4 v 13S440 ¥31S1938—V 4 WOY4 135440 HOLYINWNIIY
|
¢ | £ | 100l1yyl Iy vl 2| v | rootowyl ¥ ou 135440 118 91
3 12 0001 i441 [y ul 3 3 000104y 1 Yy 'u 135440 118 8
118-8 01 S11NV430 0| v | uuuuuyyo g v 135440 118 6
0 ¢ | 0001yl [y 0 [0 | 001008YL Y 135440 ON 4 W0Y4 135440 INVISNOD
|~ 3009 40 WH04 4|~ 3003 d6 WY04 SWHO04 3dAL
+ | + | 31A8-1S04 | HINGWASSY | + | + | 3LAG-1S0d | WI1BWISSV
JRE] 123W0NI NON

S300W INISSIHAAY OIXICM

167

ISIME3HLO0 G34Y31) "3NYl 41 13S ONV 1S31] ‘W 40 INJW3TdW0D W

H0 3AISN1IX3 V1907 2 118 WOYd A¥Yvd) AN 5
ANV V21907 v INIW3TdW0D .2 MOT4H¥3IA0 A ‘SANIW JIL3WHINWY =

40 V01901 A (31A8) 0437 Z ‘SN1d JII3WHLIYY T
NOILVN31IV¥ONOD : (118 NIIS) IAILYIIN N 'SILAE WYHIO0Hd 40 H3IBWNAN #
43151934 3000 NOILIONOD 32 ‘€ 118 WOY3 AY¥VI-41VH H :S310A0 NdW 40 YIBWNN X
0310344V 10N ° ‘OINI H34SNVYL < (IVWIJ3QYX3H) 3000 NOILYH3d0 dO

‘ON3937

"13S SI 49 41 13S AYHVI — 3SVI VIJIdS

"03NIJ30NN SI 9Y73 AHHYD-4TVH 40 3NTVA

NOILONYLSNI 3H1 40 L1NS3Y 133410 V SV 13S S300J SNOILIGNOD
3% 110344V 10N 00 €IMS ONV 2IMS "S118 4 B 1 S13S IMS
NIAVL 3 SII0AD 9 NINVL LON HONVHE) SIT0AD G SNVIW (9)S
i 0377Nd Y0 0IHSNd 3LA8 HIV3 Y04 31JAD | SNTd SINIAD G 3HINDIY SNOILINHLSNI TNd ANV HSd IHL
$S34¥0AY IAI133443 3HL SI V3

M T OO~ oo

SI00W MSSIUOAY G3XION

168

e
Appendix D

Instruction Index

MNEMONIC ADDRESSING oP CYCLES PAGE NUMBER
MODE CODE
ABX INHERENT 3A 3 59
ADCA IMMEDIATE 89 2 60
DIRECT 99 4
INDEXED A9 4+
EXTENDED B9 5 2
ADCB IMMEDIATE C9 2 60
DIRECT D9 4
INDEXED E9 4+
EXTENDED F9 5
ADDA IMMEDIATE 8B 2 61
DIRECT 9B 4
INDEXED AB 4+ 1
EXTENDED BB 5
ADDB IMMEDAITE CB 2 61 1
DIRECT DB 4
INDEXED EB 4+
EXTENDED FB 5
ADDD IMMEDIATE C3 4 61
DIRECT D3 6
INDEXED E3 6+
EXTENDED F3 7
ANDA IMMEDIATE 84 2 63
DIRECT 94 4
INDEXED A4 4+
EXTENDED B4 5
ANDB IMMEDIATE C4 2 63
DIRECT D4 4
INDEXED E4 4+
EXTENDED C4 5
ANDCC IMMEDIATE 1C 3 63
ASLA ACCUMULATOR 48 2 64
ASLB ACCUMULATOR 58 2 64
ASL DIRECT 08 6 64
EXTENDED 78 7
INDEXED 68 6+
ASR INHERENT 57 2 65

169

MNEMONIC

ASRA
BCC
LBCC
BCS
LBCS
BEQ
LBEQ
BGE
LBGE
BGT
LBGT
BHI

LBHI
BHS
LBHS
BIT A

BIT B

BLE
LBLE
BLO
LBLO
BLS
LBLS
BLT
LBLT
BMI
LBMI
BNE
LBNE
BPL
LBPL
BRA
LBRA
BRN
LBRN
BSR
LBSR
BvC
LBVC
BVS
LBVS
CLRA
CLRB
CLR

170

ADDRESSING
MODE

DIRECT
EXTENDED
INDEXED
INHERENT
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE
RELATIVE

LONG RELATIVE

INHERENT
INHERENT
DIRECT

OP

CYCLES

—~
)
-

m.mvm}_ﬂ\wmw«:\lmwmw
)
-

PAGE NUMBER

71

71
72
72
72
73
73
73
73
74
74
74
75
75
75
75
75
76
76
76
76
77
77
78
78
78
78
79

MNEMONIC ADDRESSING oP CYCLES PAGE NUMBER
MODE CODE
EXTENDED 7F 7
INDEXED 6F 6+
CMPA DIRECT 91 4 79
EXTENDED Bl 5
IMMEDIATE 81 2
INDEXED Al 4+
CMPB DIRECT D1 4 79
EXTENDED F1 5
IMMEDIATE c1 2
INDEXED El 4+
CMPD DIRECT 10 7 80
93
EXTENDED 10 8
B3
IMMEDIATE 10 5
83
INDEXED 10 7+
A3
CMPS DIRECT 11 7 80
9C
EXTENDED 11 8
BC
IMMEDIATE 11 5
8C
INDEXED 11 7+
AC
CMPU DIRECT 1 7 81
93
EXTENDED 1 8
B3
IMMEDIATE 11 5
83
INDEXED 11 7+
A3
CMPX DIRECT 9C 6 81
EXTENDED BC 7
IMMEDIATE sC 4
INDEXED AC 6+
CMPY DIRECT 10C 7 81
9C
EXTENDED 10 8
BC
IMMEDIATE 10 5
8C
INDEXED 10 7+
AC
COMA INHERENT 43 2 82
COMB INHERENT 53 2 82
ComM DIRECT 03 6 82
EXTENDED 73 7
INDEXED 63 6+
CWAI INHERENT 3C 20 82

1

MNEMONIC

DAA
DECA
DECB
DEC

EORA

EORB

EXG R1,R2
INCA
INCB

INC

JMP

JSR

LDA

LDB

LDD

LDS

LDU

LDX

172

ADDRESSING
MODE

INHERENT
INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
INHERENT
INHERENT
INHERENT

DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT

EXTENDED

IMMEDIATE

INDEXED

DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED

CYCLES

+ +

+

+ +

AR NN WA WON OO NNgBRNORABRMNORAONONNDN
+ +

+

- OO YO T NI
+

~

l----l--.-’

PAGE NUMBER

84
85
85
85

85

86

86
87
87

87

87

88

88

88

89

89

89

89

MNEMONIC

LDY

LEAS
LEAU
LEAX
LEAY
LSLA
LSLB
LSL

LSRA
LSRB
LSR

MUL
NEGA
NEGB
NEG

NOP
ORA

ORB

ORCC
PSHS
PSHU
PULS

PULU
ROLA
ROLB
ROL

RORA
RORB
ROR

ADDRESSING
MODE

IMMEDIATE
INDEXED
DIRECT

EXTENDED

IMMEDIATE

INDEXED

RELATIVE
RELATIVE
RELATIVE
RELATIVE
INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED
INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED
INHERENT
INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED
INHERENT
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
IMMEDIATE
INHERENT
INHERENT
INHERENT
INHERENT
INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED
INHERENT
INHERENT
DIRECT

CYCLES

6+

4+
4+
4 +
4+

a5

- r

+

|w'hh3m-bﬁfwtﬂ$>h)m-dc)NrQFAm'QG>NPOC7N

PAGE

NUMBER

89

92
92
92

93
93
93

94
94

94

929
99
99

173

—

MNEMONIC

RTI
RTS
SBCA

SBCB

SEX
STA

STB

STD

STS

STU

STX

STY

SUBA

SUBB

SUBD

174

ADDRESSING
MODE

EXTENDED
INDEXED
INHERENT
INHERENT
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
INHERENT
DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
INDEXED
DIRECT

EXTENDED

INDEXED

DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
INDEXED
DIRECT

EXTENDED

INDEXED

DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INBEXPD

oP

CODE

CYCLES

6+
6/15

+

h(ﬂ$>$-m-bhaf NOoOdBANOD O

+

o U1 wm
+

6+

~

+

+

orNobNNORMBPNODN o
+

+

PAGE NUMBER

100
100
100

101

101
102

102

102

102

103

103

103

104

104

104

MNEMONIC ADDRESSING OP CYCLES PAGE NUMBER

MODE CODE
SWi INHERENT 3F 19 105
SWI2 INHERENT 10 20 105
SE
SWI3 INHERENT 11 20 106
8
SYNC INHERENT 13 >=2 107
TER INHERENT 1F 7 108
TSTA INHERENT 4D 2 109
TSTB INHERENT 5D 2 109
TST DIRECT oD 6 109
EXTENDED 7D i
INDEXED 6D 6+

175

{

N P S

|

A

Accumulator

offset indexed
ADD
Add to accumulator
Addressing
Addressing modes,

concepts

innerent

basic:

. . .summary

Address it

AkU

American Microsystems Inc*

AMI

Arithmetic Logic Unit
operations

Assembler, basics
listing §
.typical requirements

Auto increment indexed

B
Bit 5°
4
Z
i«
6
2
z
BUSY
Byte-oriented
Bit O
C

éhanged configuralion
Comment field
Condition codes
Constant offset indexed

D
Direct addressing
Memory Access
Page
statements
DMA

E
EA
Effective address
Enable input
Error trapping

176

28,31

Equivalencies
26 Expressions
47 Extended addressing

37
37 F
37-55 Fast Interrupt Request
FIRQ
37
38 H

’_5:5 Halt/Bus grant
56 Hardware Stack Pointer
29 High level language processor

17 I
.29 Immediate addressing
119 Indexed addressing
113 ‘ indirect
117 |ndex registers
113 |nherent addressing mode
49 Interrupt Request
tracing

IRQ

30 L
Label field

~» Last instruction Cycle
31 LEA

S

Line numbering

ﬁ; ,Load effective address
ZE.) M
iMetal Oxide Substrate
‘MOS
Most Significant Bit
114 MSB
45
Operand field
41 Operating field
iz
28 P

118 Performance summary
13 Pipelining effect

Pointer

registers

37 Preliminary concepts
37 Processor busy signal
13 Program Counter
119 statements

Edited by Robert E. Ostrander

32
115
40

12
12

21
27
11

113
16
57.

119

57.

10

29
29

114
114

PSHU/PSHS 57
Push/pull 56
Q
Quadrature output 14
R

Radio Shack TRS-80
Videotex 9
Registers 27
addressing 43
Relative addressing 51
Right nomenclature il
S
Schmitt-trigger, pulling 19
Set Direct Page Pointer 42
SETDP 42
Sequence number 113
6800/6809, software
incompatibilities 31
6809 uP, basics 10
condition codes 31
individual instructions 59-111
interrupts il
introduction e
MPU signal description 17
Software 25
interrupts 58
Statements 118
SwiI 58
Symbols 115
Sync acknowledge 21
System, establishing 24
variables 119, 120-124
it
Tri-state control 15
TSC (5
u .
User Stack Pointer 20
Y
Variety in clocks 13
VTL-09, sample programs 124
Zero-offset indexed 45

