

MC6809
COOKBOOK

by carl d. warren

Dedication
For ACE

No questions asked

THE

MC0809
COOKBOOK

by carl d. warren

TAB TAB BOOKS Inc.
BLUE RIDGE SUMMIT, PA. 17214

FIRST EDITION

SECOND PRINTING

Copyright © 1980 by TAB BOOKS Inc.

Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Warren, Carl D
The MC6809 cookbook.

Includes index.
1. Motorola6809 (Computer) I.Title

QA76.8.M67W37 001.64 80-23359
ISBN 0-8306-9683-0
ISBN 0-8306-1209-2 (pbk.)

is a trademark of Motorola Inc.

Contents
Acknowledgments 6
Preface 7

1 General Descriptions 9
Introduction to the 6809—Basics of the 6809 /xP—High Level
Language Processor—Changed Configuration—The Right
Nomenclature—Variety in Clocks—6809 MPU Signal
Description—Pulling the Schmitt-Trigger—Tracing - the
Interrupt—Establishing a System

2 6809 µP Software Architecture 25
The Software Tale—Registers, Pointers and Things—Condition
Codes Are Special—6800/6809 Software Incompatibilities-
Equivalencies—Performance Summary

3 Addressing Modes 37
Basic Concepts—Inherent Addressing Mode—Immediate
Addressing—Extended Addressing—Direct Address ing-
Register Addressing—Indexed Addressing—Indexed Indirect-
Relative Addressing—Summary

4 Into the Instruction Set 56
Push-Pull and Address It—Individual Instructions

5 MEK6809EA Assembler 112
Basics of the Assembler—Typical Requirements—
Expressions—Symbols—Assembler Listing

6 Implementation of VTL-09 118
Direct and Program Statements—Preliminary Concepts-
Arithmetic Operations

Appendix A Motorola 6809D4 134
Highlights—Model Types—Expansion—Software Features—
Added D4B Software Features—MEK6809D4 Description—
MEK68KPD Description—Sample Programs

Appendix B Hexadecimal Values of Machine Codes 148

Appendix C Programmer's Card 153

Appendix D Instruction Index 169

Index 176

Acknowledgments

When any work such as this is embarked upon, it requires a
massive amount of support from a variety of sources. It was
necessary to rely upon the suggestions and resources of a number
of people and companies. Among these people are; Ron Denchfield
of AMI who supplied, most of the figures and the programmer's
card, Tim Ahrens, Bill Clendinning and Irwin Carroll of Motorola,
who provided various tables and important suggestions, along with
the 6809D4 evaluation unit.

Since this book is about computer technology, it is only ap
propriate that it was created with aid of a computer. The manu
script was prepared on a Heath H-89 microcomputer, and printed
on an Epson TX-80 dot matrix printer. The software that was used
consisted of a variety of products. Among these were the editor and
text formatter available from the Heath users' group (HUG), the
PIE editor from the Software Toolworks, and a very special pro
gram called COPY that permits interchanging software created
under HDOS to CP/M compatible files. This unique piece of magic
was created by Bob Mathias, a genius of our times. Other software
was supplied courtesy of Tony Gold at Lifeboat Assoc. These
consisted of Organic software's Textwriter III for text formatting
and Digital Research's CP/M optimized for a 4200H base.

Special thanks is reserved for the finest managing editor in the
magazine industry today, Jordan Backler. It is because of his
suggestions, coupled with those from fellow EDN editors Bob
Peterson, and Ed Teja, that this work is as concise as it is.

My wife Anne and daughter Tami played probably the most
important part in the creation of this book—putting up with the
writing process and making sure the coffee was always available.

3

Preface
As a result of the profliferation of microprocessors (µP), since
1977 hardware and software designers have been able to extend
their capabilities in terms of creating useful products for everyday
life. Each day, new processor introductions are opening up even
more exciting vistas. Unfortunately, there is a problem associated
with the introduction of the newer devices: how to correctly use
them for maximum benefit and efficiency.

This book, like many of its type, attempts to give the engineer
or technician an expert command of the fundamentals of the 6809
microprocessor (µP), and the basic skills for writing 6809 assem
bly language level code. In systematic fashion, it proceeds from
analysis of the microprocessors design to its important electrical
characteristics. It continues with discussion on matters like inter
nal logic, comparison to the 6800, interfacing to peripherals,
software architecture, addressing techniques and the instruction
set. It concludes with advice on how to build or make use of
existing 6809 based systems. Further enhancing The MC6809
Cookbook's usefulness is the inclusion of a programmer's card,
provided courtesy of American Microsystems Inc. (AMI).

The MC6809 Cookbook may be studied as a course, proceed
ing from the simple to the more complex. However, it should be
more appropriate viewed as a reference source to be called upon as
necessary. Therefore, I have kept the idea of a compact and concise
reference work utmost in my mind while creating this book. As a

7

result of this goal, the diversified contents are readily identifiable
to facilitate the finding of specific principles or functions associated
with the 6809 µP.

The MC6809 Cookbook aims to be comprehensive without
being cumbersome. It seeks in all areas to be exact, clear and
succinct.

Throughout this book, µP, and µC are used to mean micro
processor and microcomputer, respectively. These are stylistic
nuances used at EDN magazine, and permit brevity without being
imprecise.

carl d. warren

8

General Descriptions

The 6809 µP, developed by Motorola and second sourced by
American Microsystems Inc. (AMI), is a high performance mul-
tifaceted device. It is considered by many industry observers and
Motorola to be the interim processor between 8-bit and 16-bit
devices. The general design philosophy of the device seems to
support this conjecture in that it permits the handling of 16-bit
registers with powerful instructions.

INTRODUCTION TO THE 6809

The 6809 µP is unique because it represents an upward
growth device from the ubiquitous 6800 µP. This upward growth is
in the form of software compatibility, at the source code level, and
apparent similar operation of the two devices.

As a result of these similarities, it is possible to design the
6809 µP into a variety of applications. Among these applications
are process control, automobile system monitoring, television
sets, intelligent terminals and other devices more far reaching than
this book could even begin to mention. As an example of the use of
the 6809 µP was recently incorporated into what will more than
likely become the small computer system of the decade, theRadio
Shack TRS-80 Videotex (Fig. 1-1). This unit not only uses the 6809
µP, but the entire spectrum of Motorola support and peripheral
chips. The point is that it shows the flexibility of the 6809 µP.

9

Fig. 1-1. Incorporating the 6809 µP in concert with a host of Motorola compati
ble peripheral device chips, the Radio Shack TRS-80 Videotex is designed to
transform the home television and telephone into a high-powered communica
tion system (courtesy of Radio Shack).

Flexibility and ease of system integration are important fea
tures of the 6809 µP, but are only representative of just a minor
portion of the processor's capability. Throughout the rest of this
book, you will be introduced to the specific features and functions
of the processor and given sufficient information to make it work
for you.

BASICS OF THE 6809 µP

The 6809 µP is an 8-bit NMOS device. With all the different
mnemonics around—buzz words—it can be extremely difficult to
figure out what someone is talking about in device types. For
example, I say the 6809 µP is an NMOS device which it most
surely is. Metal Oxide Substrate (MOS) technology is a method of
creating integrated circuits (ICs); the N or P indicates the type of
channel the device has built into it and does, in fact, refer to
negative or positive. But for the purposes of this book, suffice it to
say the device is NMOS. An NMOS device exhibits an electron
mobility about 2.4 times that of PMOS. Consequently, the NMOS
device outperforms similar PMOS devices in speed and power.
This means more power to you, the designer, in a smaller and in
most cases less expensive package.

10

The processor is designed, according to Motorola engineers,
for real-time and character manipulation programming. This de
sign philosophy implies that the device is ideal for such applica
tions as real time, or event, data collection. Applications such as
this require that the processor work in concert with data acquisi
tion probes like thermocouples, strain gauges or flow sensors to
name a few. The 6809 µP offers the important characteristics of
being able to respond quickly enough to handle the influx of data
from this type of device.

The character oriented capability of the 6809 µP makes it an
excellent choice for word processing applications. In this type of
application, ASCII data is manipulated in several ways to create
useful output data. Word processing implies that the µP must work
with a variety of peripheral devices, a functional plus of all 68XX
type parts.
HIGH LEVEL LANGUAGE PROCESSOR

Another feature of the 6809, µP is that it is a byte-oriented
device rather than operating on each bit of the 16 available on the
address bus. This single characteristic enhances the processor's
ability to function, with efficiency, as a high-level language compu
ter.

The reason this processor, or any processor for that matter,
works better as a high level language processor if it is byte-oriented
is that a byte is 8 bits long. It is directly equatable to a character of
some type, for example the letter A. High level language like
COBOL and FORTRAN work by comparing block structures made
up of characters to determine a task. Bit-oriented devices must
first build a byte from individual bits, store it in a register and then
permit the language instruction to perform some work or compari
son. The byte-oriented device makes the assumption that registers
are filled with bytes, thus speeding up execution times. This fact
does not preclude bit operations that must take place in math
functions.

Although the 6809 µP is not a pin-for-pin replacement of the
6800, it is not all that different in the sense of compatible functions
and software. For example, the 6800 µP exhibited one stack
pointer; the 6809 has two. The 6809 µP has two index registers as
opposed to the single index register of the 6800. In relationship to
the improved indexing capability of the device, both the stack
pointers and program counter can be indexed. This feature makes
it much easier for the programmer to manipulate data held in the
processor's registers.

11

CHANGED CONFIGURATION

The 6809 µP, as mentioned, is not a pin-for-pin replacement
for the 6800 µP; nor was there any thought for it being so. The idea
behind the 6809 µP was to make it an optimum device, which
meant that pin outs and pin definitions would change. Figure 1-2 is
a representation of both the pin-outs of the 6800 and the 6809
microprocessors. You will notice that for the 6809 µP, two ver
sions exist. The versions demonstrate the difference in the clock
and at the same time represent the functional features of the 6809.
To summarize these functional and electrical features:

• The 6809 µP incorporates an 8-bit data and a 16-bit
address bus.

• The device is compatible to the MC6800 bus structure as
defined by Motorola. (For further information, consult the M6800
microprocesor applications manual).

• The 6809, µP, housed in a 40-pin package, requires only
a single +5V supply.

• The 6809 µP, exhibits the same interfacing characteris
tics as the 6800. This means that it is compatible with TTL logic
levels, and consequently makes total system integration fairly
easy.

• Addition of extra features like the Fast Interrupt Request
(FIRQ). The FIRQ permits the 6809 µP to drop everything and
handle high speed interrupts, as would be necessary in data acquis
ition systems.

Fig. 1 -2. Although compatibility exists between the 6809 and 6800 at the source
code level, pin assignments differ since the 6809 offers more functions than its
predecessor. (A) This represents the 6800 with its standard, pin assignments.
(B) and (C) Block diagrams of the versions of the 6809 µP. Notice the pins
named TSC, LIC and BUSY (courtesy of Motorola Semiconductor Products Inc.
and American Microsystems, Inc.).

12

• Vectored interrupts allow the 6809 µP to locate an inter
rupt servicing routine within a minimum amount of time, and return
back to the starting location without destroying the current data.

• The 6809 µP incorporates an onboard oscillator which is
four times the input frequency of the crystal. The 6809E version
features an external clock. See Fig. 1-3. This allows the 6809 µP to
sync with an external clocking source such as that being generated
by a clock source from another system.

• The 6809 MPU has two memory functions not found with
the 6800: MRDY that extends data access times for use with slow
memory, and DMA/BREQ that permits quick access to the bus for
Direct Memory Access (DMA) and memory refresh.

The electrical differences in the two versions are shown in
Figs. 1-3A and 1-3B. Basically, the two versions of the 6809 µP are
the same, with the exception of the clocking mode. Table 1-1
defines the Read/Write for each version of the microprocessor.
Table 1-2 lists the electrical characteristics of the processor.

THE RIGHT NOMENCLATURE
As you proceed through this book, you will notice reference to

a part preceded by an S. This nomenclature defines the part as
being from AMI. When the device being referred to is a Motorola
part, the number is preceded by an M or MC. However, for the
sake of clarity I have adopted the generic term—6809. There are
some tables and figures in this book that do make reference to the
specific manufacturers' devices.

VARIETY IN CLOCKS

The 6809 µP incorporates the choice of two clock functions.
The basic 6809 processor exhibits an internal clock (oscillator). To
make use of this clock, an external crystal is connected between
EXTAL and XTAL pins 39 and 38. Netting or filter 0.01 disc
ceramic capacitors are on either side to the system ground (Fig.
1-4). When the 6809 is in this configuration, a synchronization
signal is available at the E/out terminal (pin 34). This available
signal can be used as the system clock with all other devices in sync
with it.

The output that is available on pin 34 is at the basic processor
frequency and for most applications is connected to the Enable (02)
input of 6800 peripheral devices, as shown in Fig. 1-5. This
simplification of the clocking system, with 6800 family compatibil
ity, eases system design and integration.

13

Fig. 1-3. Providing flexibility to the system designer, the 6809 µP is built with
either an internal oscillator (A) or for use with an external clock (B) (courtesy of
American Microsystems, Inc.).

Besides the timing signals discussed, another signal called
the Quadrature output (Q/out) is available. The purpose of this
signal is to signify that addresses and data are stable. This Stability
tells the system that operations have settled down and something
else can take place.

Table 1-1. Read/Write Timing (courtesy of
American Microsystems, Inc. and Motorola Semiconductor Products Inc.).

14

Tabie 1-2. Electrical Characteristics (courtesy American
Microsystems, Inc. and Motorola Semiconductor Products Inc.).

The external clock version, indicated by an E, requires that an
external clock source be implemented. This external clock must
generate an output at the MPU frequency. The timing signal E is
similar to the 6800 bus timing signal 02; Q is a quadrature clock,
signal which leads E. This quadrature signal has no parallel on the
6800. The importance of these signals are that addresses from the
MPU will be valid with the leading edge of Q (Fig. 1-6). Data is
latched on the falling edge of E.

You will notice from Fig. 1-3 that the external clock version of
the 6809, the BREQ input, is replaced by a instate (TSC) control.
This control serves to place the address and R/W in the high

Fig. 1 -4. The clock on the 6809 is invoked by tying pins 38 and 39 together via a
crystal and filter capacitors (courtesy American Microsystems, Inc. and
Motorola Semiconductor Products Inc.).

15

Fig. 1-5. Interfacing the 6809 µP to other devices is easy by taking the output
from pin 34 and tying it to the chip enable pin of the peripheral chip. In this figure,
the processor is tied to RAM, ROM and output devices. Pay particular attention
to the direction of the data on the data bus. The output from 34 is tied to the chip
enable of the output latch and input buffer.

cycle of any instruction. This signifies that the next instruction
cycle is the opcode fetch and acts like a pipeline fetch, thus
improving processing throughout. The processor BUSY signal
facilitates multiprocessor applications by allowing the designer to

Fig. 1-6. E/Q relationship (courtesy American Microsystems, Inc. and Motorola
Semiconductor Products Inc.).

16

impedance state for DMA or memory refresh. The E and Q pins are
replaced by two status outputs: Last Instruction Cycle (LIC) and
processor busy signal (BUSY). The LIC is activated during the last
insure that flags being modified by one processor are not accessed
by another simultaneously.

The 6809 µP, in normal operation, fetches an instruction from
memory and then executes the requested function. This opera
tional function begins when the processor is started—RESET—
and repeated until forced to cease. This stopping of the operation
can be from a multitude of sources including interrupts, hard and
soft, or via a special instruction that permits the processor to
HALT but also save the contents of the registers—that is, waiting
to proceed without impacting the computing ability of the proces
sor.

6809 MPU SIGNAL DESCRIPTION

This section describes the functional purposes of the pins
available on the 6809 µP.The reason, is to create a solid foundation
for the chapters on addressing and the instruction set.

The information contained in this section is, in most cases,
directly from AMI literature. I have attempted, where necessary,
to further clarify or amplify upon those items that seem vague.

Power (Vss Vcc) Pins 1 And 7. Two pins are used to supply
power to the part: V is ground, or 0 volts, while Vcc is +5V with a
5% tolerance. This holds true whether the device is of the internal
or external clock variety (Fig. 1-7).

Address Bus (A0 - A15) Pins 8-23. Sixteen pins are used to
output address information from the MPU onto the address bus.
When the processor does not require the bus, for a data transfer, it
will output address FFFF16,R/W = 1 and BS = 0 (Table 1-3).
Addresses are valid on the rising edge of Q. All address bus drivers
are made high-impedance when output Bus Available (BA) is high.
Each pin will drive one Schottky TTL load and typically 90pF (Fig.
1-7).

Data Bus (D0-D7) (Pins 24-31). The eight pins, desig
nated for data, provide communication with the system bidirec
tional data bus. Each pin will drive one Schottky TTL load and
typically 130pF (Fig. 1-7).

Read/Write (R/W) Pin 32. This signal indicates the direc
tion of the data transfer on the data bus. A low indicates that the

17

Fig. 1-7. (A) Block diagram. (B) Pin configuration (courtesy of American Mic
rosystems, Inc. and Motorola Semiconductor Products Inc.).

MPU is writing data onto the_ data bus. R/W is made high impe
dance when BA is high. R/W is valid on the rising edge of Q.

RESET. Pin 37. A low level on this Schmitt trigger* input
for greater than one bus cycle will RESET the MPU. The RESET
vectors are fetched from locations FFFE16 and FFFF16, when
interrupt acknowledge is true BABS=1). During initial power on,
the Reset line should be held low until the clock oscillator is fully
operational.

Because the 6809 µP Reset pin has a Schmitt-trigger input
with a threshold voltage higher than that of standard peripherals, a

Table 1-3. MPU State (courtesy of American Microsystems, Inc.).

18

MPU State

BA

0
0
1
1

BS

0
1
0
1

Normal (running)
Interrupt Acknowledge
SYNC Acknowledge
HALT or Bus grant

simple R/C network may be used to reset the entire system. This
higher threshold voltage insures that all peripherals are out of the
reset state before the processor.

PULLING THE SCHMITT-TRIGGER

A Schmitt-trigger is a special type of flip-flop circuit that
permits feedback and is sometimes referred to as a regenerative
switching circuit, having two stable output states. The Schmitt-
trigger is frequently used in timing circuits to mark the instant
when an input voltage reaches the trigger level, converting a
sinusoidal input voltage into a pulse train at the output. Since it is
not within scope of this book to provide complete explanations of
flip-flops, I recommend Electronic Circuits Digital and Analog, by
Charles A. Holt, John Wiley and Sons, New York.

HALT—Pin 40 . A low level on this input pin will cause the
MPU to stop running at the end of the present instruction and
remain halted indefinitely without loss of data. When halted, the
BA output is driven high indicating the buses are high-impedance.
BS is also high which indicates the processor is in the Halt or Bus
Grant State. While halted, the MPU will not respond to external
real-time requests (FIRQ, IRQ), although DMA/BREQ will al
ways be accepted and NMI or RESET will be latched for later
response. During the HALT state Q and E continue to run normal
ly. If the MPU is not running (RESET, DMA/BREQ), a halted
state (BA and BS = 1) can be achieved by pulling HALT low while
RESET is still low. If DMA/BREQ and HALT are both pulled low,
the processor will reach the last cycle of the instruction (by reverse
cycle stealing) where the machine will then become halted (Fig.
1-8).

Bus Available. Bus Status (BA, BS) Pins 5 and 6. The
Bus Available output is an indication of an internal control signal
which makes the MOS buses of the MPU high-impedance. This
signal does not imply that the bus will be available for more than
one cycle. When BA goes low, an additional dead cycle will elapse
before the MPU acquires the bus. The bus status output signal,
when decoded with BA, represents the MPU state (valid with
leading edge of Q).

TRACING THE INTERRUPT

When an interrupt occurs, the processor must respond in
some manner. The 6809 µP responds by going to a location in
memory and executing a specific routine. In all cases, the proces-

19

Fig. 1-8. HALT and single instruction execution for system debug (courtesy of
American Microsystems, Inc. and Motorola Semiconductor Products Inc.).

sor generates a signal called an interrupt Acknowledge. It is indi
cated during both cycles of a hardware-vector-fetch (RESET,
NMT, FIRQ, IRQ, SWI, SWI2, SWI3). This signal, plus decoding of
the lower 4 address lines, can provide the user with an indication of
which interrupt level is being serviced and allow vectoring by
device, as shown in Table 1-4.

Table 1-4. Memory Map for
Interrupt Vectors (courtesy of American Microsystems, Inc.).

Memory Map for Interrupt Vectors

Memory Map for
Vector Location

MS

FFFE
FFFC
FFFA
FFF8
FFF6
FFF4
FFF2
FFFO

LS

FFFF
FFFD
FFFB
FFF9
FFF7
FFF5
FFF3
FFF1

Interrupt Vector
Description

SWI2
SWI3

Reserved

20

Other signals that play an important role either during an
interrupt condition or HALT condition are Sync acknowledge and

Halt/Bus grant (Fig. 1-9). The Sync acknowledge is indicated
while the MPU is waiting for external synchronization on an inter-
rupt line. Halt/Bus Grant is true when the 6809 µP is in a HALT or
Bus Grant condition, as explained previously under HALT.

Nonmaskable Interrupt (NMI) Pin 2. The Nonmaskable
Interrupt pin is very similar to the IRQ pin 3, except that the
interrupt input is nonmaskable from the MPU. This means that a
program cannot inhibit the interrupt, and it has a higher priority
than IRQ or FIRQ, or for that matter of software interrupts (Fig.
1-10).

The NMI is invoked when a negative wedge is input on the
pin. When recognized, the entire machine state is saved on the
hardware stack. However, once the machine is reset, the NMI is
not recognized until the first program load of the Hardware Stack
Pointer (S). The pulse width of NMI low must be at least one E
cycle. If the NMI input does not meet the minimum set up with
respect Q, the interrupt will not be recognized until the next cycle.

Fast-Interrupt Request (FIRQ) Pin 4. It is unique to the
6809 µP. When a low level signal is detected at this pin, a fast
interrupt sequence, provided its mask bit (F) in the CC is clear,
will be initiated. The FIRQ has priority over the standard Interrupt
Request IRQ and is fast in the sense that it stacks only the contents
of the condition code register and the program counter. When

Fig. 1-9. SYNC timing (courtesy of American Microsystems, Inc., and Motorola
Semiconductor Products Inc.).

21

used, the interrupt service routine should clear the source of the
interrupt before doing a Return from Interrupt (RTI). The timing
for this interrupt is shown in Fig. 1-10A.

Interrupt Request (IRQ) Pin 3. When this line is forced
low, from some external device, the MPU will complete the in
struction it is executing and go into the interrupt sequence. This is
no different than for the 6800 µP. The IRQ has a lower priority than
FIRQ, but the servicing routine should clear the source of the
interrupt before returning to the calling routine (Fig. 1-10B).

When IRQ is invoked, the contents of the index register, the
program counter, accumulators and condition code register will be
stored on the stack. The I bit in the condition code register will be
set to a 1 so that no further interrupts may occur, or at least until
this one is serviced. As shown in Table 1-4, the MPU will nowload
the contents of FFF816 and FFF916 into the program counter and
vector the program to execute the interrupt routine pointed to by
these locations. After an RTI is encountered, the MPU will return
to its initial state.

Fig. 1-10. (A) interrupt timing. (B) and interrupt timing (courtesy
of American Microsystems, Inc. and Motorola Semiconductor Products Inc.).

22

Fig. 1-11. MRDY timing (courtesy of American Microsystems, Inc. and Motorola
Semiconductor Products Inc.).

EXTAL, XTAL Pins 38 , 39 . These input pins are used to
connect the on-chip oscillator to an external parallel-resonant
crystal (Fig. 1-4). The pin labeled EXTAL may be used as TTL
level input for external timing by grounding XTAL. The crystal or
external frequency is 4 times the bus frequency which is shown in
Fig. 1-4.

E, Q Pins 34, 3 5 . Here you can see some specific
similarities between the 6800 µP and the 6809. E is similar to the
6800 bus timing signal Q2; Q is a quadrature clock signal which
leads E. Q has no parallel on the 6800. Addresses from the MPU
will be valid with the leading edge of Q. Data is latched on the
falling edge of E.

MRDY Pin 36. This input control signal allows stretching of
E to extend data-access time. When MRDY is high, E will be in
normal operation. When MRDY is low, E may be stretched integral
multiples of quarter (1/4) bus cycles, thus allowing interface to slow
memories as shown in Figs. 1-11. A maximum stretch is 10 µsec.
During non-valid memory accesses (VMA cycles), MRDY has no
effect on stretching E. This inhibits slowing the processor speed
during don't care bus accesses.

DMA/BREQ Pin 33 . The DMA/BREQ input provides a
method of suspending execution and acquiring the MPU bus for
another use. Typical uses include DMA and dynamic memory
refresh.

Transition of DMA/BREQ should occur during Q. A low level
on this pin will stop instruction execution at the end of the current
cycle. The MPU will acknowledge DMA/BREQ by setting BA and
BS to a one. The requesting device will now have up to 15 bus
cycles before the MPU retrieves the bus cycle with a leading and
trailing dead cycle.

23

ESTABLISHING A SYSTEM

Now that you have a resonable understanding of the hardware
side of the 6809 µP, you can build a working unit. All that is
required is the 6809, some memory, power and form of display.

A typical system—the Motorola 6809D4 unit—is discussed in
Appendix A. But the most important element behind the processor
is not the hardware but rather how to program it. In the next
chapter, the basic software architecture of the device will be
introduced, followed by the various addressing techniques in Chap
ter 3 and finally the instruction set in Chapter 4.

24

6809 µP Software Architecture

25

Software development entails the understanding of several
disciplines—specifically hardware logic as it relates to the
hardware, mathematics and general logic flow. Interestingly
enough, the software engineer doesn't really need to have an
in-depth understanding of the electrical characteristics of the pro
cessor he is programming, unless of course original system
software development is the goal.

However, whether the goal is system software design or
developing specific utility ware, the software architecture of the
device must be understood.

THE SOFTWARE TALE

The 6809 µP is, as stated in Chapter 1, an upward growth
device from the 6800 µP. Specifically, the 6809 adds three regis
ters to the set available in the 6800. These include a direct page
register, the user stack pointer and a second index register. These
additional registers make the device extremely flexible, but the
6809 offers even other software features:

—Two 8-bit accumulators
—Two 16-bit index registers.
—Two 16-bit stack pointers with index capability.
—The previously mentioned programmable direct page regis

ter.
—59 instruction mnemonics (see Chapter 4).

—268 opcodes.
— 1464 instructions with different addressing modes.
—8x8 unsigned multiply.
— 16-bit arithmetic: load, store, add, subtract and compare.
—Powerful Push/Pull instructions.
—Powerful register transfers and exchanges.
—Powerful address-manipulation instructions.
—Extended-range long branches.

As you can see, the device is extremely flexible and offers the
software designer a great deal of power in a microprocessor.
Figure 2-1 is the basic programming model for the 6809 µP. You
will notice that the X and Y index registers are 16-bits wide, and
the U and S stack pointers are also 16-bits. The interesting register
is made up of two 8-bit registers, A and B, which together make up
D. It is within these three registers— accumulators—that most of
the processor's work will be done. The direct page and condition
code registers are 8-bits wide and provide programming en
chancement that will be explained later.

The general architecture of the device supports software
techniques such as position-independent code, structured high
level-subroutined code, multi-task and multi-processor opera
tions, development and operation of stack oriented compiler in
structions, and the important facilities of re-entrancy and recur
sion, both important facets of software for high-level language use

Fig. 2-1. Programming model of the microprocessing unit (courtesy of American
Microsystems, Inc.).

26

or real-time data acquisition. Now that you know all of the good
things that the software architecture behind the 6809 is supposed
to provide, you are probably anxious for a more in-depth explana
tion of the programming model.

REGISTERS, POINTERS AND THINGS

Taking a look at Fig. 2-1, you can see that within the structure
there are the X and Y 16-bit index registers. These are also
referred to as the pointer registers.

The index registers are used in the indexed mode of addres
sing. The 16-bit address in either the X and Y register is used to
point to data directly, or it may be modified by an optional constant
or register offset. The X and Y registers are equivalent in usage
and consequently support the same instructions. These registers
may be used to implement software stacks, queues and buffers.

Stack pointers U and S, shown in Fig. 2-1, can also be used as
index registers, but they serve very specific purposes in proces
sing. The Hardware Stack Pointer (S) is used by the processor
during subroutine calls and interrupts. The difference between this
stack pointer and that on the 6800 µP is that it points to the top of
the stack rather than the next free location (Table 2-1).

The User Stack Pointer (U) is for use by you, the programmer.
This stack pointer permits you to pass arguments to and from
subroutines with ease. This facility coupled with the hardware
stack pointer makes the 6809 µP and ideal stack processor and
enhances its functioning as 'a higher level language processor.
Because the architecture of the U and S pointers are, as previously
indicated, the same as the X and Y registers, they also support the
same instructions plus the PUSH and PULL stack controls.

The next register is theProgram Counter (PC). This register
is 16-bits and is used by the processor to point to the address of the
next instruction to be executed by the processor. Relative addres
sing is provided allowing the PC to be used like an index register in
some situations. Limited index-mode addressing is available, but
functions such as auto increment and decrement are not.

In operation, each instruction used by the processor assumes
that the PC points one location past the last byte of the op code—as
it would after decoding the instruction. Consequently, as additional
bytes are used by the instruction, the PC always points to the next
unused byte.

The next registers, A, B and D accumulators, are made up of
two 8-bit registers as shown by Fig. 2-1. The A and B registers are

27

Table 2 - 1 . 6809 µP Push/Pull and Interrupt Stacking Order.

general purpose accumulators which are used for arithmetic calcu
lations and manipulation of byte size data. What makes this pair
unique is that certain instructions concatenate A and B to form the
16-bit register D, with the contents of A being the most significant
byte.

The Direct Page register (DP) defines the most significant
(MS) byte to be used in the direct mode of addressing. The DP is
concatenated with the byte following the direct mode op code to
form a 16-bit effective address. The contents of this register
appear at the higher address output (A8-A15) during direct addres
sing instruction execution. This permits the use of the direct mode
anywhere in memory. To maintain 6800 compatibility, all bits are
initialized to $00 on Reset of the processor.

CONDITION CODES ARE SPECIAL
The final register in the programming model of Fig. 2-1 is the

condition code register (CC). Figure 2-2 is the format for this 8-bit

28

Fig. 2-2. Condition code register format (courtesyAmerican Microsystems, Inc.).

register. Notice that each bit is defined and based on the
condition—toggle 0 or 1—which defines the operation state of the
processor and is always nice to know.

Each bit within the register performs a specific task. For
example, bits 0-3 and 5 are set as the result of instructions that
manipulate data in some way. The actual definitions of each bit
follows.

Bit 0 (C)

Bit 0 is the Carry Flag, and is usually the carry from the binary
Arithmetic Logic Unit (ALU). Specifically, the C flag is generated
by the binary carry from the Most Significant Bit (MSB) of the
operations (ADC, ADD). Furthermore, C is used to represent a
"borrow" from subtract-like instructions (CMP, NEG, SUB,
SBC). Only arithmetic operations affect C.

Bit 1 (V)

Bit 1 is the overflow flag and is set to a one by an operation
which causes a signed two's complement arithmetic overflow. This
overflow is detected in an operation in which the carry from the
MSB in the ALU does not match the carry from the MSB-1. Loads,
stores and logical operations set V.

Two's Complement

If you have advanced to this point in the book and aren't sure
what two's complement is, you may have a problem. I would
suggest that you obtain a copy of "Basic Microprocessor and the
6800," by Ron Bishop, Hayden Book Co., 1979. You might also
consider the Heath course on microprocessors. Both are excellent
sources for explaining this concept, which is important if you wish

29

to understand what you are doing. Should you know what two's
complement is all about but can't quite get a picture in your mind,
this note will serve to refresh your memory—no pun intended.

The two's complement is the method used to represent signed
numbers in microprocessors. Positive numbers, in this system,
use the same bit pattern for all values up to decimal +127. Nega
tive numbers are represented as the two's complement of positive
numbers.

To find the two's complement of a number, you first take the
one's complement and then add one. The one's complement is
formed by changing all the Os to 1s and all the 1s to Os. Invert all the
bits. For example, the decimal number 10 is 00001010 in binary. If
the number is positive (°10), you follow this procedure.

Bit 2 is the zero flag and is set to a one if the result of the
previous operation was identically zero. Loads, stores, logical and
arithmetic operations set Z.
Bit 3 (N)

Bit 3 is the negative flag, which obtains exactly the MSB value
of the result of the preceding operation. Thus, a negative two's
complement result will leave N set to a one. Loads, stores, logical
and arithmetic operations all set N. If a two's complement overflow
occurs, the sign of the result (and the N-flag) will be incorrect.
Therefore, two's, compliment branches use the expression (N + V)
to obtain an always valid sign result.
Bit 4 (I)

This is the Interrupt Request (IRQ) mask bit. The processor
will not recognize interrupts from the IRQ line if this bit is set to a
one. NMI, FIRQ, IRQ, RESET and SWI all set I to a one. How
ever, SWI2 and SWI3 do not affect I.
Bit 5 (H)

This bit is used to indicate a carry from bit 3 in the ALU as a
result of an 8-bit addition only (ADC or ADD). This bit is used by
the DAA instruction to perform a BCD decimal add adjust opera-

30

— determines the sign when set—negative

this now represents - 1 0 11110110

two's complement

one's complement 00001010 invert 11110101

add one

Bit 2 (Z)

+ 1

tion. The state of this flag is undefined in all subtract-like instruc
tions.
Bit 6 (F)

This bit is associated with the Fast Interrupt Request (FIRQ).
If this bit is set, the processor will not recognize interrupts from
the FIRQ line. NMI, FIRQ, SWI and RESET all set F to a one.
IRQ, SWI2 and SWI3 do not affect F.
Bit 7(E)

This bit (7) is reserved for indicating the state of the ENTIRE
registers. It shows when the processor is stacked or the subset
state (PC or CC) is being stacked. E is used by the Return from
Interrupt (RTI) instruction to determine the extent of the unstack-
ing. This function allows some interrupt handling routines which
work with both fast and slow interrupts. FIRQ will clear E while
IRQ, NMI, SWI, SWI2 and SWI3 will set E before stacking. The E
bit associated with the saved registers is in the E flag position in
the CC of the stacked state.
Interrupts and the Condition Codes

When the 6809 accepts an IRQ interrupt, it will set the E flag
bit 7 and save the entire machine state. Furthermore, the I mask bit
4 will be set to blank out the present and further IRQ interrupts.
Once the interrupt is cleared, you can reset the I mask bit to permit
multiple-level IRQ interrupts. When the IRQ occurs, the F mask
bit 6 is not affected which means that an FIRQ interrupt can
supersede the current IRQ interrupt. The machine state is reco
vered by the RTI instruction.

When an FIRQ interrupt is accepted, the E flag is cleared and
the submachine state (return address and CC) is saved. The I and F
bits are set to mask out further interrupts. Again, I and F can be
reset to permit multiple interrupts.
6800 /6809 SOFTWARE INCOMPATIBILITIES

The 6809 as designed is reasonably compatible with the 6800,
but with the added features some inconsistencies must exist.
Specifically, they are:

• The stacking order on the 6809 exchanges the order of
ACCA and ACCB. This allows ACCA to stack as the MS byte of the
pair and also invalidates previous 6800 code which displayed IX or
PC from the stack.The 6809 stacks five more bytes for each NMI,
IRQ or SWI when compared to the 6800.

• The 6809 stack pointer points directly to the last item
placed on the stack rather than the location before it, as was done

31

on the 6800. Consequently, the stack pointer is initialized one
location higher on the 6809 than the 6800. Comparison values must
be one location higher.

• The 6809 uses two high-order condition code register
bits and will not apear as 1s as on the 6800.

• The TST instruction does not affect the C flag in the 6809.
Nor do the right shifts (ASR, LSR.ROR) affect V.

• The 6809 H flag is not defined as having any particular
state after subtract-like operations (CMP, NEG, SBC, SUB). The
6800 clears this flag for these instructions.

• The CPX instruction for the 6809 functions correctly,
setting all flags in the correct manner. The 6800 sets only the
Z-flag.

• The 6809 instruction LEA may or may not affect the
Z-flag depending upon which register is being loaded. However,
LEAX and LEAY do affect the Z-flag, while LEAS and LEAU do
not. See Chapter 4. As a result, the User stack (U) does not exactly
emulate the index registers.

EQUIVALENCIES
Although Chapter 4 will deal with the actual instructions, the

equivalent instructions between the 6800 and 6809 are important
to know about for complete understanding of the architecture of the
device. This is especially true if you are familiar with the 6800
instruction set.

Table 2-2 lists the 6800 instructions that are not included in
the 6809. However, during assembly, the 6800 instructions are
translated in to the functional equivalents as shown. I have made no
attempt at this point to define each instruction, only to present the
equivalent.

The interrupt structure on the 6809 µP has been extensively
analyzed and improved compared to the 6800. With the 6800 µP it
was useful to execute the sequence CLI, WAI. The 6809 µP
logically-equivalent sequence-ANDCC #$EF, CWAI # $ F F -
would allow an IRQ interrupt to occur after the ANDCC instruc
tion. If this is not desired, the 6809 instruction CWAI #$EF should
be used to replace the logically-equivalent sequence.

PERFORMANCE SUMMARY

The following cycle-by-cycle performance chart (Fig. 2-3)
illustrate the memory-access sequence corresponding to each pos
sible instruction and addressing mode for the 6809 µP. Notice that

32

33

34

35

Table 2-2. Equivalent Instructions
(courtesy of Motorola Semiconductor Products Inc.).

6800 Instruction

ABA
CBA
CLC
CLI
CLV
CPX
DES
DEX
INS
INX
LDAA
LDAB
ORAA
ORAB
PSHA
PSHB
PULA
PULB
SBA
SEC
SEI
SEV
STAA
STAB
TAB
TAP
TBA
TPA
TSX
TXS
WAI

6809 Equivalent

PSHS B; ADDA ,S +
PSHS B; CMPA ,S +
ANDCC #$FE
ANDCC #$EF
ANDCC #$FD
CMPX P
LEAS -1,5
LEAX -1 ,X
LEAS 1. -S
LEAX 1.X
LDA
LDB
ORA
ORB
PSHS A
PSHS B
PULS A
PULS B
PSHS B;SUBA,S+
ORCC #$01
ORCC #$10
ORCC #$02
STA
STB
TFR A,B; TST A
TFR A,CC
TFR B,A; TST A
TFR CC,A
TFR S,X
TFR X,S
CWAI #$FF

each instruction begins with an opcode fetch. While that opcode is
being internally decoded, the next program byte is fetched—the
so-called pipelining effect. Since most instructions will use the next
byte, this considerably speeds processor throughput. You will find
in tracing the operation that each opcode will follow the chart, and
VMA is an indication of FFFF,r on the address bus, R/ =1 and
BS = 0. Although this chart may appear out of place at this time, it
is my hope that it will help reinforce the architectural design of the
processor and ease your understanding of addressing and the in
struction set.

36

The first two chapters of this book were to get you into the swing of
things and hopefully spark your interest in the 6809µ. This chapter
is designed to build upon the power that I have hinted lies within
the miniscule dot of silicon. Therefore, let's dig in.

You probably realize that the true power of any computer,
regardless of size, is its ability to access memory. The addressing
modes that the designers build in provide that capability. Within the
6809 µP, the addressing modes make it possible to extend the
basic instruction set (59 instructions) to over 14 64. This statement
in itself should tell you that a lot of power is possible.

BASIC CONCEPTS

This chapter is about addressing—what it is, how it works,
and what modes and/or functions you have available with the 6809.
In order to do this, however, it is necessary to lay down some
ground rules to assist in the understanding of the subject. Con
sequently, rather than develop some odd-ball method. I have opted
to use the same terms and definitions that Motorola prescribes.

Therefore, in the following descriptions the term effective
address (EA) is used. The EA is the address in memory from which
the argument for an instruction is fetched or stored. In two operand
instructions, such as add to accumulator (ADD), one of the effec
tive operands is used as a pointer. (The accumulator is inherent and
not considered an addressing mode per se').

37

Addressing Modes

The following several pages provide descriptions and exam
ples of the various modes of addressing the 6809 µP. To insure that
understanding is achieved, I have provided examples for each
mode and in some, but not all, cases the example is described in
detail. Within these examples, you will see assembler instructions
(described in Chapter 5) which should not be confused with an
instruction set mnemonic. Specifically, I will be using the assem
bler instructions ORG, EQU and FCB. As does Motorola, I will use
the parentheses in the examples to indicate "the contents of the
location or resistor referred to. For example, (PC) indicates the
contents of the location pointed to by the PC (Program Counter).
The colon (:) is used to indicate a concatenation of bytes.

Furthermore, for convenience of description, it will be under
stood that the PC points one byte past the last byte of the instruc
tion op code at the beginning of instruction execution. Other
descriptive notation used throughout this book and Motorola and
AMI documentation are shown in Tables 3-1, 3-2 and 3-3.

To fully appreciate this chapter, and to use it, I recommend
that you look at the programmer's card located in Appendix C. This
card will assist you in making the connection between the addres
sing mode and the instruction.

Before getting into the real meat of the matter, here is a run
down of the types of addressing modes that will be discussed:
inherent (includes accumulator), immediate, extended indirect, di
rect, register, indexed, zero-offset, constant offset, accumulator offset,
auto increment/decrement, indexed indirect, relative, short/long re
lative branching and program counter relative addressing.

INHERENT ADDRESSING MODE
This mode of addressing has no effective address (EA). The

opcode of the instruction contains all the address information

Table 3 - 1 . Register Addressing Notation
(courtesy of Motorola Semiconductor Products Inc.).

38

Accumulator
Double Accumulator
Index Register
Stack Register
Program Counter
Direct Page Register
Condition Code Register

ACCA or ACCB(A OR B)
ACCA:ACCB or ACCD(D)
IX or IY (X or Y)
SP or US (S or U)
PC (PC)
DPR (DP)
CCR (CC)

The Longer-form notation (i.e, ACCA, ACCB,ACCD, IX, IY,SP,US, PC, DPR,
CCR) is used to describe the MPU resisters.The short-form notation (i.e.,A,B,
D, X,Y, S, U, PC, DP, CC) is used by the 6809 assembler that is discussed later.

Accumulator
Double-Accumulator
Inherent

Table 3-2. Register Addressing Modes
(courtesy of Motorola Semiconductor
Products Inc.).

necessary. Inherent addressing instructions are the only type
which do not include information in the operand field. Included in
inherent addressing are : ABX, DAA, SWI, ASRA and CLRB.

Assembly Example
0500 5F CLRB
0501 3F SWI

In Table 3-4 accumulator B is cleared (filled with 00000000) and the
processor in interrupted.

IMMEDIATE ADDRESSING

In immediate addressing, the EA of the data is the location
immediately following the opcode. In other words, the data to be
used in the instruction immediately follows the opcode of the
instruction. The 6809 µP uses both 8 and 16-bit immediate values,
depending on the size of argument specified by the opcode. Of
course, immediate addressing implies that the data is a known
value as the program is being created.

PC + 1 PC
EA = PC
PC + 1 PC

Table 3-3. Memory Addressing Notations
(courtesy of Motorola Semiconductor Products Inc.).

() = The (8-bit) data pointed to by the enclosed (16-bit) address
EA = The Effective Address; a pointer into memory created as a result of an addressing mode
M = (EA) = The data in the address space (MEMORY') pointed to by the effective address.
Ml = Memory Immediate Addressing; the data immediately following the last byte of the OP code.
dd = 8-bit Offset. (or a relative distance to a label which evaluates to 8-bits).
DDDD = 16-bit Offset (or a relative distance to a label).
P = Immediate, Direct, Indexed, Extended.
Q = Accumulator, Direct, Indexed, Extended.
YYYY = Offset such that -64K <= YYYY<=64K.
zz = Any indexable register (IX, IY, SP, or US)
XX = 6-bit hex value.
• = PC at start of present instruction
•' = Start of next instruction.
IN = Indexed Addressing only
= Immediate Addressing Bytes(s) Follow(s).
$ = Hex Value Follows
% = Binary Value Follows
< = Before indexing: force one-byte offset form (for known forward reference, or before

absolute address; force direct addressing (obtain warning If SETDP ~ M5 byte value
> = Before absolute address; force extended addressing.

= Indexing symbol.
[] = Indirection.

39

Table 3 -4 . Accumulator B Is Cleared and the Processor Is Interrupted.

Assembly Examples

0500 86 20 LDA #$20

0502 8E F000 LDX #$F000
0505 10 41 LDY #$41

; $ # signifies immediate
addressing

; $ signifies hexidecimal value

In the following example, the program says load the A ac
cumulator with the value F8, which is the value immediately
following the opcode (Fig. 3-1).

EXTENDED ADDRESSING

In extended addressing, the contents of the two bytes im
mediately following the opcode fully specify the 16-bit EA used by
the instruction. The address generated by an extended instruction
defines an absolute address and is not position independent. This
addressing mode references any location available in the memory
space. Extended addressing mode instructions are 3-bytes long,
opcode and two-byte address.

PC + 1 PC
EA = (PC) : (PC + 1)
PC + 2 PC

40

Fig. 3-1. Immediate addressing mode example (courtesy of Motorola Semicon
ductor Products Inc.).

Assembly Example

43A0 A PIG

1000 B6 43A0
EQU
LDA A

$43A0

In the following example, the program contains an instruction
to load the accumulator with DOG. For this example, DOG is equal
to the contents of memory location 06E5, which is the result of
adding the concatenated two bytes following the opcode byte to
$0000 (Fig. 3-2).

As a special case of indexed addressing, one level of indirec
tion may be added to extended addressing. In extended indirect, the
two bytes following the postbyte of an indexed instruction contain
the address of the data.

DIRECT ADDRESSING

The EA of a direct mode instruction is the contents of the next
byte of the opcode as a one-byte pointer into a single 256-byte
"page" of memory. (Page is used to mean one of the 256 possible
combinations of the high-order address bits). The page in use is
fixed by loading the Direct Page Register with the desired high-
order byte—by transferring from or exchanging with another re-

41

A PIG

gister. As a result, the EA consists of a high-order byte, from the
DP register, catenated with a low-order byte from the instruction.
The direct addressing mode for the 6809 µP is directly compatible
to that of the 6800 µP.

EA = DPR: (PC)

Assembly Examples
0500 96 30 LDA $20
0502 10 SETDP $10
0505 D6 1030 LDB $1030

Several things are shown here. First, this mode requires less
memory and executes faster than extended addressing. Of course,
only 256 location (one page) can be accessed without redefining the
contents of the DP register. Indirection is not allowed with this
addressing mode. The next thing demonstrated is SETDP—Set
Direct Page Pointer.

This directive is used by the assembler. It causes the assem
bler's 8-bit direct page pointer to be set to the value in the operand
field—in this case a hex 10. This pointer is used when the assem-

Fig. 3-2. Extended addressing mode example (courtesy of Motorola Semicon
ductor Products Inc.).

42

bler must decide whether to select the extended or direct mode of
addressing. If the high or most significant (MS) byte of the EA is
equal to the assembler's current direct page pointer, the direct
mode is chosen. Otherwise, the extended mode is selected. The
value in the operand field of the SETDP directive must be less than
or equal to $FF.

In the following example of the Direct Addressing Mode the
program contains an instruction to load the accumulator with CAT.
For this example, CAT is equal to the contents of memory location
004B, which is the result of adding the byte following the opcode
byte to $0000. Notice that this example is the same example that is
used for explaining direct addressing for any of the 68XX family of
processors, thus implying strict compatibility (Fig. 3-3).

REGISTER ADDRESSING

Register addressing implies no magic but merely references
the selection of various on-board registers. Some of the opcodes
are followed by a byte that defines a register or set of registers to
be used by the instruction, which is called apostbyte (Table 3-5).

Examples

TFR X, Y Transfers X into Y
EXG A, B Exchanges A with B
PSHS A, B, X, Y Push onto S Y,X, B then A
PULU X,Y, D Pull from U D,X, then Y

In the following assembly example, the REG—register
directive—is used to define specific registers for specific labels.
See Chapter 5. The registers are then pushed and pulled from the
stack in the order that is characteristic of the 6809 µP. See Table
2-1.
Assembly Example

0000 36
0002 35
0004 34

000F
0070
0070
70
70
0F

DOG
CAT
FROG
PSHU
PULS
PSHS

REG
REG
REG
#CAT
#FROG
#DOG

A,B,CC,DP
S,X,Y
U,X,Y

The interesting thing about this example, used courtesy of
Motorola, is that a label assigned a value using the REG directive
which contains the U register may not be used with the PSHU

43

Fig. 3-3. Direct addressing mode example (courtesy of Motorola Semiconduc
tor Products Inc.).

instruction. Similarly, a value formed using the S register may not
be used with PSHS instruction. The assembler will flag either of
these forms with an error message.

INDEXED ADDRESSING

In all indexed addressing one of the pointer registers (X, Y, U,
S and sometimes PC) is used in a calculation of the effective
address (EA) of the operand to be used by the instruction. Five

Table 3 - 5 . Push/Pull Postbyte (courtesy of American Microsystems, Inc.) .

Push/Pull Postbyte

- P U L L ORDER PUSH ORDER-
PC U Y X DP B A CC PSHS/PULS

FFFF <-INCREASING MEMORY ADDRESS-> OOOO
PC S Y X DP B A CC PSHU/PULU

44

basic types of indexing are available and are included in this
discussion. The postbyte of an indexed instruction specifies the
basic type and variation of the addressing mode as well as the
pointer register to be used. Table 3-6 lists the legal formats for the
postbyte. Table 3-7 gives the assembler form and the number of
cycles and bytes added to the basic values for indexed addressing
for each variation. As a result of processor compatibility, most
6800 µP index mode instructions will map into an equivalent two
bytes on the 6809 µP.

Zero-Offset Indexed

This option allows selection of auto increment/decrement by
one or two bits; it is a minimum two-byte instruction (opcode +
postbyte). When in this mode, the selected pointer register con
tains the EA of the data to be used by the instruction. This is the
fastest indexing mode.

Examples
LDD 0,X,
LDA 0,S

Constant Offset indexed

When this mode of addressing is used, a two's complement,
offset and the contents of one of the pointer registers are added to
form the effective address (EA) of the operand. The pointer regis
ter's initial content is unchanged by the addition. Three sizes of
offset are available.

±4-bit (-16 to +15)
±7-bit (-128 to +127)
±15-bit (-32768 to +32767)

Constant offset, ±4 bits, use bit 4 of the postbyte as a sign bit
and bits 0 through 3 as a constant offset. It is a minimum two-byte
instruction.

Constant offset, ± 7 bits, designates the byte after the post
byte as a two's complement offset. It is a minimum three-byte
instruction—opcode + postbyte + offset.

Constant offset, ± 15 bits, specifies the two bytes following
the postbyte to be two's complement offset. It is a minimum
four-byte instruction—opcode + postbyte + two-byte offset.

Other options are the two's complement 5-bit offset that is
included in the postbyte and is most efficient in use of bytes and
cycles. The two's complement 8-bit offset is contained in a single

45

Table 3-6. Indexed Addressing Postbyte Register

Bit Assignments (courtesy of American Microsystems, Inc.).

byte following the postbyte, and the two's complement 16-bit
offset is in the two-bytes following the postbyte. As a programmer
you will normally not worry about the offset, since the assembler
should take it into account.

Examples
LDA 23,X
LDX 2,S
LDY 300,X

46

Example of constant-offset indexed indirect

LDA [, X] (note: the brackets indicate indirection)
LDB [0,Y]
LDX [64000,S]

Constant offset indexed indirect addressing functions in two
stages like all indirects. First, the indexed address is formed by
temporarily adding the offset-value contained in the addressing
byte(s) to the value from the selected pointer register (X, Y, S, U, or
PC). Then this address is used to recover a two-byte absolute
pointer which is used as the EA.

The following example of the indexed addressing mode with a
16-bit offset contains an instruction to load the accumulator with a
tabular value containing the hexadecimal number $DB (Fig. 3-4).
This value is located in memory location 0780, which is the result
of adding the concatenated two bytes following the opcode byte to
the contents of the index register. Take out your programmer's
calculator and add up the values to see what you get. From Fig. 3-4
you can see that this mode allows the programmer to use a "table of
pointer" data structures, or to do I/O through absolute values
stored on the stack.

Accumulator-Offset Indexed

When this option is chosen, it designates the A, B or D
register as two's complement offset. The instruction is a minimum

Table 3-7. Indexed Addressing Modes (courtesy of American Microsystems, Inc.).

47

Fig. 3-4. Indexed addressing, mode, 16-bit offset example (courtesy of Motorola
Semiconductor Products, Inc.).

of two-bytes. However, in all cases the offset is temporarily added
to the contents of the selected pointer register to form an EA.

This mode is similar to constant offset indexed except that the
two's complement value in one of the accumulators (A, B, or D),and
the content of one of the pointer registers, are added for the EA as
stated earlier. It is important to realize that when this process
takes place, neither the contents of the accumulator or the pointer
register are changed as a result of the addition. Furthermore, the
postbyte specifies which accumulator to use as an offset. No addi
tional bytes are required. The value of using an accumulator offset
is that the value of the offset can be calculated by a program at
run-time, thus relieving the programmer.
Examples
LDA A,X
LDA B,Y
LDA D,U

48

Accumulator-indexed indirect addressing uses an ac
cumulator (A,B or D) as a two's complement offset which is tem
porarily added to the value from the selected pointer register
(X,Y,S, or U). The resulting pointer is then used to recover
another pointer from memory —the indirect notation—which is
then used as the EA.
Auto Increment/Decrement Indexed

When the auto increment addressing mode is chosen, the
pointer register contains the address of the operand. After the
pointer register is used, it is incremented by one or two. This
mode is extremely useful when you want to step through tables,
move data or create software stacks. Conversely, the auto decre
ment mode suggests that the pointer register be decremented
prior to its use as the pointer to the address of the data. This mode
is very similar in operation to the increment mode, but everything
is backwards. For example, tables would be scanned from the high
to low addresses.

As indicated, the increment or decrement can be one or two to
all for 8 or 16-bit tables. Of course, the step is programmer
selectable. Because the decisions can be made before run-time,
the programmer can establish additional software stacks that are
identical to the U and S stacks.
Examples

LDA ,X LDX ,X++
LDA ,Y+ LDX ,Y++
LDA ,S+ LDX ,U++
LDA ,U+ LDX ,S++

Notice that the value in the selected pointer register addres
ses a one or two byte value in memory. No offset is permitted in
this mode.
Example

LDA [,X + +]
LDB [,Y + +]
LDD [,S + +]
LDX [,U + +]

This mode references auto-increment indirect. It uses the
value in the selected pointer register (X,Y,S or U) to recover an
address value from memory. This value is used as the EA. The
register is then incremented by two (++)—incrementing by one
in the indirect mode is illegal and no offset is permitted.

49

Example
LDA ,-X LDX , - - X
LDA ,-Y LDX , - - Y
LDA , -U LDX , - - U
LDA , - S LDX ,--S

In the auto-decrement addressing mode, the selected pointer
register (X,Y,S or U) is decremented by one (-) or two (--) and is
user selectable. The resulting value then becomes the EA.
Example
LDA [, - -X]
LDB [, - -Y]
LDD [, - -U]
LDX [,-- S]

Auto-decrement indirect first decrements the selected
pointer register by two (--). An auto-decrement of one is prohi
bited. The resulting value is used to recover a pointer value from
memory and is the EA.

INDEXED INDIRECT
With the exception of the ± 4-bit constant offset and the

auto-increment/decrement by one, all indexed addressing modes
may be used with an additional level of indirection. The address
formed by adding the offset to the selected pointer register desig
nates a location containing the EA of the operand data. Bit 4 of the
postbyte is used to select the indexed indirect mode. Interestingly
enough, this same bit (bit 4) is used as a sign bit in the ± 4-bit
constant offset mode. Regardless of indexing mode direct or indi
rect, the same number of bytes are used.

In this indirect mode, the EA is contained at the location
specified by the content of the index register plus any offset. In the
following example, the A accumulator is loaded indirectly using an
EA calculated from the index register and an offset. It is reprinted
courtesy of Motorola.
Example

Before execution
A = XX (don't care)

X =$F000

$0100 LDA 10,X EA is now $F010
$F010 $F1 F150 is now the new EA
$F011 $50
$F150 $AA After Execution

A=$AA Actual Data Loaded

50

RELATIVE ADDRESSING

Relative addressing involves adding a signed constant to the
contents of the program counter. When this mode is used in
conjunction with a branch instruction, the sum becomes the new
PC content if the branch is taken; if not the PC merely advances to
the next instruction. For example, the bytes following the branch
opcode are treated as a signed offset which is added to the program
counter. All of memory can be reached in long relative addressing
as an EA is interpreted modulo 216. The following example is
reprinted courtesy of American Microsystems, Inc. (AMI).
Example

BEQ CAT (short)
BGT DOG (short)

CAT LBEQ RAT (long)
DOG LBGT RABBIT (long)
-
-
-
RAT NOP
RABBIT NOP

According to Motorola and AMI, relative addressing differs
from that contained in the 6800 µP due to two important additions.
The first of these is that the offset—signed constant—can be either
± 7 bits or ± 15 bits in length. This feature permits the program to
branch to any location in memory.

The second most important addition is that the relative mode
is no longer limited to branch instructions. An EA which retains the
position-independent nature of relative addressing may be formed
by adding a ± 7-bit or ± 15-bit offset to the program counter. Doing
this in-effect is an indexed addressing mode with one or two
specific postbytes. The examples are reprinted courtesy of Ameri
can Microsystems, Inc.

Note: the offset is added to the new value of the PC.

51

Table 3-8. 8-Bit Accumulator and Memory
Instructions (courtesy of American Microsystems, Inc.).

NOTE: A and B may be pushed to (pulled from) either stack with PSHs. PSHU (PULS, PULU) instructions.

Relative Indirect
This mode in actual use is indexed with the PC being used as

the index register or in concert with the prime register. One or two
bytes past the postbyte are used to provide a ± 7 bit or ± 15 bit
offset. The resulting signed number is then added to the contents of
the PC, which then forms a pointer to consecutive locations in
memory that contain the new EA. This example is courtesy of
American Microsystems, Inc.

52

Table 3-9. 16-Bit Accumulator and Memory

Instructions (courtesy of American Microsystems, Inc.).

Example

2015
2015
2016
2017
2018

1FDA

1FDB

0100

LDA
A6
9C
C2

01

00

-$3E,PC
OPCODE
POSTBYTE
OFFSET
NEXT INST

NEW

EA

DATA

2018
2018
2019
201A
201B

201C

413B

413C

0300

LDA
A6
9D
21
1F

03

00

$2115,PC
OPCODE
POSTBYTE
OFFSET (MSB)
OFFSET (LSB)

NEXT INST

NEW

EA

DATA

Table 3-10. Index Register/Stack Pointer
Instructions (courtesy of American Microsystems, Inc.).

53

Table 3-11. Branch Instructions (courtesy of American Microsystems, Inc.).

Extended Indirect

This is another option of indexed indirect addressing. For the
extended mode, two bytes following the postbyte are used as a
pointer to consecutive locations in memory which contain the new
effective address. The example is courtesy of American Microsys
tems, Inc.
Example

201C IDA C200

Absolute Indirect

The processor must have some method of restarting and
handling interrupt vectors. This addressing mode is exclusively for
that purpose and no other. The conditions are serviced by fetching
the contents of exact memory locations and loading it into the PC.
Nothing more and nothing less happens.

54

Table 3-12. Miscellaneous Instructions (courtesy of American Microsystems, Inc.).

SUMMARY

This chapter is a tough one to understand. I'm reasonably sure
that on this first reading you haven't grasped everything that was
presented. You will quite naturally have to reread this chapter and
actually try the concepts explained before they really mean any
thing to you. However, as a quick reference I've included Tables
3-8 through 3-12 to help put the various instructions in perspective
as far as addressing goes and get you ready for the next chapter on
the instruction set.

55

Into the Instruction Set
Now that you have an understanding of how the 6809 µP works and
the various methods of addressing, the next step is to become
familiar with the instruction set. As discussed in Chapter 1, the
6809 is similar to that of the 6800 µP, and in most cases has the
same instructions except where noted in Chapter 2. The 6809 µP
as designed is upward compatible at the source level. This means
that you can use 6800 instructions in a 6809 assembly and end up
with a working program, which you will see in Chapter 6.

One difference that is readily discernible is the number of
opcodes has been reduced from 72 to 59, primarily because of the
expanded architecture and additional addressing modes. See Chap
ter 3. Because of the additional addressing modes, the number of
available opcodes has risen from 197 to 1464—a considerable jump
and indication of the type of programming power you have available
to you. Before getting into a breakdown of the instruction codes, a
brief overview is due to give you a better idea of what is in store.

PUSH-PULL AND ADDRESS IT

Some things you might not be aware of are the use of push
(PSH) and pull (PUL), the transferring of register contents (TFR)
and (EXG), the method of loading the EA (LEA), multiplying
accumulators (MUL), and long and short relative branches. These
and other functions of the 6809 µP are important concerns for the
programmer to become familiar with and are covered here to assist
in understanding.

56

PSHU/PSHS

The push instructions have the capability of pushing onto
either hardware stack (S) or user stack (U). Any or all of the MPU
register with a single instruction. In Chapter 3, I showed you how a
register set could be predefined to permit pushing several defined
registers on the stack at one time.

PULU/PULS

The pull instructions have the same capability of the push
instruction in reverse order. The byte immediately following the
push or pull opcode determines which register or registers are to
be pushed or pulled. The actual PUSH/PULL sequence is fixed;
each bit defines a unique register to push or pull. This push/pull
postbyte was demonstrated in Table 3-5.

TFR/EXG

One of the powerful features of the 6809 µP is that any
register of like size may be transferred content wise with the
other, or the contents exchanged. For example, an 8-bit register
can be transferred or exchanged with another 8-bit register and so
on. When this feature is used, the bits 4-7 of the postbyte define the
source register while bits 0-3 represent the destination. The fol
lowing combinations are the valid definitions for these register
transfers.

0000 - D
0001 - X
0010 - Y
0011 - U
0100 - S

Load Effective Address (LEA)

One of the methods used by the 6809 µP to speed up proces
sing is to use this instruction. What happens is that the LEA
calculates the EA used in an indexed instruction and stores that
address value, rather than the data at that address, in a pointer
register. This functional addressing makes all the features of the
internal addressing hardware available to the programmer, and
suggests that the 6809 is a 16-bit processor in reality. Table 4-1 is
an example of LEA and demonstrates its power.

Multiply (MUL)

This is a powerful instruction that multiplies unsigned binary
numbers in the A and B accumulator and then places the result into

0101 - PC
1000 - A
1001 - B
1010 - CC
1011 - DP

57

Table 4-I.LEA Examples (courtesy of American Microsystems, Inc.).

Instruction

LEAX
LEAX
LEAY
LEAY
LEAS
LEAS
LEAX

10,X
500,X

A,Y
-10,U
-10,S

10,S
5,S

Operation

X + 10 - > X
X+500 - > X
Y+A - > Y
U-10 - > U
S-10 - > 5
S+10 - > S
S+5 - > X

Comment

! Adds 5-bit constant 10 to X
!Adds 6-bit constant 500 to X
!Adds 8-bit accumulator to Y
! Subtracts 10 from 11
1 Used to reserve area on stack
! Used to clean up stack
! Transfers as well as adds.

the 16-bit D accumulator. This permits multiple-precision multi
plications.

Long and Short Relative Branches
I would imagine that the first thing that comes to mind is that

this is really something difficult to master. Actually, the 6809 has
the capability of PC relative branching throughout the entire mem
ory map. When in this mode and a branch is to be taken, the 8 or
16-bit offset value is added to the PC to make the EA. Con
sequently, this permits the processor to branch anywhere within a
64K memory map. Position independent code can be easily gener
ated by using relative branching. Incidentally, short refers to 8-bit
and long to 16-bit.

SYNC

This is a unique instruction since it stops the MPU and makes
it wait for an interrupt. If the pending interrupt is nonmaskable
(NMI) or maskable (FIRQ, IRQ) with its mask bit (F or I) clear, the
processor will clear the Sync state and perform the normal inter
rupt stacking and servicing routine. You can see that this makes it
possible to handle specialized interrupts and develop programs
that work well in process control or data acquisition.

Software Interrupts (SWI)

If you are familiar with the 6800 µP, then you have some ideas
what a software interrupt is for. It is the instruction that will cause
an interrupt in the course of program execution and will permit a
goto for the associated vector fetch. Three levels of SWI are
available on the 6809 and have a priority status of SWI, SWI2 and
SWI3.

58

16-Bit Operations

These operations make the 6809 a high-powered µP and
excellent precursor to 16-bit processors. The 6809 can process
16-bit datas on an 8-bit structure with almost the same power as its
big brother the 68000. Included in these 16-bit instructions are:
loads, stores, compares, adds, subtracts, transfers, exchanges,
pushes and pulls. Refer again to Tables 3-8 through 3-12 which are
summaries of the instruction set. Associated with this chapter is
Appendix B which covers the hexadecimal values of machine
codes, coupled with Appendix C, the programmer's quick refer
ence card.

INDIVIDUAL INSTRUCTIONS

The next several pages will cover each instruction available
on the 6809 µP. You will notice that in concert with the instruction
mnemonic, I have provided the various addressing modes and the
associated opcode. This sequence of presentation is coupled with
the Instruction Index, located in Appendix D. The purpose is to
assist you in finding the proper instruction for a particular purpose.
I would suggest that as you proceed through this section of the
chapter you look at the programmer's card, found in Appendix C,
and use it to follow along. This will help you become familiar with
each instruction and the card.

See Tables 4-2 and 4-3 for the notation that is used in the
explanation of the instruction set. The notation is used by Motorola
and consequently provides continuity in explanation.

ABX ADD ACCB INTO IX

SOURCE FORM: ABX

OPERATION: IX' IX + ACCB

CONDITION CODES: NOT AFFECTED

DESCRIPTION:
Add the 8-bit unsigned value in Accumulator B into the
X index register.

ADDRESSING MODE:

INHERENT

OPCODE

3A

MPU
CYCLES

3

NO OF
BYTES

1

59

ADC ADD WITH CARRY MEMORY INTO REGISTER
SOURCE FORM: ADCAP ; ADCB P
OPERATION: R' R + M + C
CONDITION CODES:

H: Set if the operation caused a carry from bit
3 in the ALU.

N: Set if bit 7 of the result is set.
Z: Set if all bits of the result are clear.
V: Set if the operation caused an 8-bit two's

complement arithmetic overflow.
C: Set if the operation caused a carry from bit

7 in the ALU.
DESCRIPTION:

Adds the contents of the carry flag and the memory
byte into an 8-bit register.

REGISTER ADDRESSING MODE: Accumulator
ADCA

ADDRESSING MODE

IMMEDIATE
DIRECT
INDEXED
EXTENDED

OPCODE

89
99
A9
B9

MPU
CYCLES

2
4
4 +
5

NO OF
BYTES

2
2
2+
3

ADCB

ADDRESSING MODE

IMMEDIATE
DIRECT
INDEXED
EXTENDED

OPCODE

C9
D9
E9
F9

MPU
CYCLES

2
4
4 +
5

NO OF
BYTES

2
2
2+
3

Table 4-2. Operation Notation (cour
tesy of Motorola Semiconductor Pro
ducts Inc.).

60

ADD ADD MEMORY INTO REGISTER - 8-BIT
SOURCE FORMS: ADDA P; ADDB P
OPERATION: R' R + M
CONDITION CODES:

H: Set if the operation caused a carry from bit
3 in the ALU.

N: Set if bit 7 of the result is set.
Z: Set if all bits of the result are clear.
V: Set if the operation caused an 8-bit two's

complement arithmetic overflow.
C: Set if the operation caused a carry from bit

7 in the ALU.
DESCRIPTION:

Adds the memory byte into an 8-bit register.
REGISTER ADDRESSING MODE: Accumulator

ADDA

ADDRESSING MODE

IMMEDIATE
DIRECT
INDEXED
EXTENDED

OPCODE

8B
9B
AB
BB

MPU
CYCLES

2
4
4 +
5

NO OF
BYTES

2
2
2+
3

ADDB

ADDRESSING MODE

IMMEDIATE
DIRECT
INDEXED
EXTENDED

OPCODE

CB
DB
EB
FB

MPU
CYCLES

2
4
4+
5

NO OF
BYTES

2
2
2+
3

ADDD

ADDRESSING MODE

IMMEDIATE
DIRECT
INDEXED
EXTENDED

OPCODE

C3
D3
E3
F3

MPU
CYCLES

4
6
6+
7

NO OF
BYTES

3
2
2+
3

This instruction ADDD is the 16-bit version. For this the
16-bit version. For this the operation is R' R + M:M+1. The
condition codes are: H: not affected; N: Set if bit 15 of the result

61

62

is set; Z: Set if all bits of the result are clear; V: Set if there
was a 16-bit two's complement arithmetic overflow; and C: set if
the operation on the MS byte caused a carry from bit 7 in the ALU.
This instruction adds the 16-bit memory value into the 16-bit
accumulator (D) and has a register addressing mode of double
accumulator. The memory addressing modes are shown above.

In the next group of instructions, the logical AND is implied.
The logical AND is best explained by assuming that it has the
property such that if X and Y are two logic variables, then the
function X AND Y is defined by the following:

X Y X AND Y X Y X AND Y
0 0 0 1 0 0
0 1 0 1 1 1

A basic operation in Boolean algebra is the AND operation
which, for the two integers I and J, may be defined by saying if I and
J are both 1, then the result is 1. If I is 0 and J is 1, then the result is
0 and vice versa.

AND LOGICAL AND MEMORY INTO REGISTER

SOURCE FORMS: ANDA P; ANDB P
OPERATION: R ' R A N D M
CONDITION CODES:

H: Not Affected
N: Set if bit 7 of result is set
Z: Set if all bits of result are clear
V: Cleared
C: Not affected

DESCRIPTION:
Performs the logical "AND" operation between the
contents of ACCX and the contents of M and the result
is stored in ACCX.

REGISTER ADDRESSING MODE: Accumulator

ANDA

ADDRESSING MODE

IMMEDIATE
DIRECT
INDEXED
EXTENDED

OPCODE

84
94
A4
B4

MPU
CYCLES

2
4
4 +
5

NO OF
BYYTES

2
2
2+
3

63

ANDB

ADDRESSING MODE

IMMEDIATE
DIRECT
INDEXED
EXTENDED

OPCODE

C4
D4
E4
F4

MPU
CYCLES

2
4
4+
5

NO OF
BYTES

2
2
2+
3

AND LOGICAL AND IMMEDIATE MEMORY INTO CCR

SOURCE FORM: ANDCC #XX
OPERATION: R' R AND MI
CONDITION CODES:

CCR' CCR MI
DESCRIPTION:

Performs a logical "AND" between the CCR and the
MI byte and places the result in the CCR.

ANDCC

ADDRESSING MODE

MEMORY IMMEDIATE

OPCODE

1C

MPU
CYCLES

3

NO OF
BYTES

2

ASL ARITHMETIC SHIFT LEFT
SOURCE FORM: ASL Q
OPERATION:

CONDITION CODES:
H: Undefined
N: Set if bit 7 of the result is set
Z: Set if all bits of the result are clear
V: Loaded with the result of (b7 b0) of

the original operand.
C: Loaded with bit 7 of the original operand.

DESCRIPTION:
Shifts all bits of the operand one place to the left. Bit 0
is loaded with a zero. Bit 7 of the operand is shifted
into the carry flag.

64

b7 b0

C' b7, b 7 ' . . .b , b 6 . . . b 0 , b 0 ' 0

ASLA

ADDRESSING MODE

ACCUMULATOR

OPCODE

48

MPU
CYCLES

2

NO OF
BYTES

1

ASLB

ADDRESSING MODE

ACCUMULATOR

OPCODE

58

MPU
CYCLES

2

NO OF
BYTES

1

ASL

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

08
78
68

MPU
CYCLES

6
7
6+

NO OF
BYTES

2
3
2+

ASR ARITHMETIC SHIFT RIGHT

SOURCE FORM: ASR Q

CONDITION CODES:
H: Undefined
N: Set if bit 7 of the result is set
Z: Set if all bits of result are clear
V: Not affected
C: Loaded with bit 0 of the original operand

DESCRIPTION:
Shifts all bits of the operand right one place. Bit 7 is
held constant. Bit 0 is shifted into the carry flag. The
6800/01/02/03/08 processors do affect the V flag.

65

OPERATION:

ASR

ADDRESSING MODE

INHERENT
DIRECT
EXTENDED
INDEXED

OPCODE

57
07
77
67

MPU
CYCLES

2
6
7
6 +

NO OF
BYTES

1
2
3
2 +

ASRA

ADDRESSING MODE

INHERENT

OPCODE

47

MPU
CYCLES

2

NO OF
BYTES

1

BCC BRANCH ON CARRY CLEAR

SOURCE FORM: BCC dd; LBCC DDDD
OPERATION: TEMP MI

if C = 0 THEN PC PC + TEMP
CONDITION CODES:

Not affected
DESCRIPTION:

Tests the state of the C bit and causes a branch if C is
clear.

MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS:

When used after a subtract or compare on unsigned
binary values, this instruction could be called
"branch" if the resister was higher or the same as
the memory operand.

BCC

ADDRESSING MODE

RELATIVE

OPCODE

24

MPU
CYCLES

3

NO OF
BYTES

2

LBCC LONG BRANCH

ADDRESSING MODE

RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

BCS

OPERATION:
TEMP

BRANCH ON CARRY SET

MI

if C = 1 THEN PC PC + TEMP

66

CONDITION CODES:
Not affected

DESCRIPTION:
Tests the state of the C bit and causes a branch if C is
set.

MEMORY ADDRESSING MODES: Memory Immediate
COMMENTS:

When used after a subtract or compare, on unsigned
binary values, this instruction could be called
"branch" if the register was lower than the memory
operand.

BCS

ADDRESSING MODE

RELATIVE

OPCODE

25

MPU
CYCLES

3

NO OF
BYTES

2

LBCS

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

BEQ BRANCH ON EQUAL

SOURCE FORMS: BEQ dd; LBEQ DDDD

OPERATION: TEMP MI
if Z = 1 THEN PC PC + TEMP

CONDITION CODES:
Not affected.

DESCRIPTION:
Tests the state of the Z bit and causes a branch if the Z
bit is set.

MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS:

Used after a subtract or compare operation, this
instruction will branch if the compared values-
signed or unsigned—were exactly the same.

BEQ

ADDRESSING MODE

RELATIVE

OPCODE

27

MPU
CYCLES

3

NO OF
BYTES

2

67

LBEQ

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES
5(6)

NO OF
BYTES

4

BGE BRANCH ON GREATER THAN OR EQUAL TO
ZERO

SOURCE FORMS: BGE dd; LBGE DDDD
OPERATION: TEMP MI

if [N V] = 0 THEN PC PC + TEMP
CONDITION CODES:

Not affected
DESCRIPTION:

Causes a branch if N and V are either both set or both
clear. For example, branch if the sign of a valid two's
complement result is, or would be, positive.

MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS:

Used after a subtract or compare operation on two's
complement values, this instruction will branch if
the register was greater than or equal to the memory
operand.

BGE

ADDRESSING MODE

RELATIVE

OPCODE

2C

MPU
CYCLES

3

NO OF
BYTES

2

LBGE

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

BGT Branch on Greater
SOURCE FORMS: BGT dd; LBGT DDDD
OPERATION: TEMP MI

if Z [N V] = 0 then PC ' PC + TEMP
CONDITION CODES: Not affected
DESCRIPTION:

Causes a branch if (N and V are either both set or both
clear) and Z is clear. In other words, branch if the sign of a
valid two's complement result is, or would be, positive and
non-zero.

68

MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS:

Used after a subtract or compare operation on two's
complement values, this instruction will "branch if the
register was greater than the memory operand."

BGT

ADDRESSING MODE

RELATIVE

OPCODE

2E

MPU
CYCLES

3

NO OF
BYTES

2

LBGT

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

BHI Branch if Higher
SOURCE FORMS: BHI dd; LBHI DDDD
OPERATION: TEMP MI

if [C V Z] = 0 then PC PC + TEMP
CONDITION CODES: Not affected
DESCRIPTION:

Causes a branch if the previous operation caused neither a
carry nor a zero result.

MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS:

Used after a subtract or compare operation on unsigned
binary values, this instruction will "branch if the register
was higher than the memory operand." Not useful, in
general, after INC/DEC, LD/ST, TST/CLR/COM.

BHI

ADDRESSING MODE

RELATIVE

OPCODE

22

MPU
CYCLES

3

NO OF
BYTES

2

LBHI

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

69

BHS Branch if Higher or Same
SOURCE FORM: BHS dd; LBHS DDDD
OPERATION: TEMP MI

if C = 0 then PC' PC' PC + 1 MI
CONDITION CODES: Not Affected
DESCRIPTION:

Tests the state of the C-bit and causes a branch if C is
clear.

MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS:

When used after a subtract or compare on unsigned bi
nary values, this instruction will "branch if register was
higher than or same as the memory operand." This is a
duplicate assembly-language mnemonic for the single
machine instruction BCC. Not useful, in general, after
INC/DEC, LD/ST, TST/CLR/COM.

BHS

ADDRESSING MODE

RELATIVE

OPCODE

24

MPU
CYCLES

3

NO OF
BYTES

2

LBHS

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

BIT Bit Test
SOURCE FORM: BIT P
OPERATION: TEMP R M
CONDITION CODES:

H: Not Affected
N: Set if bit 7 of the result is Set
Z: Set if all bits of the result are Clear
V: Cleared
C: Not Affected

DESCRIPTION:
Performs the logical "AND" of the contents of ACCX and
the contents of M and modifies condition codes accord
ingly. The contents of ACCX or M are not affected.

REGISTER ADDRESSING MODE: Accumulator

70

BITA

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

95
B5
85
A5

MPU
CYCLES

4
5
2
4 +

NO OF
BYTES

2
3
2
2 +

BITB

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

D5
F5
C5
E5

MPU
CYCLES

4
5
2
4+

NO OF
BYTES

2
3
2
2+

BLE Branch on Less than or Equal to Zero
SOURCE FORM: BLE dd; LBLE DDDD
OPERATION: TEMP MI

if Z V (N V) = 1 then PC = PC + 1
TEMP

CONDITION CODES: Not Affected
DESCRIPTION:

Causes a branch if the "Exclusive
OR" of the N and V bits is 1 or if Z = 1.
That is, branch if the sign of a valid
two's complement result is —or
would be—negative.

MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS:

Used after a subtract or compare operation on two's
complement values, this instruction will "branch if the
register was less than or equal to the memory operand."

BLE

ADDRESSING MODE

RELATIVE

OPCODE

2F

MPU
CYCLES

3

NO OF
BYTES

2

LBLE

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

71

BLO Branch on Lower
SOURCE FORM: BLO dd; LBLO DDDD
OPERATION: TEMP MI

if C = 1 then PC PC 4- TEMP

CONDITION CODES: Not Affected
DESCRIPTION:

Tests the state of the C bit and causes a branch if C is Set.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS:

When used after a subtract or compare on unsigned bi
nary values, this instruction will "branch if the register
was lower" than the memory operand. Note that this is a
duplicate assembly-language mnemonic for the single
machine instruction BCS. Not useful, in general, after
INC/DEC, LD/ST, TST/CLR/COM.

BLO

ADDRESSING MODE

RELATIVE

OPCODE

25

MPU
CYCLES

3

NO OF
BYTES

2

LBLO

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

BLS Branch on Lower or Same
SOURCE FORM: BLS dd; LBLS DDDD
OPERATION.TEMP MI

if (C V Z) = 1 then PC PC + TEMP
CONDITION CODES: Not affected
DESCRIPTION:

Causes a branch if the previous operation caused either a
carry or a zero result.

MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS:

Used after a subtract or compare operation on unsigned
binary values, this instruction will "branch if the register
was lower than or the same as the memory operand." Not
useful, in general, after INC/DEC, LD/ST, TST/CLR/
COM.

72

BLS

ADDRESSING MODE

RELATIVE

OPCODE

23

MPU
CYCLES

3

NO OF
BYTES

2

LBLS

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

BLT Branch on Less than Zero
SOURCE FORMS: BLT dd; LBLT DDDD
OPERATION: TEMP MI

if (N V) = 1 then PC ' PC + TEMP
CONDITION CODES: Not affected
DESCRIPTION:

Causes a branch if either, but not both, of the N or V bits is
1. That is, branch if the sign of a valid two's complement
result is—or would be—negative.

MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS:

Used after a subtract or compare operation on two's
complement binary values, this instruction will "branch if
the register was less than the memory operand."

BLT

ADDRESSING MODE

RELATIVE

OPCODE

2D

MPU
CYCLES

3

NO OF
BYTES

2

LBLT

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

BMI Branch on Minus
SOURCE FORM: BMI dd; LBMI DDDD
OPERATION: TEMP MI

if N = 1 then PC ' PC + TEMP
CONDITION CODES: Not affected

73

—

DESCRIPTION:
Tests the state of the N bit and causes a branch if N is set.
That is, branch if the sign of the two's complement result is
negative.

MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS:

Used after an operation on two's complement binary
values, this instruction will "branch if the (possibly in
valid result is minus."

BMI

ADDRESSING MODE

RELATIVE

OPCODE

2B

MPU
CYCLES

3

NO OF
BYTES

2

LBMI

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

BNE Branch Not Equal
SOURCE FORMS: BNE dd; LBNE DDDD
OPERATION: TEMP MI

if Z = 0 then PC ' PC + TEMP
CONDITION CODES: Not Affected
DESCRIPTION:

Tests the state of the Z bit and causes a branch if the Z bit is
clear.

MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS:

Used After a subtract or compare operation on any binary
values, this instruction will "branch if the register is (or
would be) not equal to the memory operand."

BNE

ADDRESSING MODE

RELATIVE

OPCODE

26

MPU
CYCLES

3

NO OF
BYTES

2

LBNE

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

74

BPL Branch of Plus
SOURCE FORM: BPL dd; LBPL DDDD
OPERATION: TEMP MI

if N = 0 then PC ' PC + TEMP
CONDITION CODES: Not affected
DESCRIPTION:

Tests the state of the N bit and causes a branch if N is
clear. That is, branch if the sign of the two's complement
result is positive.

MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS:

Used after an operation on two's complement binary
values, this instruction will "branch if the possibly invalid
result is positive."

BPL

ADDRESSING MODE

RELATIVE

OPCODE

2A

MPU
CYCLES

3

NO OF
BYTES

2

LBPL

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
CYTES

4

BRA Branch Always

SOURCE FORMS: BRA dd; LBRA DDDD
OPERATION: TEMP MI

PC ' PC + TEMP
CONDITION CODES: Not Affected.
DESCRIPTION:

Causes an unconditional branch.
MEMOR Y ADDRESSING MODE: Memory Immediate

BRA

ADDRESSING MODE

RELATIVE

OPCODE

20

MPU
CYCLES

3

NO OF
BYTES

2

LBRA

ADDRESSING MODE

LONG RELATIVE

OPCODE

16

MPU
CYCLES

5

NO OF
BYTES

3

75

BRN Branch Never

SOURCE FORM: BRN dd; LBRN DDDD
OPERATION: TEMP MI
CONDITION CODES: Not Affected
DESCRIPTION:

Does not cause a branch. This instruction is essentially a
NO-OP, but has a bit pattern logically related to BRA.

MEMOR Y ADDRESSING MODE: Memory Immediate
BRN

ADDRESSING MODE

RELATIVE

OPCODE

21

MPU
CYCLES

3

NO OF
BYTES

2

LBRN

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5

NO OF
BYTES

4

BSR Branch to Subroutine

SOURCE FORM: BSR dd; LBSR DDDD
OPERATION: TEMP MI

SP' SP - 1, (SP) PCL
SP' SP - 1, (SP) PCH
PC PC + TEMP

CONDITION CODES: Not affected
DESCRIPTION:

The program counter is pushed onto the stack. The pro
gram counter is then loaded with the sum of the program
counter and the memory immediate offset.

MEMOR Y ADDRESSING MODE: Memory Immediate

BSR

ADDRESSING MODE

RELATIVE

OPCODE

8D

MPU
CYCLES

7

NO OF
BYTES

2

LBSR

ADDRESSING MODE

LONG RELATIVE

OPCODE

17

MPU
CYCLES

9

NO OF
BYTES

3

76

BVC Branch on Overflow Clear

SOURCE FORM: BVC dd; LBVC DDDD
OPERATION: TEMP MI

if V = 0 then PC PC + TEMP
CONDITION CODES: Not Affected
DESCRIPTION:

Tests the state of the V bit and causes a branch if the V bit
is clear. That is, branch if the two's complement result was
valid.

MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS:

Used after an operation on two's complement binary
values, this instruction will "branch if there was no over
flow."

BVC

ADDRESSING MODE

RELATIVE

OPCODE

28

MPU
CYCLES

3

NO OF
BYTES

2

LBVC

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

BVS Branch on Overflow Set

SOURCE FORM: BVS dd; LBVS DDDD
OPERATION: TEMP MI

if V = 1 then PC PC + TEMP
CONDITION CODES: Not Affected
DESCRIPTION:

Tests the state of the V bit and causes a branch if the V bit
is set. That is, branch if the two's complement result was
invalid.

MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS:

Used after an operation on two's complement binary
values, this instruction will "branch if there was an over
flow." This instruction is also used after ASL or LSL to
detect binary floating-point normalization.

77

BVS

ADDRESSING MODE

RELATIVE

OPCODE

29

MPU
CYCLES

3

NO OF
BYTES

2

LBVS

ADDRESSING MODE

LONG RELATIVE

OPCODE

10

MPU
CYCLES

5(6)

NO OF
BYTES

4

CLR
SOURCE FORM: CLR Q
OPERATION: TEMP

M 0016

CONDITION CODES:
H:
N:
Z:
V:
C:

Not affected
Cleared
Set
Cleared
Cleared

M

Clear

DESCRIPTION:
ACCX or M is loaded with 00000000. The C-flag is cleared
for 6800 compatibility.

CLRA

ADDRESSING MODE

INHERENT

OPCODE

4 F

MPU
CYCLES

2

NO OF
BYTES

1

CLRB

ADDRESSING MODE

INHERENT

OPCODE

5F

MPU
CYCLES

2

NO OF
BYTES

1

78

CLR

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

OF
7F
6F

MPU
CYCLES

6
7
6+

NO OF
BYTES

2
3
2 +

CMP Compare Memory from a Register - 8 Bits
SOURCE FORM: CMPA P; CMPB P
OPERATION: TEMP R - M [i.e., TEMP R + M + 1]
CONDITION CODES:
H: Undefined
N: Set if bit 7 of the result is Set.
Z: Set if all bits of the result are Clear.
V: Set if the operation caused an 8-bit two's complement

overflow
C: Set if the subtraction did not cause a carry from bit 7 in the

ALU

DESCRIPTION:
Compares the contents of M from the contents of the
specified register and sets appropriate condition codes.
Neither M nor R is modified. The C flag represents a
borrow and is set inverse to the resulting binary carry.

REGISTER ADDRESSING: Accumulator
FLAG RESULTS:

(N V) = 1 R .LT. M (2's comp)
C = 1 R .LO. M (unsigned)
Z = 1 R .EQ. M

CMPA

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

91
B1
81
A1

MPU
CYCLES

4
5
2
4 +

NO OF
BYTES

2
3
2
2+

CMPB

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

D1
F1
C1
E1

MPU
CYCLES

4
5
2
4 +

NO OF
BYTES

2
3
2
2 +

79

CMP Compare Memory From a Register - 16 Bits
SOURCE FORMS: CMPD P; CMPX P, CMPY P; CMPU P;

CMPS P
OPERATION: TEMP R - M:M+ 1) (i.e., TEMP

R + M:M+ 1 + 1)
CONDITION CODES:

H: Unaffected
N: Set if bit 15 of the result is Set
Z: Set if all bits of the result are Clear.
V: Set if the operation caused a 16-bit two's com

plement overflow.
C: Set if the operation on the MS byte did not cause

a carry from bit 7 in the ALU
DESCRIPTION:

Compares the 16-bit contents of M:M+1 from the con
tents of the specified register and sets appropriate condi
tion codes. Neither R nor M:M+1 is modified. The C flag
represents a borrow and is set inverse to the resulting
binary carry.

REGISTER ADDRESSING: Double Accumulator
Pointer (X, Y, S, or U)

FLAG RESULTS:
(N V) = 1 R .LT. M (2's comp)

C = 1 R .L M (unsigned)
Z = 1 R.EQ. M

ADDRESSING MODE

DIRECT

EXTENDED

IMMEDIATE

INDEXED

OPCODE

10
93
10
B3
10
83
10
A3

MPU
CYCLES

7

8

5

7 +

NO OF
BYTES

3

4

4

3 +

CMPS

ADDRESSING MODE

DIRECT

EXTENDED

IMMEDIATE

INDEXED

OPCODE

11
9C
11
BC
11
8C
11
AC

MPU
CYCLES

7

8

5

7 +

NO OF
BYTES

3

4

4

3 +

80

CMPD

CMPU
ADDRESSING MODE

DIRECT

EXTENDED

IMMEDIATE

INDEXED

OPCODE

11
93
11
B3
11
83
11
A3

MPU
CYCLES

7

8

5

7 +

NO OF
BYTES

3

4

4

3 +

CMPX

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

9C
BC
8C
AC

MPU
CYCLES

6
7
4
6+

NO OF
BYTES

2
3
3
2+

CMPY

ADDRESSING MODE

DIRECT

EXTENDED

IMMEDIATE

INDEXED

OPCODE

10
9C
10
BC
10
8C
10
AC

MPU
CYCLES

7

8

5

7+

NO OF
BYTES

3

4

4

3+

COM Complement
SOURCE FORM: COM Q
OPERATION: M' 0 +
CONDITION CODES:

H: Not affected
N: Set if bit 7 of the result is Set
Z: Set if all bits of the result are Clear
V: Cleared
C: Set

DESCRIPTION:
Replaces the contents of M or ACCX with its one's com
plement (also called the logical complement). The carry
flag is set for 6800 compatibility.

81

COMMENTS:
When operating on unsigned values, only BEQ and MBE
branches can be expected to behave properly. When
operating on two's complement values, all signed
branches are available.

COMA

ADDRESSING MODE

INHERENT

ADDRESSING MODE

INHERENT

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

43

COMB
OPCODE

53

COM

OPCODE

03
73
63

MPU
CYCLES

2

MPU
CYCLES

2

MPU
CYCLES

6
7
6+

NO OF
BYTES

1

NO OF
BYTES

1

NO OF
BYTES

2
3
2 +

CWAI
SOURCE FORM:

Clear and Wait for Interrupt
CWAI #$XX

OPERATION:

CCR -» CCR A MI (Possibly clear masks)

FF = enable neither
EF = enable IRQ
BF = enable FIRQ
AF = enable both

82

Set E (entire state saved)
SP' SP - 1, (SP) PCL
SP' SP - 1, (SP) PCH
SP' SP - 1, (SP) USL
SP' SP - 1, (SP) USH
SP' SP - 1, (SP) IYL
SP' SP - 1, (SP) IYH
SP' SP - 1, (SP) IXL
SP' SP - 1, (SP) IXH
SP' SP - 1, (SP) DPR
SP' SP - 1, (SP) ACCB
SP' SP - 1, (SP) ACCA
SP' SP - 1, (SP) CCR

CONDITION CODES: Possibly cleared by the immediate
byte.

DESCRIPTION:
The CWAI instruction ANDs an immediate byte with the
condition code register which may clear interrupt
maskbit(s). It stacks the entire machine state on the
hardware stack and then looks for an interrupt. When a
nonmasked interrupt occurs, no further machine state will
be saved before vectoring to the interrupt handling
routine. This instruction replaced the 6800's CLI WAI
sequence, but does not tri-state the buses.

ADDRESSING MODE: Memory Immediate
COMMENTS:

An FIRQ interrupt may enter its interrupt handler with
its entire machine state saved. The RTI will automati
cally return the entire machine state after testing the E
bit of the recovered CCR.

CWAI

ADDRESSING MODE

INHERENT

OPCODE

3C

MPU
CYCLES

20

NO OF
BYTES

2

DA Decimal Addition Adjust
SOURCE FORM: DAA
OPERATION: ACCA' ACCA + CF(MSN):CF(LSN)

where CF is a Correction Factor, as follows:
The CF. for each nybble (BCD) digit) is deter
mined separately, and is either 6 or 0.
Least Significant Nybble

CF(LSN) = 6 if 1) H = 1
or 2) LSN > 9

Most Significant Nybble
CF(MSN)=6 if 1) C = 1

or 2) MSN > 9
or 3)MSN > 8 and LSN> 9

CONDITION CODES:
H: Not affected
N: Set if MSB of result is Set
Z: Set if all bits of the result are Clear
V: Not defined

83

C: Set if the operation caused a carry from bit 7 in the
ALU, or if the carry flag was Set before the oper
ation.

DESCRIPTION:
The sequence of a single-byte add instruction on ACCA
(either ADDA or ADCA) and a following DAA instruction
results in a BCD addition with appropriate carry flag. Both
values to be added must be in proper BCD form (each
nybble such that 0 nybble 9). Multiple-precision
additions must add the carry generated by this DA into the
next higher digit during the add operation immediately
prior to the next DA.

ADDRESSING MODE: ACCA

DAA

ADDRESSING MODE

INHERENT

OPCODE

19

MPU
CYCLES

2

NO OF
BYTES

1

DEC
SOURCE FORM:
OPERATION:

DEC Q
M' M- l (i . e . ,M '

Decrement

M + FF16)

CONDITION CODES:
H: Not affected
N: Set if bit 7 of result is Set
Z: Set if all bits of result are Clear
V: Set if the original operand was 10000000
C: Not affected

DESCRIPTION:
Subtract one from the operand. The carry flag is not af
fected, thus allowing DEC to be a loopcounter in
multiple-precision computations.

COMMENTS:
When operating on unsigned values only BEQ and BNE
branches can be expected to behave consistently. When
operating on two's complement values, all signed
branches are available.

DECA
ADDRESSING MODE

INHERENT

OPCODE

4A

MPU
CYCLES

2

NO OF
BYTES

1

84

DECB

ADDRESSING MODE

INHERENT

OPCODE

5A

MPU
CYCLES

2

NO OF
BYTES

1

DEC

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

OA
7A
6A

MPU
CYCLES

6
7
6+

NO OF
BYTES

2
3
2 +

EOR Exclusive Or
SOURCE FORMS: EORA P; EORB P
OPERATION: R' R M
CONDITION CODES:

H: Not affected
N: Set if bit 7 of result is Set
Z: Set if all bits of result are Clear
V: Cleared
C: Not affected

DESCRIPTION:
The contents of memory is exclusive—ORed into an 8-bit
register.

REGISTER ADDRESSING MODES: Accumulator

EORA

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

9B
B8
88
A8

MPU
CYCLES

4
5
2
4 +

NO OF
BYTES

2
3
2
2+

85

EORB

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

D8
F8
C8
E8

MPU
CYCLES

4
5
2
4 +

NO OF
BYTES

2
3
2
2 +

EXG Exchange Registers
SOURCE FORM: EXG Rl, R2
OPERATION: Rl R2
CONDITION CODES: Not affected (unless one of the regis

ters is CCR)
DESCRIPTION:

Bits 3-0 of the immediate byte of the instruction define one
register, while bits 7-4 define the other, as follows:

0000 = A:B
0001 = X
0010 = Y
0011 = US
0100 = SP
0101 = PC
0110 = Undefined
0111 = Undefined

1000 = A
1001 = B
1010 = CCR
1011 =DPR
1100 = Undefined
1101 = Undefined
1110 = Undefined
1111= Undefined

Registers may only be exchanged with registers of like size; i.e.,
8-bit with 8-bit, or 16 with 16.

EXG R1, R2
ADDRESSING MODE

INHERENT

OPCODE

1E

MPU
CYCLES

7

NO OF
BYTES

2

INC Increment
SOURCE FORM: INC Q
OPERATION: M' M + 1
CONDITION CODE:

H: Not affected
N: Set if bit 7 of the result is Set
Z: Set if all bits of the result are Clear
V: Set if the original operand was 01111111.
C: Not affected

DESCRIPTION:
Add one to the operand. The carry flag is not affected, thus
allowing INC to be used as a loop-counter in multiple-
precision computations.

86

COMMENTS:
When operating on unsigned values, only the BEQ and
BNE branches can be expected to behave consistently.
When operating on two's complement values, all signed
branches are correctly available.

INCA

ADDRESSING MODE

INHERENT

OPCODE

4C

MPU
CYCLES

2

NO OF
BYTES

1

INCB

ADDRESSING MODE

INHERENT

OPCODE

5C

MPU
CYCLES

2

NO OF
BYTES

1

INC

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

0C
7C
6C

MPU
CYCLES

6
7
6+

NO OF
BYTES

2
3
2+

JMP Jump to Effective Address
SOURCE FORM: JMP
OPERATION: PC EA
CONDITION CODES: Not affected
DESCRIPTION:

Program control is transferred to the location equivalent
to the effective address.

JMP

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

OE
7E
6E

MPU
CYCLES
3
4
3+

NO OF
BYTES
2
3
2+

JSR Jump to Subroutine at Effective Address
SOURCE FORM: JSR
OPERATION: SP' SP - 1, (SP) PCL

SP' SP - 1, (SP) PCH
PC EA

CONDITION CODES: Not affected
DESCRIPTION:

Program control is transferred to the Effective Address
after storing the return address on the hardware stack.

87

JSR

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

9D
BD
AD

MPU
CYCLES
7
8
7 +

NO OF
BYTES
2
3
2 +

LD Load Register from Memory—8 Bit
SOURCE FORMS: LDA P; LDB P
OPERATION: R' M
CONDITION CODES:

H: Not affected
N: Set if bit of loaded data is Set
Z: Set if all bits of loaded data are Clear
V: Cleared
C: Not affected

DESCRIPTION:
Load the contents of the addressed memory into the regis
ter.

REGISTER ADDRESSING MODE: Accumulator
LDA

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

96
B6
86
A6

MPU
CYCLES
4
5
2
4 +

NO OF
BYTES
2
3
2
2 +

LDB
ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

D6
F6
C6
E6

MPU
CYCLES

4
5
2
4 +

NO OF
BYTES

2
3
2
2 +

LD Load Register from Memory—16 Bit
SOURCE FORM: LDD P; LDX P; LDY P; LDS P; LDU P
OPERATION: R' M:M+1
CONDITION CODES:

H: Not affected
N: Set if bit 15 of loaded data is Set
Z: Set if all bits of loaded data are Clear
V: Cleared
C: Not affected

88

DESCRIPTION:
Load the contents of the addressed memory (two consecu
tive memory locations) into the 16-bit register.

REGISTER ADDRESSING MODES: Double Accumulator
Pointer (X, Y, S, or
U)

LDD

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

DC
FC
CC
EC

MPU
CYCLES
5
6
.3
5+

NO OF
BYTES
2
3
3
2+

LDS
ADDRESSING MODE

DIRECT

EXTENDED

IMMEDIATE

INDEXED

OPCODE

10
DE
10
FE
10
CE
10
EE

MPU
CYCLES
6

7

4

6+

NO OF
BYTES
3

4

4

3+

LDU
ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

DE
FE
CE
EE

MPU
CYCLES
5
6
3
5+

NO OF
BYTES
2
3
3
2+

LDX
ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

9E
BE
8E
AE

MPU
CYCLES
5
6
3
5+

NO OF
BYTES
2
3
3
2+

LDY
ADDRESSING MODE

DIRECT

EXTENDED

IMMEDIATE

INDEXED

OPCODE

10
9F<=9E
10
BE
10
8E
10
AE

MPU
CYCLES
6

7

4

6+

NO OF
BYTES
3

4

4

3+

89

LEA Load Effective Address
SOURCE FORM: LEAX, LEAY, LEAS, LEAU
OPERATION: R' EA
CONDITION CODES:

H: Not affected
N: Not affected
Z: LEAX, LEAY: Set if all bits of the result are

Clear.
LEAS, LEAU: Not affected

V: Not affected
C: Not affected

DESCRIPTION:
Form the effective address to data using the memory
addressing mode. Load that address, not the data itself,
into the pointer register.

LEAX and LEAY affect Z to allow use as counters and for
6800 INX/DEX compatibility. LEAU and LEAS do not
affect Z to allow for cleaning up the stack while returning Z
as a parameter to a calling routine, and for 6800 INS/DES
compatibility.

REGISTER ADDRESSING MODE: Pointer (X, Y, S, or U)

LEAS

ADDRESSING MODE

RELATIVE

OPCODE

32

MPU
CYCLES

4 +

NO OF
BYTES

2 +

LEAU
ADDRESSING MODE

RELATIVE

OPCODE

33

MPU
CYCLES

4 +

NO OF
BYTES

2 +

LEAX

ADDRESSING MODE

RELATIVE

OPCODE

30

MPU
CYCLES

4 +

NO OF
BYTES

2 +

LEAY

ADDRESSING MODE

RELATIVE

OPCODE

31

MPU
CYCLES

4 +

NO OF
BYTES

2 +

90

LSL
SOURCE FORM:
OPERATION:

LSLQ
Logical Shift Left

C' b7, b7' . . . b1' b 6 . . . b 0 , b 0 ' 0
>

CONDITION CODES:
H: Undefined
N: Set if bit 7 of the result are Clear
Z: Set if all bits of the results are Clear.
V: Loaded with the result of (b7 + b6) of the original

operand.
C: Loaded with bit 7 of the original operand.

DESCRIPTION:
Shifts all bits of ACCX or M one place to the left. Bit 0 is
loaded with a zero. Bit 7 of ACCX or M is shifted into the
carry flag. This is a duplicate assembly-language
mnemonic for the single machine instruction ASL.

LSLA

LSR Logical Shift Right

SOURCE FORM: LSR Q
OPERATION: 0

C' b0, b0'...b6' b1 . . . b7 , b7'

91

0

ADDRESSING MODE

INHERENT

OPCODE

48

MPU
CYCLES

2

NO OF
BYTES

1

ADDRESSING MODE

INHERENT

OPCODE

58

MPU
CYCLES

2

NO OF
BYTES

1

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

08
78
68

MPU
CYCLES

6
7
6+

NO OF
BYTES

2
3
2+

0

b7
b0 Arrow Direcction Error

CONDITION CODES:
H: Not affected
N: Cleared
Z: Set if all bits of the result are Clear
V: Not affected
C: Loaded with bit 0 of the original operand

DESCRIPTION:
Performs a logical shift right on the operand. Shifts a zero
into bit 7 and bit 0 into the carry flag. The 6800 processor
also affects the V flag.

LSRA

ADDRESSING MODE

INHERENT

OPCODE

44

MPU
CYCLES

2

NO OF
BYTES

1

Multiply Accumulators

ACCA x ACCB

MUL
SOURCE FORM: MUL
OPERATION: ACCA': ACCB'
CONDITION CODES:

H: Not affected
N: Not affected
Z: Set if all bits of the result are Clear
V: Not affected
C: Set if ACCB bit 7 of result is Set.

DESCRIPTION:
Multiply the unsigned binary numbers in the accumulators
and place the result in both accumulators. Unsigned multi
ply allows multiple-precision operations. The Carry flag
allows rounding the MS byte through the sequence MUL,
ADCA #0.

92

LSRB

LSR

ADDRESSING MODE

INHERENT

OPCODE

54

MPU
CYCLES

2

NO OF
BYTES

1

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

04
74
64

MPU
CYCLES

6
7
6 +

NO OF
BYTES

2
3
2 +

MUL

ADDRESSING MODE

INHERENT

OPCODE

3D

MPU
CYCLES

11

NO OF
BYTES

1

(i.e., M' + 1)

NEG Negate
SOURCE FORM: NEG Q
OPERATION: M' 0 - M
CONDITION CODES:

H: Undefined
N: Set if bit 7 of result is Set
Z: Set if all bits of result are Clear
V: Set if the original operand was 10000000
C: Set if the operation did not cause a carry

from bit 7 in the ALU.
DESCRIPTION:

Replaces the operand with its two's complement. The C-flag
represents a borrow and is set inverse to the resulting
binary carry. Note that 8016 . is replaced by itself and only in
this case is V Set. The value 0016 is also replaced by itself,
and only in this case is C cleared.

FLAG RESULTS:
(N V) = 1 if 0 .LT. M (2's comp)

C = 1 if 0 .LO. M (unsigned)
Z = 1 if 0 .EQ. M

NEGA

ADDRESSING MODE

INHERENT

OPCODE

40

MPU
CYCLES

2

NO OF
BYTES
1

93

ADDRESSING MODE

INHERENT

OPCODE

50

MPU
CYCLES
2

NO OF
BYTES
1

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

00
70
60

MPU
CYCLES

6
7
6+

NO OF
BYTES

2
3
2+

NEGB

NEG

NOP No Operation
SOURCE FORM: NOP
CONDITION CODES: Not affected
DESCRIPTION:

This is a single-byte instruction that causes only the pro
gram counter to be incremented. No other registers or
memory contents are affected.

NOP

ADDRESSING MODE

INHERENT

OPCODE

12

MPU
CYCLES

2

NO OF
BYTES

1

OR Inclusive OR Memory into Register
SOURCE FORMS: ORA P; ORB P
OPERATION: R' R V M
CONDITION CODES:

H: Not affected
N: Set if high order bit of result Set
Z: Set if all bits of result are Clear
V: Cleared
C: Not affected

DESCRIPTION:
Performs an "Inclusive OR" operation between the con
tents of ACCX and the contents of M and the result is
stored in ACCX.

REGISTER ADDRESS MODE: Accumulator

ORA

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

9A
BA
8A
AA

MPU
CYCLES

4
5
2
4 +

NO OF
BYTES

2
3
2
2+

OREB

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

DA
FA
CA
EA

MPU
CYCLES

4
5
2
4 +

NO OF
BYTES

2
3
2
2 +

94

OR Inclusive OR Memory-Immediate into CCR
SOURCE FORM: ORCC #XX
OPERATION: R R V MI
CONDITION CODES: CCR' CCR V MI
DESCRIPTION:

Performs an "Inclusive OR" operation between the con
tents of CCR and the contents of MI, and the result is
placed in CCR. This instruction may be used to Set inter
rupt masks (disable interrupts) or any other flag(s).

REGISTER ADDRESSNG MODE: CCR
MEMOR Y ADDRESSING MODE: Memory Immediate

ORCC
ADDRESSING MODE

IMMEDIATE

OPCODE

1A

MPU
CYCLES

3

NO OF
BYTES

2

PSHS Push Registers on the Hardware Stack
SOURCE FORM: PSHS register list

PSHS #Label
OPERATION: push order

if B7 of MI set, then:

if B6 of MI set, then;

if B5 of MI set, then:

if B4 of MI set, then:

if B3 of MI set, then:
if B2 of MI set, then:
if B1 of MI set, then:
if B0 of MI set, then:
CONDITION CODES: Not affected
DESCRIPTION:

Any, all, any subset or none of the MPU registers are pushed
onto the hardware stack, (excepting only the hardware stack
pointer itself).
MEMORY ADDRESSING MODE: Memory Immediate

PSHS

SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'

ADDRESSING MODE

INHERENT

OPCODE

34

MPU
CYCLES

5+

NO OF
BYTES

2

95

SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
SP

- 1, (SP)
- 1, (SP)
- 1, (SP)
- 1, (SP)
- 1, (SP)
- 1, (SP)
- 1, (SP)
- 1, (SP)
- 1, (SP)
- 1, (SP)
- 1, (SP)
- 1, (SP)

PCL
PCH
USL
USH
IYL
IYH
IXL
IXH
DPR
ACCB
ACCA
CCR

PSHU Push Registers on the User Stack
SOURCE FORM: PSHU register list

push order
OPERATION:
if B7 of MI set, then:

if B6 of MI set, then:

if B5 of MI set, then:

if B4 of MI set, then:

US'
US'
US'
US'
US'
US'
US'
US'

us'
US'
US'
US'

US - 1
US - 1
US - 1
US - 1
US - 1
US - 1
US - 1
US - 1
US - 1
US - 1
US - 1
US - 1

(US)
(US)
(US)
(US)
(US)
(US)
(US)
(US)
(US)
(US)
(US)
(US)

PCL
PCH
SPL
SPH
IYL
IYH
IXL
IXH
DPR
ACCB
ACCA
CCR

if B3 of MI set, then:
if B2 of MI set, then:
if B1 of MI set, then:
if B0 of MI set, then:
CONDITION CODES: Not affected
DESCRIPTION:

Any, all, any subset or none of the MPU registers are
pushed onto the user stack (excepting only the user stack
pointer itself).

MEMORY ADDRESSING MODE: Memory Immediate
PSHU

ADDRESSING MODE

INHERENT

OPCODE

36

MPU
CYCLES

5+4

NO OF
BYTES

2

OPERATION.
if B0 of MI set, then:
if B1 of MI set, then:
if B2 of MI set, then:
if B4 of MI set, then:

if B5 of MI set, then:

if B6 of MI set, then:

if B7 of MI set, then:

pull order

PULS Pull Registers from the Hardware Stack
SOURCE FORM: PULS register list
PULS #LABEL

SP + 1
SP + 1
SP + 1
SP + 1
SP + 1
SP + 1
SP + 1
SP + 1
SP + 1
SP + 1
SP + 1

CCR'
ACCA'
ACCB'
IXH'
IXL'
IYH'
IYL'
USH'
USL'
PCH'
PCL'

(SP), SP'
(SP), SP'
(SP), SP'
(SP), SP'
(SP), SP'
(SP), SP'
(SP), SP'
(SP), SP'
(SP), SP'
(SP), SP'
(SP), SP'

96

PSHU #LABEL

CONDITION CODES:
May be pulled from stack, otherwise unaffected.

DESCRIPTION:
Any, all, any subset or none of the MPU registers are pulled
from the hardware stack, (excepting only the hardware
stack pointer itself). A single register may be "PULLED"
with condition-flags set by loading auto-increment from stack
(EX:LDA, S+).

MEMORY ADDRESSING MODE: Memory Immediate

PULS

ADDRESSING MODE

INHERENT

OPCODE

35

MPU
CYCLES

5+

NO OF
BYTES

2

if B0 of MI set, then:
if B1 of MI set, then:
if B2 of MI set, then:
if B3 of MI set, then:
if B4 of MI set, then:

if B5 of MI set, then:

if B6 of MI set, then:

if B7 of MI set, then:

CCR'
ACCA'
ACCB'
DPR'
IXH'
IXL'
IYH'
IYL '
SPH'
SPL'
PCH'
PCL'

CONDITION CODES:
May be pulled from stack, otherwise unaffected.

DESCRIPTION:
Any all, any subset or none of the MPU registers are pulled
from the user stack (excepting only the user stack pointer
itself). A single register may be "PULLED" with condition-
flags set by doing an auto-increment load from the stack
(EX:LDX, U++))

MEMORY ADDRESSING MODE: Memory Immediate
PULU

ADDRESSING MODE

INHERENT

OPCODE

37

MPU
CYCLES

5+

NO OF
BYTES

2

97

PULU Pull Registers from the User Stark
SOURCE FORM: PULU register list
PULU #LABEL
OPERATION: pull order

(US),
(US),
(US),
(US),
(US),
(US),
(US),
(US),
(US),
(US),
(US),
(US),

US'
US'
US'
US'
US'
US'
US'
US'
US'
US'
us
us

US + 1
US + 1
US + 1
US + 1
US + 1
US + 1
US + 1
US + 1
US + 1
US + 1
US + 1
US + 1

ROL
SOURCE FORM: ROL Q

Rotate Left

OPERATION:

CONDITION CODES:
H: Not affected
N: Set if bit 7 of the result is Set
Z: Set if all bits of the result are Clear
V: Loaded with the result of (b7 b6) of the original operand.
C: Loaded with bit 7 of the original operand
DESCRIPTION:

Rotate all bits of the operand one place left through the carry
flag; this is a 9-bit rotation.

ROLA
ADDRESSING MODE

INHERENT

OPCODE

49

MPU
CYCLES

2

NO OF
BYTES

1

ROR
SOURCE FORM: ROR Q

OPERATION:

Rotate Right

CONDITION CODES:
H: Not affected
N: Set if bit 7 of result is Set
Z: Set if all bits of result are Clear
V: Not affected
C: Loaded with bit 0 of the previous operand

98

b7 b0

ADDRESSING MODE

INHERENT

OPCODE

59

MPU
CYCLES

2

NO OF
BYTES

1

ROLB

ROL

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

09
79
69

MPU
CYCLES

6
7
6+

NOOF
BYTES

2
3
2+

DESCRIPTION:
Rotates all bits of the operand righl one place through the
carry flag; this is a nine-bit rotation. The 6800 processor also
affects the V flag.

RORA

ADDRESSING MODE

INHERENT

OPCODE

46

MPU
CYCLES

2

NO OF
BYTES

1

RTI
SOURCE FORM: RTI
OPERATION: CCR' (SP), SP'
if CCR bit E is SET then:

Return from Interrupt

ACCA'
ACCB'
DPR'
IXH'
IXL'
IYH'
IYL'
USH'
USL'
PCH'
PCL'

PCH'
PCL'

if CCR bit E is CLEAR then:

CONDITION CODES: Recovered from stack
DESCRIPTION:

The saved machine state is recovered from the hardware
stack and control is returned to the interrupted program. If the
recovered E bit is CLEAR, it indicates that only a subset of the
machine state was saved (return address and condition codes) and
only that subset is to be recovered.

99

ADDRESSING MODE

INHERENT

OPCODE

56

MPU
CYCLES

2

NO OF
BYTES

1

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

06
76
66

MPU
CYCLES

6
7
6 +

NO OF
BYTES

2
3
2+

ROR

SP + 1
(SP),
(SP),
(SP),
(SP),
(SP),
(SP),
(SP),
(SP),
(SP),
(SP),
(SP),

(SP),
(SP),

SP'
SP"
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP"

SP'
SP'

SP
SP
SP
SP
SP
Sp
SP
SP

+
+
+
+
+
+
+
+

1
1
1
1
1
1
1
1

3P + 1-
SP
SP

SP
SP

+
+

+
+

1
1

1
1

SBCB

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

D2
F2
C2
E2

MPU
CYCLES
4
5
2
4+

NO OF
BYTES
2
3
2
2 +

SEX Sign Extended
SOURCE FORM: SEX
OPERATION: If bit 7 of ACCB is set then ACCA' FF16

else ACCA' 0016

CONDITION CODES:
H: Not affected
N: Set if the MSB of the result is Set
Z: Set if all bits of ACCD are Clear
V: Not affected
C: Not affected

DESCRIPTION:
This instruction transforms a two's complement 8-bit
value in ACCB into a two's complement 16-bit value in the
double accumulator.

SEX

ADDRESSING MODE

INHERENT

OPCODE

1D

MPU
CYCLES
2

NO OF
BYTES
1

ST Store Register Into Memory—8 Bits

SOURCE FORM: STA P; STB P
OPERATION: M' R
CONDITION CODES:

H: Not affected
N: Set if bit 7 of stored data was Set
Z: Set if all bits of stored data are Clear
V: Cleared
C: Not affected

DESCRIPTION:
Writes the contents of an MPU register into a memory
location.

REGISTER ADDRESSING MODES: Accumulator

101

RTY

ADDRESSING MODE

INHERENT

OPCODE

3B

MPU
CYCLES

6/15

NO OF
BYTES

1

RTS Return from Subroutine
SOURCE FORM: RTS
OPERATION: PCH' (SP), SP' SP + 1

PCL' (SP), SP' SP + 1
CONDITION CODES: Not affected
DESCRIPTION:

Program control is returned from the subroutine to the calling
program. The return address is pulled from the stack.

RTS

ADDRESSING MODE

INHERENT

OPCODE

39

MPU
CYCLES

5

NO OF
BYTES

1

SBC Subtract with Borrow
SOURCE FORMS: SBCA P; SBCB P
OPERATION: R' R - M - C (i.e., R' R+ +)
CONDITION CODES:

H: Undefined
N: Set if bit 7 of the result is Set
Z: Set if all bits of the result are Clear
V: Set if the operation causes an 8-bit two's comple

ment overflow
C: Set if the operation did not cause a carry from bit 7

in the ALU

DESCRIPTION:
Subtracts the contents of M and the borrow (in the carry flag)

from the contents of an 8-bit register, and places the result in that
register. The C flag represents a borrow and is set inverse to the
resulting binary carry.
REGISTER ADDRESSING MODE: Accumulator

SBCA
ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

92
B2
82
A2

MPU
CYCLES

4
5
2
4 +

NO OF
BYTES

2
3
2
2+

100

STA

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

97
B7
A7

MPU
CYCLES

4
5
4 +

NO OF
BYTES

2
3
2 +

STB
ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

D7
F7
E7

MPU
CYCLES

4
5
4 +

NO OF
BYTES

2
3
2+

ST Store Register Into Memory—16-Bits
SOURCE FORM: STD P; STX P; STY P; STS P; STU P
OPERATION: M':M+1' R
CONDITION CODES:

H: Not affected
N: Set if bit 15 of stored data was Set
Z: Set if all bits of stored data are Clear
V: Cleared
C: Not affected

DESCRIPTION:
Write the 16 bit register into consecutive memory loca
tions

REGISTER ADDRESSING MODES: Double Accumulator
Pointer (X, Y, S, or U)

STD

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

DD
FD
ED

MPU
CYCLES

5
6
5+

NO OF
BYTES

2
3
2 +

STS

ADDRESSING MODE

DIRECT

EXTENDED

INDEXED

OPCODE

10
DF
10
FF
10
EF

MPU
CYCLES

6

7

6+

NO OF
BYTES

3

4

3 +

102

STU

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

DF
FF
EF

MPU
CYCLES
5
6
5+

NO OF
BYTES
2
3
2 +

STX

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

9F
BF
AF

MPU
CYCLES
5
6
5 +

NO OF
BYTES
2
3
2+

STY

ADDRESSING MODE

DIRECT

EXTENDED

INDEXED

OPCODE

10
9F
10
DF
10
AF

MPU
CYCYLES
6

7

6+

NO OF
BYTES
3

4

3 +

SUB Subtract Memory from Register—8 bit

SOURCE FORMS: SUBA P; SUBB P
OPERATION: R' R- M; M + 1
CONDITION CODES:

H: Undefined
N: Set if but 7 of the result is Set
Z: Set if all bits of the result are Clear
V: Set if the operation caused an 8-bit two's com

plement overflow
C: Set if the operation did not cause a carry from

bit 7 in the ALU
DESCRIPTION:

Subtracts the value in M from the contents of an 8-bit
register. The C flag represents a borrow and is set inverse
to the resulting carry.

REGISTER ADDRESSING MODE: Accumulator
FLAG RESULTS:

(N V) = 1 if R .LT. M (two's comp)
C = 1 if R .LO. M (unsigned)
Z = 1 if R .EQ. M

103

SUB A
ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

90
BC
80
A0

MPU
CYCLES

4
5
2
4 +

NO OF
BYTES

2
3
2

2 +

SUBB

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

D0
F0
C0
E0

MPU
CYCLES
4
5
2
4 +

NOOF
BYTES
2
3
2
2 +

SUB Subtract Memory from Register—16-Bit
SOURCE FORM: SUBD P
OPERATION: R' R - M:M+1 [i.e., R; R + + l]

CONDITION CODES:
H: Unaffected
N: Set if bit 15 of result is Set
Z: Set if all bits of result are Clear
V: Set if the operation caused a 16-bit two's

complement overflow.
C: Set if the operation on the MS byte did not cause

a carry from bit 7 in the ALU
DESCRIPTION:

This information subtracts the value in M:M+1 from the
16-bit accumulator. The C flag represents a borrow and is
set inverse to the resulting binary carry.

REGISTER ADDRESSING MODE: Double Accumulator
SUBTRACT SETS:

(N © V) = 1 if R .LT. M (two's comp)
C = 1 if R .LO. M (unsigned)
Z = 1 if R .EQ. M

SUBD

ADDRESSING MODE

DIRECT
EXTENDED
IMMEDIATE
INDEXED

OPCODE

93
B3
83
A3

MPU
CYCLES
6
7
4
6+

NO OF
BYTES
2
3
3
2+

104

SWI Software Interrupt
SOURCE FORM: SWI
OPERATION: Set E (entire state will be saved)

SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'

SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)

Set I, F (mask interrupts)
PC (FFFA):(FFFB)

PCL
PCH
USL
USH
IYL
IYH
IXL
IXH
DPR
ACCB
ACCA
CCR

CONDITION CODES: Not affected
DESCRIPTION:

All of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itself),
and control is transferred through the SWI vector.

SWI SETS I AND F BITS

ADDRESSING MODE

INHERENT

OPCODE

3F

MPU
CYCLES
19

NO OF
BYTES
1

SWI2 Software Interrupt 2
SOURCE FORM: SWI2
OPERATION: Set E (entire state saved)

SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
PC'

SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
(FFF4):(FFF5)

PCL
PCH
USL
USH
IYL
IYH
IXL
IXH
DPR
ACCB
ACCA
CCR

105

CONDITION CODES: Not affected
DESCRIPTION:

All of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itself),
and control is transferred through the SWI2 vector. SWI2
is available to the end user and must not be used in
packaged software.

SWI2 DOES NOT AFFECT I AND F BITS

ADDRESSING MODE

INHERENT

OPCODE

10
3F

MPU
CYCLES
20

NO OF
BYTES
2

SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'

SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)

PCL
PCH
USL
USH
IYL
IYH
IXL
IXH
DPR
ACCB
ACCA
CCR

DESCRIPTION:
All of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itself),
and control is transferred through the SWI3 vector.

SWI3 DOES NOT AFFECT I AND F BITS

ADDRESSING MODE

INHERENT

OPCODE

11
3F

MPU
CYCLES
20

NO OF
BYTES
2

106

SWI3 Software Interrupt
SOURCE FORM: SWI3
OPERATION: Set E (entire state will be saved)

CONDITION CODES: Not Affected
PC' (FFF2):(FFF3)

SYNC Synchronize to External Event
SOURCE FORM: SYNC
OPERATION: Stop processing instructions
CONDITION CODES: Unaffected
DESCRIPTION:

When a SYNC instruction is executed, the MPU enters a
SYNCING state, stops processing instructions and waits
on an interrupt. When an interrupt occurs, the SYNCING
state is cleared and processing continues. IF the interrupt
is enabled, and the interrupt lasts 3 cycles or more, the
processor will perform the interrupt routine. If the inter
rupt is masked or is shorter than 3 cycles long, the proces
sor simply continues to the next instruction (without stack
ing registers). While SYNCING, the address and data
buses are tri-state.

COMMENTS:
This instruction provides software synchronization with
a hardware process. Consider the high-speed acquisition
of data:

FOR DATA

FAST SYNC WAIT FOR DATA
interrupt!

LDA DISC DATA FROM DISC AND CLEAR
INTERRUPT

STA ,X+ PUT IN BUFFER
DECB COUNT IT, DONE?
BNE FAST GO AGAIN IF NOT.

The SYNCING state is cleared by any interrupt, and any
enabled interrupt will probably destroy the transfer (this
may be used to provide MPU response to an emergency
condition).
The same connection used for interrupt-driven I/O ser
vice may thus be used for high-speed data transfers by
setting the interrupt mask and using SYNC.

SYNC

ADDRESSING MODE OPCODE MPU
CYCLES

NO OF
BYTES

107

INHERENT 13 > = 2 1

TFR
SOURCE FORM:
OPERATION:

Transfer Register to Register
TFR R1, R2

CONDITION CODES: Not affected (Unless R2 = CCR)
DESCRIPTION:

Bits 7-4 of the immediate byte of the instruction define the
source register, while bits 3-0 define the destination re
gister, as follows:

0000
0001
0010
0011
0100
0101
0110
0111

= A:B
= X
= Y
= u s
= SP
= PC
= Undefined
= Undefined

1000
1001
1010
1011
1100
1101
1110
1111

= A
= B
=CCR
= DPR
= Undefined
= Undefined
= Undefined
= Undefined

Registers may only be transferred between registers of
like size; i.e., 8-bit to 8-bit, and 16 to 16.

TFR R1.R2

ADDRESSING MODE

INHERENT

OPCODE

1F

MPU
CYCLES
7

NO OF
BYTES
2

TST Test
SOURCE FORM: TST Q
OPERATION: TEMP M - 0
CONDITION CODES:

H: Not affected
N: Set if bit 7 of the result is Set
Z: Set if all bits of the result are Clear
V: Cleared
C: Not affected

DESCRIPTION:
Set condition code flags N and Z according to the contents
of M, and clear the V flag. The 6800 processor clears the C
flag.

COMMENTS:
The TST instruction provides only minimum information
when testing unsigned values; since no unsigned value is
less than zero, BLO and BLS have no utility. While BHI
could be used after TST, it provides exactly the same
control as BNE, which is preferred. The signed branches
are available.

108

TSTA

ADDRESSING MODE

INHERENT

OPCODE

4D

MPU
CYCLES

2

NO OF
BYTES
1

TSTB

ADDRESSING MODE

INHERENT

OPCODE

5D

MPU
CYCLES

2

NO OF
BYTES

1

TST

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

OPCODE

OD
7D
6D

MPU
CYCLES

6
7
6+

NO OF
BYTES

2
3
2+

HARDWARE INSTRUCTION FIRQ Fast Interrupt Re
quest

OPERATION: if F bit CLEAR, then:
SP' SP - 1, (SP) PCL
SP' SP - 1, (SP) PCH
Clear E (subset state is saved)
SP' SP - 1, (SP) CCR
Set if, I (mask further interrupts)
PC (FFF6):(FFF7)

CONDITION CODES: Not affected
DESCRIPTION:

A low level on the FIRQ input with the F bit clear causes
this interrupt sequence to occur at the end of the current
instruction. The program counter and condition code re
gister are pushed onto the hardware stack. Program con
trol is transferred through the FIRQ vector. An RTI re
turns to the original task. It is possible to enter an FIRQ
handler with the entire state saved if the FIRQ occurs after
CWAI.

ADDRESSING MODE: Absolute Indirect
COMMENTS:

An IRQ interrupt, having lower priority than the FIRQ, is
prevented from interrupting the FIRQ handling routine
by automatic setting of the I flag. This mask bit could then

109

be reset if priority was not desired. the FIRQ allows
operations on memory, TST, INC, DEC, etc, without
the overhead of saving the entire machine state on the
stack.

SP'
SP'
SP'
SP'
SP'
S F
SP'
SP'

SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)

110

CONDITION CODES: Not affected
DESCRIPTION:

If the IRQ mask bit I is clear, a low level on the IRQ input
causes this interrupt sequence to occur at the end of the
current instruction. Control is returned to the interrupted
program via an RTI. An FIRQ may interrupt an IRQ handl
ing routine and be recognized anytime after the IRQ vector
is taken.

ADDRESSING MODE: Absolute Indirect

HARDWARE INSTRUCTION NMI Non-Maskable Interrupt

OPERATION:

HARDWARE INSTRUCTION IRQ Interrupt Request
OPERATION: IFF I bit CLEAR, then:

SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'
SP'

SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)

PCL
PCH
USL
USH
IYL
IYH
IXL
IXH
DPR
ACCB
ACCA

Set E (entire state saved)
SP' SP - 1, (SP) CCR
Set I (mask further IRQ interrupts)
PC (FFF8):(FFF9)

PCL
PCH
USL
USH
IYL
IYH
IXL
IXH

CONDITION CODES: Not affected
DESCRIPTION:

A negative edge on the NMI input causes all of the MPU
registers (except the hardware stack pointer SP) to be
pushed onto the hardware stack, starting at the end of the
current instruction. Program control is transferred
through the NMI vector. Successive negative edges on the
NMI input will cause successive NMI operations. The
NMI operation is internally blocked by RESET, any
NMI-edge will be latched, and the operation will occur
after the first load into the stack pointer (LDS; TFR r,s;
EXG r,s; etc.).

ADDRESSING MODE: Absolute Indirect

HARDWARE INSTRUCTION RESTART
OPERATION: CCR' X1X1XXXX

DPR' 0016

PC (FFFE):(FFFF)
CONDITION CODES: Not affected
DESCRIPTION:

The MPU is initialized (required after power-on) to start
program execution.

ADDRESSING MODE: Absolute Indirect

111

SP'
SP'
SP'

SP - 1, (SP)
SP - 1, (SP)
SP - 1, (SP)

Set E (entire state save)
SP' SP - 1, (SP) CCR
Set I, F (mask interrupts)
PC (FFFC):(FFFD)

DPR
ACCB
ACCA

MEK6809EA Assembler
Motorola has not only developed the 6809D4 evaluation unit, but is
supporting it with a variety of software. One piece of software
available from Motorola is the MEK6809EA assembler. This is a
specialized program that is designed to process source programs
written in M6809 assembly language. This "source" is then trans
lated into object programs that the firmware loaders on the D4
evaluation unit can understand.

The previous chapter gave you definitions to the various
instruction codes that the 6809 understands and, in some cases,
examples of an assembly code. I will attempt in this chapter to give
you only the basics of the assembler. Should you desire to learn
more, the supporting software and D4 unit should be purchased
from Motorola, or the Radio Shack TRS-80 Color Computer or
Videotex should be bought.

BASICS OF THE ASSEMBLER

The assembler, as stated before, performs operations on
source code that contains specific operations which determine
what will happen when the program executes as an object, or
run-time, program. Some of these internals of the source file are
operations such as instruction codes, or assembler directives, and
labels—sometimes called symbolic names, special operators and
special symbols. Directives, which are part of the assembler's
operation, are special codes that are entered into the source file to
tell the assembler to perform a specific operation.

112

Essentially, the role of the assembler is to translate source
programs into object code in a format required by the systems'
loader. As you will see in Chapter 6, this will be for the D4. The
assembler is also used for archival purposes. Debugging the as
sembler provides a listing which contains all the information about
the program in logical fashion.

TYPICAL REQUIREMENTS

The assembler takes information in source form and trans
lates it into object form. To do this, however, certain rules are
usually followed.

First, the source form of the program is a sequence of state
ments written in ASCII characters following conventions that the
specific assembler requires. Each input source line is terminated
with a carriage return. The source form usually consists of five
fields:

• Sequence number. This is not always required, but is
useful especially in the editing function.

• Label or an asterik (*) implying a comment.
• Operation.
• Operand.
• Optional comment.

Sequence Number

This is an option for programmer convenience for the
Motorola assembler. A sequence number can consist of up to five
decimal digits but less than 65,536. When used, the sequence
number must be followed by a space.

Label Field

This field is right after the sequence number, or it can appear
as the first field. When an asterisk (*) is used, the line is considered
by the assembler to be comment and is thus ignored. A blank
indicates that the field is empty and the line contains no label.

The symbol is a special form of a label and has the following
attributes:

• Usually consists of 1 to 6 characters.
• Only the following are considered valid symbol charac

ters: A through Z, 0 through 9, "."—period, and a dollar sign "$".
• A symbol must consist of either a period ".", or an

alphanumeric character as the first character.

113

• Certain symbols: A, B, D, X, Y, U, S, CC, PC, PCR and
DP are reserved symbols used by the assembler and are never
used in the label field.

When a symbol is used, it may occur only once in the label
field. If it occurs in more than one label field, a reference to that
symbol will cause an error, since the assembler will have no idea to
what you are referring.

A typical label can be used in an equate statement, that unique
statement that sets a label equal to a specific value. Some examples
of labels are:

INCH EQU $FC00
.G1 LDA #$41

Operating Field

The operation field occurs directly after the label field in an
assembly language source statement. This field consists of an
operation code of three or four characters. Entries in the operation
code field may be one of two types. Machine mnemonic operation
code entries correspond directly to M6809 machine instructions.
This operation code field includes the "A" or "B" character for the
"dual" or "accumulator" addressing modes. Directives are special
operation codes known to the assembler which control the assem
bly process rather than being translated directly to machine lan
guage.

The assembler searches for operation codes in the table of
machine operation codes and directives. If not found, an error
message is printed.

Operand Field

Interpretation of the operand field is dependent on the opera
tion field. For the M6809 machine instructions, the operand field
must specify the addressing mode. The operand field formats and
the corresponding addressing modes are in Table 5-1.

Comment Field

The last field of an M6809 Assembly Language source line is
the comment field. This field is optional and is ignored by the
assembler except for being included in the listing. The comment
field is separated from the operand field (or the operator field if
there is no operand) by one or more blanks and may consist of any

114

Table 5-1. Operand Field Formats and Corresponding Addressing Modes.

ASCII character. This field is important in documenting the opera
tion of a program.

EXPRESSIONS

An expression is a combination of symbols and/or numbers
separated by one of the arithmetic operators (+ , - , *, or /) . The
assembler evaluates expressions algebraically from left to right
without parenthetical grouping. There is no precedence hierarchy
among the arithmetic operators. A fractional result, or inter
mediate result obtained during the evaluation of an expression, will
be truncated to an integer value.

Constants

Decimal: < number >
Hexadecimal: $ < number > or < number > H (first digit in

latter case must be 0 - 9)
Octal: @ < number > or < number > 0 or < number > Q
Binary: % < number > or < number > B

ASCII Literals

' <character>: apostrophe followed by an ASCII character, except
carriage return. The result is the numeric value for the ASCII
character.

SYMBOLS

A symbol in an expression is similar to a symbol in the label
field except that the value of the symbol is referenced instead of
defined. An asterisk "*" is a special symbol recognized by the

115

Operand Format

no operand
expression

(expression)
(expression), R

M6809 Machine Instruction
Addressing Mode

inherent and accumulator
direct or extended

(direct will be used if possible)
immediate
indexed (where "R" is an indexable
register)

Table 5-2. Assembly Listing.

assembler and represents the value of the current location counter
(first byte of an instruction), when used in the context of the
symbol.

A 16-bit integer value is associated with each symbol. This
value is used in place of the symbol during expression evaluation.

Table 5-3. Standard Format for Assembly Listings.

Column

1-5

7-10
12-15
17-23
25-26
28-33
35-39
41-48

50-Last
Column

Contents

Source line 1 - 5 digit decimal counter kept
by assembler.
Current Location Counter value (in hex).
Machine Operation Code (hex).
Operand Machine Code (if any) (hex).
Cycle Count of Execution Time (decimal).
Label Field.
Operation Field.
Operand Field (longer operand extends into
comment field).
Comment Field.

116

The MEK6809EA assembler is a two-pass assembler. The
symbol table is built on the first pass. Object records and listing are
produced on the second pass. Certain expressions cannot be fully
evaluated during the first pass because they may contain (forward)
references to symbols which have not yet been defined. In some
cases, a symbol may not be defined before being used in the second
pass. Since the assembler cannot evaluate such symbols, these
cases are treated as errors. Only one level of forward referencing
is allowed.

ASSEMBLER LISTING
Assembler outputs include an assembly listing and an object

program (Table 5-2). The assembly listing includes the source
program as well as additional information generated by the assem
bler. Most lines in the listing correspond directly to a source
statement. Lines which do not correspond directly to a source line
include: page header line, error lines and expansion lines for the
FCC, FDB and FCB directives. Most listing lines follow the
standard format shown in Table 5-3.

117

Implementation of VTL-09
The implementation of BASIC that is to be presented in the next
few pages is based on a design created by Gary Shannon and Frank
McCoy for the MITs 680b microcomputer. Their implementation
was named VTL-2 for Very Tiny Language, and permitted users of
the 680b to have high-level language capability with only 1K bytes
of working memory space. VTL-2, originally implemented, re
quired only 768 bytes of memory and was written in such a manner
to be ROMable.

As you proceed through this chapter, you will realize that the
small BASIC-like language we are talking about is quite powerful.
In fact, it most likely is still the most powerful small interpreter
available today. The original copyright was 1977 for the 6800
version of VTL-2 and is still held by the Computer Store of Santa
Monica, California. The following pages are designed to assist you
in how to use what I call VTL-09.

DIRECT AND PROGRAM STATEMENTS

The statements that may be entered as input to the VTL-09
interpreter are of two types: the direct statement, which has no
line number and is executed immediately after being entered; and
the program statement, which requires line numbers used to build
a program. Program statements are not executed until the program
is run as opposed to the immediate execution of direct statements.

118

The design of VTL-09 is simple, making it ideal for the
beginner and powerful enough for advanced purposes. An impor
tant feature, not found with other versions of VTL, is the inclusion
of calls to permit loading and dumping of programs to tape. The
implementation that is presented in this book is strictly for the
Motorola 6809D4 unit which is designed to load at $2000 hex.

PRELIMINARY CONCEPTS

Line numbers must precede each program statement. The
statements following the line number must be separated from the
number by at least one space. As designed, each line must end with
a carriage return and be less than 73 characters in length.

Typically, line numbers are incremented in steps of 10. This
permits the addition of other statements if necessary. No line
renumbering utility is included, so care must be taken when first
beginning the program process.

Variables may be represented by any single alphabetic or
special character such as !"#$%&'()=-+*:;?/ .><[] . Most of
these are available for the user to define as he wishes. A few of the
variable names, however, have been set aside for special pur
poses. These so-called system variables will be discussed in detail
later.

The value assigned to a variable may be either a numeric value
in the range 0-65535, or a single ASCII character, including control
characters. Numeric and string values may be freely interchanged,
in which case the characters are equivalent to the decimal value of
their ASCII code representation. Thus, it becomes possible to add
1 to the letter A, giving as a result the letter B.

ARITHMETIC OPERATIONS

The arithmetic operations permitted for use in expressions
are:

• + addition
• - subtraction
• * multiplication
• / division
• = test for equality
• > test for greater than or equal to
• < test for less than

119

The test operations—equal to, greater than or equal to and less
than—all return a value of zero if the test fails and a value of one if
the test is successful.

Expressions in VTL-09 may contain any number of variables
or numeric values—literals—connected by any of the above opera
tions. Parentheses may be used to alter the order of execution of
the operations. If no parentheses are included, the operations
proceed in strictly right to left order.

The value resulting from the expression must be assigned to
some variable name. This is done with the equal sign. Note that the
symbol has two meanings depending on where it occurs in the
expression. The expression "A=B=C" means test b and c for
equality. If they are equal put a one in A; if they are unequal, put a
zero in A. Some of the examples of valid arithmetic expressions
would be:

Y=A*(X*X)+B*X+C with left to right execution. This is
equivalent to Y=(A*X*X+B)*X+C

Y=(A*X*X)+(B*X)+C which is equivalent o AX2+BX+C

Notice how the absence of parentheses around the quantity
B*X in the first expression has completely altered its meaning.
Keep the right to left order in mind, and when in doubt use
parentheses to control the order of evaluation.

SYSTEM VARIABLES

In order to conserve space and to provide a more consistent
syntax, VTL-09, like VTL-2 uses system variables to accomplish
functions usually done with special key words in other languages.
This convention is probably the single most important reason for
its tiny size. These special variables are used for such functions as
the BASIC PRINT, GOTO, GOSUB, RETURN, IF AND RAN
DOM functions.

Pound Sign

The system variable number or pound sign (#) represents the
line number of the line being executed. Until the statement has
been completed, it will contain the current line number. For exam
ple, the statement 100 A=# is equivalent to simply writing 100
A=100. After completion of a line, this variable will contain the
number of the next line to be executed. If nothing is done to the
variable, this will be the next line in the program text. If a state-

120

ment changes #, however, the next line executed will be the line
with the number that matches the value of #. Thus, the variable #
may be used to transfer control to a different part of the program.
This then becomes the VTL-09 equivalent to the BASIC GOTO:
#=300 means GOTO 300.

If the # variable should ever be set to zero by some statement,
this value will be ignored. The program will proceed as if no change
had taken place. This fact allows us to write IF statements in
VTL-09. Consider the following example:

10 X=l Set X equal to 1
20 #=(X=25)*50 If X=25 goto 50
30 X=X+1 add 1 to x
40 #=20 goto 20
50 and so on

Notice that the quantity (X=25) will have the value one, if it is
true that X is equal to 25, and the value zero if it is false. When this
logical value is multiplied times 50, the result will either be zero or
50. If it is 50, the statement causes a goto 50 to occur. If the
statement is zero, then a goto 0 occurs, which is a dummy opera
tion causing the next statement to be executed.
Exclamation Point

Taking advantage of left-to-right evaluation, two bytes of
memory could be saved by writing 20 #=x=25*50. Each time the
value of # is changed by a program statement, the old value +1 is
saved in the system variable—exclamation point (!). In other
words, after executing a goto, the line number of the line that
follows the goto is saved so that a subroutine will know where to
return to when finished. Thus, the # variable is used for both goto
and gosub operations.

10X=1
20 #=100
30 30 X=2
40 #=100
50x=3
60 #=100

100 x=x*x
110 #=! goto where you came from

In this example, control proceeds from line 20 to line 100.
After that, line 110 causes control to return to line 30. When line 40
is executed, the subroutine at 100 will return to line 50.

121

The actual value stored in the ! variable is old line number +1.
If VTL doesn't find the exact line number, it will GO to the next
higher line number.

Question Mark

The system variable question mark (?) represents the user's
terminal. It can be either an input or an output, depending on which
side of the equal sign it appears.

The statement ?=A' is interpreted as PRINT A, and the
statement X=? is interpreted as INPUT X. A ? can be included
anywhere within an expression.

10 ?="ENTER THREE VALUES"
20 A=(?+?+?)/3
30 ?="THE AVERAGE IS"
40 ?=A

This program will request three inputs while executing line 20.
When typing in a reply to a request for input, the user may

enter any one of three different types of data: a decimal number, a
variable name or any valid VTL-09 expression. Thus, for example,
the user may reply with such things as "1004" or A+B*(9/X). In
each case the expression is completely evaluated before the result
is passed to the input statement. The only exception is that you are
not allowed to respond with another question mark as this will
mess up the line pointer in the interpreter, causing it to return an
improper value.

When the question mark is on the left side of the first equal
sign, it represents a print statement; on the right it is an input. The
formatting of printing output can be controlled by either the inclu
sion or omission of leading or trailing blanks, thus giving a similar
operation and PRINT USING.

Percent and Apostrophe

The system variable percent (%) contains the value of the
remainder of the last division operation. This value will remain the
same until the next division takes place.

The system variable apostrophe (') represents a random
number. This number will have an unpredictable value in the range
0-65535. If called twice on the same line, the same value will be

122

returned both times. The value of the variable is scrambled each
time any statement is executed. Therefore, for best results it is
highly recommended that at least one computation be performed
before calling for the random value again.

Dollar Sign
In addition to decimal numeric input and output, the system

variable dollar sign ($) is used to input and output single characters.
As with the question mark variable, A=$ means input a single
ASCII character and place its numeric value in A. Similarly, $=X
means PRINT the single ASCII character whose value is stored in
X.

10 A=65
20 $=A
30 A=A+1
40 #=A<91*20
50 ? = " "

This example will print out as one continuous string all the
letters of the alphabet. If you wish to find out what decimal values
correspond to which characters, these can be found in any conver
sion chart. Simply compute by typing the direct statement ? =$ and
then entering the character whose decimal value is to be found.

Asterisk

The system variable asterisk (*) represents the memory size
of your computer. For a system with 1K, this would be 1024.
Entering ?=* will give the amount of memory.

The system will accept a different definition to the amount of
memory. This can be entered by typing *=1024*17, for example,
for a 17K system that reserves IK for user space.

Ampersand

The system variable ampersand (&) represents the next avail
able byte of memory in the program buffer. When first initilized,
VTL-09 must be set to 264. Enter &=264 to set the buffer to first
byte. You will be able to find out how much remaining memory you
have after entering programs by typing ?=*-&.

Greater Than

The system variable greater than > is used to pass a value to a
machine language subroutine. When encountered on the left side of

123

the equal sign the expression is evaluated, the value is placed as a
16-bit integer in the A and B registers, and a software interrupt is
generated. The value stored in > is pulled off the stack by the RTI
instruction. If you wish to change the value placed into the variable
you should first pull the condition of the stack. Then reset the
registers. See Chapters 3 and 4.

Cassette In (CI) and Cassette Out (CO)
Two very special variables used by the VTL-09 are CI for

cassette in, which permits loading of programs from the tape
cassette; and CO for cassette out, which permits the saving of
programs. Programs and data can be saved using these commands.
For programs, they are entered in the direct mode, or they can be
embedded in a program. For example, to load data from a program,
the program must first spec space for the data using the &=xxxx.
Then CI is invoked in concert with the ?.

10 &=2492 Some value that will allow sufficient
space for the data.

20?=CI Load the data.

Notice no names are permitted—only very fundamental loading
and saving.

SAMPLE PROGRAMS
As you can see, VTL-09 is easy as pie with no big surprises

built in. The purpose of it is to show you how easy it is to program a
6809 with a very useful application. The next several pages serve
as a summary to this chapter, on how to use VTL, and a roundup to
put this book in proper perspective (Table 6-1).

Relocatable Program

64100
64110
64120
64130
64140
64150
64160
64170
64180
64190

64000 A=#
64010 B=&
64020 C=#
64030 &=B
64040 ?="STARTING#?"
64050 D=?
64060 ?="STEP SIZE? ";
64070 E=?
64080 &=1
64090 G=131

J=0
H=#+l
G=&+l/2+G
&=%
#=:G)>A*5*(C-A)+#
#=D->(A-1)+(J>D)>1*C
:G)=D
&=&+l
J=D
D=D+E

124

64200 K=#+l 64230 #=H
64210 &=&+l 64240 &=B
64220 #=:G)>256*K 64250 ?="DONE"

This program is relocatable. It can be renumbered and will
still run. However, the step size between program steps must
remain constant or line 64140 will not work right. Also, the largest
number of the program to be renumbered must be less than the first
number of the renumber program.

Table 6-1. List of VTL-09 Features.

RETURN ADDRESS
POINTS TO THE LINE # AFTER THE LAST #= STATEMENT
POINTER FOR LITERAL PRINT STATEMENTS
LINE NUMBER
SINGLE CHARACTER STRING (INPUT OR OUTPUT)
REMAINDER AFTER THE LAST DIVIDE OPERATION
POINTS TO THE LAST BYTE OF PROGRAM
RANDOM NUMBER
SETS START OF PARENTHESIZED EXPRESSION
END
SETS END OF LINE
SETS END OF PARENTHESIZED EXPRESSION
SETS END OF ARRAY DESCRIPTION
USED ALSO FOR REMARK STATEMENT
POINTS TO END OF MEMORY
MACHINE LANGUAGE SUBROUTINE
PRINT STATEMENT WHEN ON LEFT OF EQUAL SIGN
INPUT STATEMENT WHEN ON RIGHT OF EQUAL SIGN
DEFINES START OF ARRAY DESCRIPTION
WHEN FOLLOWING A LITERAL PRINT STATEMENT,
SAYS DO NOT PRINT CARRIAGE-RETURN LINE-FEED

MAY BE USED FREELY AS STANDARD VARIABLES
BUT USE IS NOT RECOMMENDED FOR LEGIBILITY REASONS

OPERATORS

ADD TO PREVIOUS VALUE
SUBTRACT FROM PREVIOUS VALUE
MULTIPLY TIME PREVIOUS VALUUE
DIVIDE PREVIOUS VALUE BY
IS PREVIOUS VALUE EQUAL TO (YES = 1, NO = 0)
IS PREVIOUS VALUE LESS THAN (YES = 1, NO = 0)
IS PREVIOUS VALUE EQUAL TO OR GREATER THAN (Y=1, N=0)

125

SYSTEM VARIABLES

VARIABLE
A-Z COMMON VARIABLES

USE FREELY FOR STORING VALUES

!

$
9c

&
'
(
)

*
>
?

:
;

. -=; +
.(/][

<
>

/
=

THE DEFAULT OPERATOR IS THE LESS THAN TEST.

Hurkle Program
100 ?=""
110 ?="A HURKLE IS HIDING ON A"
120 ?="10 BY 10 GRID. HOMEBASE"
130 ?="ON THE GRID IS POINT 00"
140 ?="AND A GRIDPOINTIS ANY"
150 ?="PAIR OF WHOLE NUMBERS"
160 ?="TRY TO GUESS THE HURKLE'S"
170 ?="GRIDPOINT. YOU GET 5 GUESSES"
180 ?=""
190 R=7l00*0+%
200 A=R/10
210 8=%
220 K = l
230 ?="GUESS#";
240 ?=K
250 ?=" ?";
260 X=?/10
270 Y=%
280 ?=""
290 #=X*10+Y=R*540
300 K=K+1
310 #=K=6*440
320 ?="GO";
330 #=Y=B*370+(4<B*360)

Time of Day Digital Clock Programs

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

?="SOUTH";
#=370
?="NORTH";
#=X=A*410+(X<A*400)
?="WEST";
#=410
?="EAST";
?=""
?=""
#=230
?=""
?="SORRY THAT'S 5 GUESSES"
?="THE HURKLE IS AT ";
?=A
?=B
?=""
?=""
?="LETS PLAY AGAIN."
?="HURKLE IS HIDING"
#= 180
?="YOU FOUND HIM IN ";
?=K
?=" GUESSES"
#=490

FOR 300 BAUD TERMINALS
10 ?="HOUR?";
20 H=?
30 ?="MINUTE?";
40 M=?
50 ?="SECOND?";
60 S=?
70 ?="READY"
80 A=$
90 S=S+1
100 M=S/60+M
110 S=%
120 H=M/60+H
130 M=%
140 H=H/24*0+%

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

?="TIME: '
?=H/10
?=%
f «. »,

?=M/10
?=%

?=": ";
?=S/10
?=%
$=13
A=B
T=31
T=T-1
#=T=0*90
#=270

FOR 110 BAUD TERMINALS
10
20
30
40
50
60

?="HOUR ?";
H=?
?="MINUTE ?";
M=?
?="SECOND ?";
S=?

70 ?="READY"
80 A=$
90 S=S+1
100 M=S/60+M
110 S=%
120 H=M/60+H

126

130
140
150
160
170
180
190
200
210

M=%
H=H/24*0+%
?=H/10
?=%
?=": ";
?=M/10
?=%

?=": ";
?=S/10

220
230
240
250
260
270
280
290
300
310

?=%
$=13
A=B
A=B
A=B
A=B+B
T=14
T = T - 1
#=T=0*90
#=290

Factorials Program

This program calculates factorials until it runs out of memory.
For IK of memory, this is about 208!

10 A=l
20 L=2
30 :1)=1
40 1=2
50 :I)=0
60 1=1+1
70 #=L>I*50
80 ?=""
90 ?=""

ioo ?=A
110 ?="! ="
120 ?=""
130 I=L+1
140 1=1-1
150 # = : I)=0*140
160 ?=: I)
170 1=1-1
180 #=1=0*220

Weekday Program
10 #=440
20 ?="DAY OF THE WEEK"
30 ?=""
40 ?="MONTH?
50 M=?
60 # = M > 13*40
70 #=M=0*40
80 ?=DAY OF MONTH?

190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

90
100
110
120
130
140
150
160

?=:I)/10
?=%
#=170
A=A+1
1=1
C=0
X=:I)
:I)=A*X
= : I)<X*320
: I) - : I)+C
C=: D/100
: I)=%
I=I+1
#=L>I*250
#=C=0*80
L=L+1
#=*-&/2<L*380
: I)=C
#=290

D=?
?="YEAR? "
Y=?
= Y > 1800*230
#=Y<100*150
#=70
?=""
?="1S THAT 19";

127

170 ?=Y
180 ?="? ";
190 K=$
200 #=K=89=0*70
210 ?="ES"
220 Y=Y+1900
230 C=Y/100
240 Y=%
250 #=Y/4*0+% =0*280
260 : 1)=6
270 : 2) =2
280 N=Y/4+Y+D+:M)+(2*i
290 #=300+(20*W)
300 ?="SUN";
310 #=430
320 ?="MON";
330 #=430
340 ?="TUES";
350 #=430
360 ?="WEDNES";

Starshooter Program

10 1=0
20 1=1+1
30 : I) =46
40 #=I<41*20
50 :25)=42
60 1=8
70 J = l
80 $=1-/7+64
90 ?=" - ";
100 S=I+J
110 $=:S)
120 J=J+1
130 #=J=6*160
140 ?=" ";
150 #=100
160 1=1+7
170 ?=""
180 ?=""
190 #=I<43*70
200 ?=""

210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560

#=340
?="THURS";
#=430
?="FRI";
#=430
?="SATUR";
?="DAY"
:1)=0
:2)=3
:3)=3
:4)=6
:5)=1
:6)=4
:7)=6
:8)=2
:9)=5
:10)=0
:11)=3
:12)=5
#=20

?=" 1 2 3 4 5"
-) (o»

?="YOURMOVE--";
1=42
1=1+1
: I)=$
= : I)=13*320
= : I)=3*580
= : I)=95=0*250
1=1-1
#=260
A=:43)-64

#=A>6*230
B=:44)-48
#=B>6*230
S=A*7+1+B

#=:S)=42*420
?="THAT'S NOT A STAR!"

128

410
420
430
440
450
460
470
480

#=230
:S)=46
C = S - 7
#=520
C = S - 1
#=520
C=S+1
#=520

490
500
510
520
530
540
550
560
570

C=S+7
#=520
#=60

=!
= : C)=42*560
:C)=42
=
:C)=46
=

The object of the game is to change this:

10
20
30
40
50
60
70
80
90
100
110
130
140
150
160
170
180
190

#=200
D=D+2/3*0+%=0*2+(D>3)+D+l
Q=N/D
#=Q<D*300
#=%>1*20
?_«<»

?=D
N=Q
Q=N/D

#=%>1*20
?=" ";
P= l
N=Q
Q=N/D
P=P+1
#=% =0*140
?=P
#=20

200
210
220
230
240
250
260
270
280
300
310
320
330
340
350
360
370
380

?="NUMBER? ";
N=?
X=N
$=22
P=" "

?=N
?=" IS ";
D=2
#=30
#=N=X*370
#=N=1*340
?=""
?=N
p=""
?="DONE"
#=200
?="PRIME"
#=200

129

Factors of a Number Program

This version is for the TVT:

Primes Program

This version is for the 32 Char Terminal:

10 #=100
20 #=D>Q*150

30 D=D+2/3*0+%=0*2+(D>3)+D+l
40 Q=N/D

50
60
70
80
90
100
101
102
104
106
110
115
120

#=%>1*20
N=N+2/3*0+%=0*2+(N>3)+N+l
D=2
#=N<65533*40
#=N
$=28
#=102
?=" PRIMES"
?=""
?=" ";
?=1
?=" ";
N=2

130
150
160
170
180
190
195
200
205
210
220
230
240
250

A=l
B=N
#=B>10000*200
$=32
#=B> 1000*200
B*B*10
#=170
?=N

?="";
A=A+1
#A<5*60
?=""
A=0
#=60

130

10

2 0

3 0

I=0

I=I+1

: -) = I + 6 4

4 0

50

60

+ = I < 2 6 * 2 0

I=I
?=""

Craps! Program

Cipher Game Program

310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

A=$
#=500
#=R=7*390
#=R=P*360
#=300
?="YOU WIN"
T=T+B
#=120
T = T - B
?="YOU LOSE"
#=T=0*430
#=120
?="YOU ARE BUSTED!"
?="MOVE OVER AND LET THE NEXT"
?="SUCKERTRY."
?=""
#=10
?="BE SERIOUS"
#=40
R='/6*0+%+l
?=R
X=X+11213
?=" AND ";
S=76*0+%+l
X=X'56001
?=5
?=" (";
R=R+S
?=R
?=")"
#=!

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

T=100
$=22
?="CRAPS!"
?=""
?="HOW MUCH DO YOU BET? - ";
B=?
#=B=0*90
?="GOOD LUCK!"
#=B=8*480
#=T>B*160
?="TOO MUCH!"
?="YOU HAVE $";
?=T
?=" LEFT. "
#=40
?=""
?="ROLL-";
A=?
$=22
?="FIRST ROLL: ";
#=500
#=R=7*360
#=R11*360
#=R<4*390
#=R=12*390
?=""
?=R
?=" IS YOUR POINT"
P=R
?="ROLL-":

70 M='/26*0+%+l
80 H=:M)
90 :M)=: I)
100 : I)=H
110 I=I+1
120 #=I<27*70
130 ?="TEXT?"
140 ?=""
150 I=27
160 : I)=$
170 #=: I)=13*220
180 #=: I)=95=0*200
190 I=I-2
200 I=I+1
210 #=160
220 ?=""
230 I=27
240 #=: I)<64*270
250 T=: I)-64
260 : I)=T)
270 I=I+1
280 #=: I) > 14*240

290 ?=""
300 ?="CODE: "
310 ?=""
320 I=27
330 $=: 1)
340 #=: I)=13*370
350 I=I+1
360 #=330
370 ?=""
380 ?="SWITCH? - ";
390 A=$
400 B=$
410 #=B=64*370
420 I=27
430 #=: 1)=A*490
440 #=: I)=B=0*460
450 : I)=A
460 I=I+1
470 #=: I)=13*290
480 #=430
490 : I)=B
500 #=460

Phrase Sort Program

10 $=22
20 I=0
30 I=I+1
40 : I)=$
50 L=: I)=95*2
60 I=I-L
70 #=: I)>14*30
80 ?=""
90 I=1
100 K=I
110 J=K
120 #=:K)=32*160
130 #=:J)=32*150
140 #=:K)>: J)*160

150 J=K
160 K=K+1
170 #=:K)>14*120
180 H=: I)
190 :I)=:J)
200 :J)=H
210 I=I+1
220 #=: I)>14*100
230 I=0
240 I=I+1
250 $=: I)
260 #=: I)>14*240
270 ?=""

131

Life (Fast Version) Program

10 #=370
20 S=Y<F*Y+(Y=0*E)+(Y=F)-

1*0+(X<Q*X+(X=0*0)+(X=Q))
25 : S)=: S)+2
30 X=X+l-(J<X*3)+(J-l=X*(Y=I))
40 Y=J-1=X+Y

50 #=I+1>Y*20
70 #=90
80 #=: I-1*O+J)/2*0+%*20
90 J=J+1-(0=J*0)
100 I=J=1+I
110 ?="";
120 X=J-1
130 Y=I-1
140 #=I<F*80
150 1=1
160 J=l
180 ?=""
190 P=0
200 K=I-1*0+J
210 : K)=: K)<5+(: K)>8)=0
220 P=P+: K)
230 $=: K)*10+32
240 J=J+1-Q=O*O)
250 #=1<J*200
260 ?=""
270 I=I+1
280 #=I<F*200
290 ?="GEN = ";
300 ?=G
310 G=G+1
320 ?=" POP = ";
330 ?=P
340 I=1
350 J=1
360 #=0<P*110+(P=0*650)
370 I=1
380 G=0
390 ?="SIZE? ";
400 O=?

132

410 Q=O+1
420 ?="BY? ";
430 E=?
440 F=E+1
450 J=O*E+2
460 #=J*2+&>**390
470 : I)=0
480 I=I+1
490 #=J>I*470
495 #=631
500 I=1
510 ?=""
520 J=1
530 #=10*550
540 ?=" ";
550 ?=I
560 ?=" ";
570 L=$
580 : I-l*O+J)=L=32+(L=13)+(L=95)+(L=64)=0*6
590 J=J+1-(L=95*2)
600 #=L=13*620+(L=64*510)
610 #=J<Q*570
620 I=I+1
625 #=KF*510
626 #=631
627 #=150
631 $=22
632 $=18
633 $=32
634 $=18
635 $=22
636 $=18
637 $=32
638 $=18
640 $=!

This program takes at least 2 K of memory to operate satisfac
torily.

133

Motorola 6809D4
The MEK6809D4 advanced microcomputer evaluation board and
MEK68KPD keypad/display unit provide the necessary hardware
and firmware for a computer system based on the Motorola
MC6809 high performance microprocessor (Fig. A-l). The system
forms an evaluation tool to facilitate the application of Motorola
microprocessors and associated components.

The MEK6809D4A is used with an MEK68KPD and is com
plete with a power supply (Fig. A-2). The MEK6809D4B requires
an external power supply and is used with RS-232 terminal or an
MEK68R2D CRT interface plus a CRT and an ASCII keyboard.
See Table A-l.

The user can prototype dedicated systems plus write and
evaluate software programs in machine language, using a cassette
recorder/player for data storage. Provisions are made for exten
sive system expansion.

HIGHLIGHTS
• System buffers are used between sections of the

MEK6809D4 board and between the board and its edge connectors.
• Hardware RAM and ROM page select register.
• 4K static user RAM (eight sockets) may be mapped with

jumpers to appear at any 4K block in the 64K basic memory space,
and in addition may be jumpered to appear on a selected "RAM
page/or pages" as controlled by a 3-bit hardware RAM page regis
ter.

• Eight 24-pin ROM sockets may be configured to accept
combinations of ROM/EPROM types including 1K x 8 single or

134

Fig. A-1. The MEK6809KPD keypad/display unit (courtesy of Motorola
Semiconductor Products Inc.).

triple supply EPROMs or ROMs, 2K x 8 single or triple supply
EPROMs or ROMs, 4K x 8 ROMs or EPROMs, or 8K x 8 ROMs
or EPROMs.

• A ROM-based mapping technique is used to allow com
pletely general address mapping of the eight ROM sockets any
where in the 64K basic memory space with IK resolution. In
addition, the sockets may be mapped on any "ROM page/or pages"
as controlled by a 3-bit hardware ROM page register.

• All memory and I/O on the board is fully decoded, so that
address space not specifically required on the D4 is available for
off-board mapping.

• A -12 volt to - 5 volt regulator is provided to allow use of
3-supply EPROMs on the D4. Supply voltages of +12, -12, and
+5 must be provided by the user.

• Hardware is provided which allows Monitor software to
store and recover Kansas City Standard 300-baud or 1200-baud
format cassette tape data.

• Interrupt driven stop-on-address comparator.
• System clock derived from 3.579 MHz on-board XTAL or

from a 4 x TTL compatible external source.
• "Test" signal and logic provided to allow control of on

board memory and I/O from an external processor through the
70-pin edge connector.

• Control and status lines provided for flexible hardware
control of MPU and bus decode drive logic. This allows for:
—Testing and debug
-Interrupts (RESET, NMI, IRQ, FIRQ)

135

—Interrupt vectoring by device (IVE, STKOP)
—Interrupt disable (IRQE, FIRQE)
—Halt and bus request (BREQ)
—Slow memory (MEMRDY)
-DMA

The following features are standard on the MEK6809D4B and
may be included as options on the MEK6809D4A: RS-232 compat
ible serial port including buffered handshake signals; baud rate
generator providing baud rate clocks for 110, 300, 600,1200, 4800,
and 9600 baud rates; and address, data and control lines fully
buffered at bus interface.

MODEL TYPES
The MEK6909D4A has no RS-232 circuitry or address and

data buffers to the edge connector. The D4A is intended for use
with the MEK68KPD keypad/display unit which has an on-board
power supply to operate the system. No RAMs are provided in the
"user RAM" array. A 4K monitor program is provided (Fig. A-3
and Table A-2).

The MEK6809D4B is intended for use with an RS-232 serial
terminal or an MEK68R2D CRT interface as the system terminal.
The D4B has RS-232 circuitry and data and address buffers.

To operate the RS-232 interface, the user must supply +12V,
+5V, and -12 V power. A 4K + 2K monitor is provided. No RAMs
are provided in the "user RAM" array.

Fig. A-2. The basic MEK6809D4 advanced microcomputer evaluation board
(courtesy of Motorola Semiconductor Products Inc.).

136

Table A-1. Product Features of the MEK6809D4 and
MEK68KPD (courtesy of Motorola Semconductor Products Inc.)-

MOKEP M-60 and M-70 products are compatible with the
D4B, thus allowing expansion to an ASCII keyboard interface to
the microcomputer system. The MEK68KPD (with its onboard
power supply disconnected) may be used with the MEK6809D4B.

The MEK68KPD is the keypad/display unit intended for use
with the MEK6809D4 board and interfaces electrically with the
MEK6809D4. Standard interface to the D4 is via a 24-conductor
cable and plug assembly supplied with the KPD unit.

Table A-2. MEK6809D4 ac Operating Conditions and

Characteristics (courtesy of Motorola Semiconductor Products Inc.).

AC OPERATING CHARACTERISTICS (Bus)

AC OPERATING CONDITIONS (Bus)

NOTES: 1) Operating temperatures TA = 25°C
2) Timing measured at edge connector (50% points)
3) Measured from falling edge of E (02)
4) Measured from rising edge of (02)

137

Fig. A-3. MEK6809D4 timing diagram (courtesy of Motorola Semiconductor
Products Inc.).

EXPANSION

With the rapid advancements in the microprocessor industry,
there is vital need to provide educational and evaluation material to
help engineering/technical personnel stay abreast of this technol
ogy.

In response to this need Motorola Memory Systems has
evolved a series of kit boards intended for the educational evalua
tion of the MC6800 family of integrated circuits. The series is
called "MOKEP" (for Motorola Kit Expansion Products) and in
cludes the following wide range of boards.

MEK68CC Card Cage. The MEK68CC is used with the
MEK68MB5 motherboard.

MEK68MB5 Motherboard Module. The MEK68MB5
motherboard module has provisions for 10 card slots on 5/8" cen
ters, with alternate slots populated with 70-Pin connectors.

MEK68CMB Card Cage/Motherboard. The MEK68CMB
can accommodate ten cards of the MOKEP series. The card cage is
identical to the MEK68CC. The motherboard is a fully populated
version of the MEK68MB5 without the stand-alone card guides.
The completed assembly measures 8-Vi" high by 7-1/4" wide by
131/4" deep.

MEK68R2/R2D/R2M Programmable CRT Interface
Modules. The MEK68R2/R2D/R2M programmable CRT inter-

138

face modules are used in conjunction with other products in the
MOKEP family to form a microcomputer system. The MEK68R2D
is to be used with the MEK6809D4 microcomputer module and an
MEK68MB series motherboard. All units feature software pro
grammable line and character format, upper and lower case 5x7
matrix display, semigraphics, and up to 4K of screen display
memory. All modules provide an interface for an ASCII keyboard.

MEK6810 Input/Output Module. The MEK6810 is
supplied with a 300/1200 baud cassette interface, two MC6850
ACIAs, an MC14411 baud rate generator and one MC6821 PIA.

MEK68EP EPROM Programmer Module. The
MEK68EP has provisions for programming both single and triple
power supply types of IK, 2K and 4K EPROMs.

MEK68RR ROM/RAM Module. The MEK68RR has pro
visions for eight ROM sockets which may be configured to accept
1K, 2K 4K or 8K single or triple supply ROMs or EPROMs. The
board also has sockets for up to 8K bytes of static RAM.

MEK68MM16/MM32 16K/32K Memory Modules. The
MEK68MM16 has 16K bytes of RAM and the MEK68MM32 has
32K bytes. The MEK68MM boards employ 16K dynamic RAMs
and a hidden refresh technique to achieve the low cost, low power
consumption and high density of dynamic memory systems, while
appearing as static memory to the system. The MEK68MM fully
supports the RAM paging technique of the D4 microcomputer
module, allowing up to eight boards or 256K bytes of RAM to be
used in one system.

MEK6809A Editor/Assembler. The MEK6809EA
editor/assembler provides the user of the MEK6809D4B with the
ability to enter, assemble, edit and save assembly language pro
grams for execution on the M6809. The editor may also be used to
enter and edit text files that will not be assembled for execution.
The assembler will accept both M6800 and M6809 mnemonics.
The object code from the assembler can be placed in memory or
saved on tape. The MEK68R2D display and stand alone terminals
are supported by software.

MEK68WW/WW1 Wirewrap Modules. The MEK68WW
is used with the MEK6800AD adapter motherboard, and interfaces
directly with the 60-Pin bus of the AB. The MEK68WW1 utilizes a
70-pin bus, directly interfacing with the MEK68MB series
motherboards. Either product can be used as a card extender. Both
are supplied with components required for buffering of address,
data and control buses.

139

SOFTWARE FEATURES

• Memory change display
• Register change/display
• Breakpoint editor
• 4K monitor in position independent code (6K for

MEK6809D4B version)
• Trace single step and user line
• Go to user program
• Calculate offset
• Cassette punch/load/verify
• Stop on address
• Escape from all functions
• 16 User special functions
• Additional features on D48 include memory dump to

examine blocks of data, memory fill, memory search, memory
move and ASCII entry

The MEK6809D4 operating system allows the development
and operation of user-defined programs. The basic monitor pro
gram interfaces with an MEK68KPD keypad/display unit and is
contained in a 4K byte ROM (MCM68332 or equivalent). This
ROM is factory installed in all versions of the MEK6809D4 assem
bled units.

A second 2K byte ROM (MCM68316E or equivalent) is used
with an MEK68R2D CRT monitor/ASCII keyboard interface or
RS-232 compatible terminal. This additional 2K ROM is provided
in the.MEK6809D4B version.

The monitor program source listings, complete with com
ments, are available from Motorola. The monitor program is writ
ten in highly subroutined, position independent code. These
source listings provide a valuable starting point for many types of
user programs.

The monitor program provides the following functions.

Examine/Change Memory Location

This allows the user to open any memory location and display
the contents. New data may then be entered if desired, assuming
read/write memory is present at the selected location. If an at
tempt is made to write into an invalid location, the new data will be
displayed together with the fixed data at the invalid location. Only
the new data is displayed when a valid change of read/write mem
ory is accomplished. After the examine/change step, the user has

140

the option of automatically opening either the next or previous
location—or escaping to the monitor program.

Examine—Change Registers

This function allows the user to examine/change two external
registers plus those areas of the stack RAM corresponding to the
storage locations of the nine internal registers of the MC6809. This
has the effect of allowing the user to examine/change these regis
ters.

This function differs from memory examine/change in that the
registers are displayed in a set sequence. Register designation as
well as contents are displayed to facilitate use of the function. The
two external registers are incorporated on the MEK6809D4 to
perform operations not inherent with the MC6809.

Stop on Address

In de-bugging programs, it is often advantageous to be able to
halt the machine when a specific address is encountered. A typical
example of the use of this function is to determine the reason for an
inadvertent (or incorrect) change of a memory location during the
running of a User program.

The stop on address function (SOA) function is implemented
on the MEK6809D4 by circuitry which compares the MPU address
outputs with user-entered data in the stop on address register.
Providing the SOA function is armed, a non-maskable interrupt is
generated when a comparison is achieved.

Depending on the type of instruction (more specifically, upon
the timing relationship of the address assertion in the instruction
cycles), the NMI may be recognized at the end of the previous
instruction. Control then passes to the monitor, allowing the user
to determine that one of two specific instructions has accessed the
specified memory location.

In some instances it is desirable to allow the program to stop
only on the NTH time an address is encountered. The MEK6809D4
can implement this function. It is also possible to output a trigger
pulse each time the address is encountered, rather than stopping
program execution.

Breakpoints

The SOA function is implemented in hardware. Software
methods of program execution interruptions include the setting of

141

breakpoints at desired locations in the program. This effectively
substitutes a software interrupt for the instruction at that location.

Up to eight breakpoints can be set in the user program (pro
vided the program is in RAM). As with SOA, the user has the
option of allowing N-l breakpoints to be bypassed if desired. (The
maximum value of N for either SOA or breakpoints is 255). The
User can set, clear or examine breakpoints via the breakpoint
editor function.

Trace Instruction

This function allows the User to step through a program one
instruction at a time. At the end of each instruction, the examine/
change register routine is automatically entered, and the new
program counter value is displayed.

Trace Line

It is often desirable to trace through a program while treating a
subroutine as a single instruction. One obvious example of this is
the situation wherein all subroutines have previously been
thoroughly de-bugged. The MEK6809D4 debug routines allow this
to be accomplished in either of two ways.

One of these (software method) involves a comparison of each
instruction in a subroutine until the instruction following the sub
routine is encountered. Thus, the portion of the program from a
subroutine call to its return is treated as one instruction as far as
the trace function is concerned. Nested subroutines are automati
cally handled by the monitor program.

The second trace line option uses the SOA circuitry. This has
an advantage over the software method in that subroutine execu
tion is in real time. This is particularly helpful in de-bugging
time-dependent I/O routines. (It is also desirable for long sub
routines, since the software method greatly increases the run time
of a subroutine). Its disadvantage is that program execution often
continues for one instruction after the return.

User Program Control

The MEK6809D4 de-bug routines include functions to allow
the user to go to, continue, or abort user programs.

Offset Calculation

In generation or modification of programs, it is often neces
sary to calculate the offset from the location of a jump or branch

142

• n *

instruction to its destination. Some indexed mode instructions also
use relative offsets. The examine/change memory location in
cludes a subfunction to allow this to be easily accomplished.

The user opens the location of the offset, types the offset
command, then enters the desired destination address. The
MEK6809D4 calculates the required offset, displays it, and enters
the data in the appropriate memory location(s). The offset calcula
tion supports both short and long offsets.

Punch/Load/Verify Audio Cassette
The audio cassette interface is a modified Kansas City Stan

dard version capable of operation at either 300 or 1200 baud. The
interface allows any of the three functions (punch, load or verify
with memory) to operate with or without an optional offset. This is
particularly useful for user programs written in position indepen
dent code.

ADDED D4B SOFTWARE FEATURES

The memory dump command allows the user to display blocks
of memory with ASCII equivalents. The display for mats differ
slightly depending on the display device configuration. The ending
address must be a larger hexadecimal number than the beginning
address or a warning will be issued, followed by a new request for a
begin address. The dump command cannot proceed until a satisfac
torily address range has been specified.

Memory fill allows the user to fill a block of memory with a four
byte pattern. The beginning and ending addresses are entered as in
the memory dump command.

Memory search allows search of a specified block of memory
for a 4 byte pattern subject to a corresponding 4 byte mask. For all
bits in the mask which are zero, the corresponding bit in the pattern
is considered to be "don't care."

After the mask has been specified, the search function will be
performed over the specified address range. Each time the com
parison alogrithm is successful, the address of the first location of
the match is displayed. If the list of successful addresses is being
displayed too quickly, the listing may be temporarily halted by
typing (ESCAPE) as in the memory dump command.

Memory Move allows the user to move a block of data from one
area in memory to a new area. The beginning and ending addresses
are entered the same way as in memory dump. Following entry of

143

the end address, a message will appear requesting entry of the new
beginning address where the block of data is to be moved.

ASCII Entry allows a user to store ASCII data to memory
quickly and easily without having to look up each ASCII character
to determine its hexadecimal equivalent. Features are incorpo
rated to assist in setting up messages for the D4BUG callable
subroutine "PDATA."

MEK6809D4 DESCRIPTION

The CPU consists of an MC6809 high performance micro-
procesor, a 3.579 HMz crystal, and buffers which interface the
MC6809 to other circuit blocks on the D4 board.

The MC6809 supports programming techniques such as posi
tion independence, re-entrancy and modular programming. The
MC6809 has hardware and software features which make it a
suitable processor for higher level language execution or standard
controller application (Fig. A-4).

Rom

The ROM system consists of eight ROM sockets which may
be configured to accept various combinations of ROM types. These
include single or triple power supply varieties of IK, 2K, 4K, or 8K
x 8 ROMs or EPROMs. The ROM type configurations are control
led by mini-jumpers which may be easily moved without the need
for any tools.

Mapping of the eight ROMs in memory space is accomplished
by a mapping ROM which is used as a programmed logic array. A
paging technique allows up to 192K bytes of ROM to be used in the
D4 system.

Ram
There are two groups of 1K x 4 RAMs. One group is the stack

RAM and the other is the user RAM.
The stack RAM is used mainly for the D4 operating system

stack and scratch RAM. Also, 512 bytes are available for user RAM
application. This RAM is always located in the D4 system at
memory location $E400 through $E7FF. The user RAM is a 4K x 8
block of memory that can be positioned anywhere in the D4 mem
ory map, using jumper connections.

It is possible to disable the eight user RAM sockets to allow
use of a MOKEP MEK68MM memory board for system expansion.

144

145

Another jumper, when removed, prevents the user RAM from
being written into (write protect), but the stack RAM is not af
fected. With the jumper in place, read and write to the user RAM is
normal.

Address Bus System

In some microprocessor systems, the address flow is from the
microprocessor through buffers and to the motherboard bus. The
D4 uses a more complex arrangement that permits disabling the
microprocessor. This allows addresses to be fed to the D4 from an
external source, to access board components and permits DMA
(direct memory access) for some applications.

The Data Bus System

There are four bi-directional data buffers used in the D4; a
ROM buffer, RAM/IO buffer, edge buffer, and MPU buffer. Each
buffer has an enable and a direction input. Control logic configures
these buffers to route data between sections of the D4 board.

The Stop-On-Address Circuit

The purpose of a stop address is to enable a user program to be
executed until a certain address is reached. The address to be
stopped on is stored and when the board address bus bits coincide,
an output results. This causes a nonmaskable interrupt to occur
which switches the microprocesor to a service routine.

When a coincidence of address occurs, an NMI is not neces
sarily generated. In these cases, the comparator output is available
at a test point to provide a trigger signal to an oscilloscope.

The RS-232 Circuit

The RS-232 specification defines a standard for interconnect
ing computer terminals of different makes. The ACIA converts the
parallel data on the buses to serial data. The serial data is then
translated into RS-232 levels.

The Cassette Circuit Interface

The D4 uses very few components to interface a tape recorder
to its operating system. Most of the cassette operation occurs in
software, to create tapes and recover data from tapes. The tape
information consists of a stream of 1200 and 2400 Hz serial audio
data.

146

Fig. A-5. MEK68KPD block diagram (courtesy of Motorola Semiconductor
Products Inc.).

MEK68KPD DESCRIPTION
The MEK68KPD includes a 25-key keypad, eight 7-segment

LED displays, an on-board +5 volt power supply, and an uncom
mitted MC6821 PIA. Provisions are made to allow disconnection of
the on-board regulators when an external +5 volt supply is used. A
wire-wrap area is provided for custom circuitry and a 16-pin socket
allows for additional signals to be brought to or from this wire-wrap
area (Fig. A-5).

The display consists of eight seven-segment LEDs with a
character height of 0.5 inches. The grouping of the displays is in a
4-2-2 linear array. A suitable anti-glare filter is provided with each
MEK68KPD.

The PIAs used on the KPD are fully decoded via a peripheral
chip select signal and address lines A0-A2 from the MEK6809D4.
Data is furnished via the input cable.

147

Hexadecimal
Values of Machine Codes

Courtesy of American Microsystems, Inc.

149

150

151

152

153

Programmer's Card

Courtesy of American Microsystems, Inc.

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Instruction Index
MNEMONIC

ABX
ADCA

ADCB

ADDA

ADDB

ADDD

ANDA

ANDB

ANDCC
ASLA
ASLB
ASL

ASR

ADDRESSING
MODE

INHERENT
IMMEDIATE
DIRECT
INDEXED
EXTENDED
IMMEDIATE
DIRECT
INDEXED
EXTENDED
IMMEDIATE
DIRECT
INDEXED
EXTENDED
IMMEDAITE
DIRECT
INDEXED
EXTENDED
IMMEDIATE
DIRECT
INDEXED
EXTENDED
IMMEDIATE
DIRECT
INDEXED
EXTENDED
IMMEDIATE
DIRECT
INDEXED
EXTENDED
IMMEDIATE
ACCUMULATOR
ACCUMULATOR
DIRECT
EXTENDED
INDEXED
INHERENT

OP
CODE

3A
89
99
A9
B9
C9
D9
E9
F9
8B
9B
AB
BB
CB
DB
EB
FB
C3
D3
E3
F3
84
94
A4
B4
C4
D4
E4
C4
1C
48
58
08
78
68
57

CYCLES

3
2
4
4+
5
2
4
4+
5
2
4
4+
5
2
4
4+
5
4
6
6+
7
2
4
4+
5
2
4
4+
5
3
2
2
6
7
6+
2

PAGE NUMBER

59
60

60

61

61

61

63

63

63
64
64
64

65

169

MNEMONIC ADDRESSING OP CYCLES PAGE NUMBER

ASRA
BCC
LBCC
BCS
LBCS
BEQ
LBEQ
BGE
LBGE
BGT
LBGT
BHI
LBHI
BHS
LBHS
BIT A

BIT B

BLE
LBLE
BLO
LBLO
BLS
LBLS
BLT
LBLT
BMI
LBMI
BNE
LBNE
BPL
LBPL
BRA
LBRA
BRN
LBRN
BSR
LBSR
BVC
LBVC
BVS
LBVS
CLRA

CLRB
CLR

MODE

DIRECT
EXTENDED
INDEXED
INHERENT
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE
RELATIVE
LONG RELATIVE

INHERENT
INHERENT
DIRECT

CODE

07
77
67
47
24
10
25
10
27
10
2C
10
2E
10
22
10
24
10
95
B5
85
A5
D5
F5
C5
E5
2F
10
25
10
23
10
2D
10
2B
10
26
10
2A
10
20
16
21
10
8D
17
28
10
29
10
4F

5F
OF

6
7
6+
2
3
5(6)
3
5(6)
3
5(6)
3
5(6)
3
5(6)
3
5(6)
3
5(6)
4
5
2
4+
4
5
2
4+
3
5(6)
3
5(6)
3
5(6)
3
5(6)
3
5(6)
3
5(6)
3
5(6)
3
5
3
5
7
9
3
5(6)
3
5(6)
2

2
6

170

66
66
66
67
67
67
68
68
68
68
69
69
69
70
70
71

71

71
72
72
72
73
73
73
73
74
74
74
75
75
75
75
75
76
76
76
76
77
77
78
78
78
78
79

MNEMONIC

CMPA

CMPB

CMPD

CMPS

CMPU

CMPX

CMPY

COMA
COMB
COM

CWAI

ADDRESSING
MODE

EXTENDED
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT

EXTENDED

IMMEDIATE

INDEXED

DIRECT

EXTENDED

IMMEDIATE

INDEXED

DIRECT

EXTENDED

IMMEDIATE

INDEXED

DIRECT
EXTENDED
IMMEDIATE
INDEXED

DIRECT

EXTENDED

IMMEDIATE

INDEXED

INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED
INHERENT

OP
CODE

7F
6F
91
B1
81
A1
D1
F1
C1
E1
10
93
10
B3
10
83
10
A3
11
9C
11
BC
11
8C
11
AC
11
93
11
B3
11
83
11
A3

9C
BC
8C
AC
10C
9C
10
BC
10
8C
10
AC
43
53
03
73
63
3C

CYCLES

7
6+
4
5
2
4 +
4
5
2
4+
7

5

7+

7

8

5

7+

7

8

5

7+

6
7
4
6+

7

8

5

7+

2
2
6
7
6+
20

PAGE NUMBER

79

79

80

80

81

81

82
82
82

82

171

81

8

NEMONIC

DAA
DECA
DECB
DEC

EORA

EORB

ADDRESSING
MODE

INHERENT
INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED

EXG R1,R2 INHERENT
INCA
INCB

INC

JMP

JSR

LDA

LDB

LDD

LDS

LDU

LDX

INHERENT
INHERENT

DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT

EXTENDED

IMMEDIATE

INDEXED

DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED

OP
CODE

19
4A
5A
OA
7A
6A
9B
B8
88
A8
D8
F8
C8
E8
1E
4C
5C

0C
7C
6C
OE
7E
6E
9D
BD
AD
96
B6
86
A6
D6
F6
C6
E6
DC
FC
CC
EC
10
DE
10
FE
10
CE
10
EE
DE
FE
CE
EE
9E
BE

CYCLES

2
2
2
6
7
6+
4
5
2
4+
4
5
2
4+
7
2
2

6
7
6+
3
4
3+
7
8
7+
4
5
2
4+
4
5
2
4+
5
6
3
5+
6

7

4

6+

5
6
3
5+
5
6

PAGE NUMBER

84
85
85
85

85

86

86
87
87

87

87

88

88

88

89

89

89

89

172

NEMONIC

LDY

LEAS
LEAU
LEAX
LEAY
LSLA
LSLB
LSL

LSRA
LSRB
LSR

MUL
NEGA
NEGB
NEG

NOP
ORA

ORB

ORCC
PSHS
PSHU
PULS
PULU
ROLA
ROLB
ROL

RORA
RORB
ROR

ADDRESSING
MODE

IMMEDIATE
INDEXED
DIRECT

EXTENDED

IMMEDIATE

INDEXED

RELATIVE
RELATIVE
RELATIVE
RELATIVE
INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED
INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED
INHERENT
INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED
INHERENT
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
IMMEDIATE
INHERENT
INHERENT
INHERENT
INHERENT
INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED
INHERENT
INHERENT
DIRECT

OP
CODE

8E
AE
10
9F
10
BE
10
8E
10

AE

32
33
30
31
48
58
08
78
68
44
54
04
74
64
3D
40
50
00
70
60
12
9A
BA
8A
AA
DA
FA
CA
EA
1A
34
36
35
37
49
59
09
79
69
46
56
06

CYCLES

3
5+
6

7

4

6+

4+
4+
4 +
4+
2
2
6
7
6+
2
2
6
7
6+
11
2
2
6
7
6+
2
4
5
2
4+
4
5
2
4+
3
5+4
5+4
5+4
5+4
2
2
6
7
6+
2
2
6

PAGE NUMBER

89

90
90
90
90
91
91
91

92
92
92

93
93
93
93

94
94

94

95
96
96
96
97
98
98
98

99
99
99

173

MNEMONIC

RTI
RTS
SBCA

SBCB

SEX
STA

STB

STD

STS

STU

STX

STY

SUBA

SUBB

SUBD

ADDRESSING
MODE

EXTENDED

INDEXED
INHERENT
INHERENT
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
INHERENT
DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
INDEXED
DIRECT

EXTENDED

INDEXED

DIRECT
EXTENDED
INDEXED
DIRECT
EXTENDED
INDEXED
DIRECT

EXTENDED

INDEXED

DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
INDEXED
DIRECT
EXTENDED
IMMEDIATE
IMHCYPn

OP
CODE

76

66
3B
39
92
B2
82
A2
D2
F2
C2
E2
ID
97
B7
A7
D7
F7
E7
DD
FD
ED
10
DF
10
FF
10
EF

DF
FF
EF
9F
BF
AF
10
9F
10
DF
10
AF
90
BO
80
AO
DO
FO
CO
EO
93
B3
83
A3

CYCLES

6+
6/15
5
4
5
2
4 +
4
5
2
4 +
2
4
5
4 +
4
5
4 +
5
6
5+
6

7

6+

5
6
5+
5
6
5+
6

6+
i

4
5
2
4+
4
5
2
4+
6
7
4
6+

PAGE NUMBER

100
100
100

101

101
102

102

102

102

103

103

103

104

104

104

174

MNEMONIC ADDRESSING OP CYCLES PAGE NUMBER
MODE CODE

SWI
SWI2

SWI3

SYNC
TFR
TSTA
TSTB
TST

INHERENT

INHERENT

INHERENT

INHERENT
INHERENT
INHERENT
INHERENT
DIRECT
EXTENDED
INDEXED

3F
10
3F
11
3F
13
1F
4D
5D
OD
7D
6D

19
20

20

>=2
7
2
2
6
7
6+

105
105

106

107
108
109
109
109

I

175

A
Accumulator

offset indexed
ADD
Add to accumulator
Addressing
Address ing modes, basic

concepts
innerent

summary
Address it
AkU
American Microsystems Inc
AMI
Arithmetic Logic Unit

operations
Assembler, basics

listing
typical requirements

Auto increment indexed

B
Bit 5

4
1
7
6
3
2

BUSY
Byte-oriented
Bit O

C
Changed configuration
Comment field
Condit ion codes
Constant offset indexed

D
Direct addressing

Memory Access
Page
statements

DMA

E
EA
Effective address
Enable input
Error trapping

26
47
37
37

37-55

37
38

55
56
29
17
17
29

119
112
117
113
49

30
30
29
31
31
30
30
16
11
29

12
114

28,31
45

41
13
28

118
13

37
37
13

119

Equivalencies
Expressions
Extended addressing

F
Fast Interrupt Request
FIRQ

H
Halt/Bus grant
Hardware Stack Pointer
High level language processo

I

Immediate addressing
Indexed addressing

indirect
Index registers
Inherent addressing mode
Interrupt Request

tracing
IRQ

L
Label field
Last instruction Cycle
LEA
LIC
Line numbering
Load effective address

M
Metal Oxide Substrate
MOS
Most Significant Bit
MSB

0
Operand field
Operating field

P
Performance summary
Pipelining effect
Pointer

registers
Preliminary concepts
Processor busy signal
Program Counter

statements

32
115

40

12
12

21
27
11

39
44
50
27
38
30
19
30

113
16
57
16

119
57

10
10
29
29

114
114

32
36
27
27

1.19
16
27

118

PSHU/PSHS
Push/pull

Q
Quadrature output

R
Radio Shack TRS-80

Videotex
Registers

addressing
Relative addressing
Right nomenclature

S
Schmitt-trigger, pulling
Set Direct Page Pointer
SETDP
Sequence number
6800/6809, software

incompatibil it ies
6809 µP, basics

condit ion codes
individual instructions
interrupts
introduction
MPU signal descriptior

Software
interrupts

Statements
SWI
Symbols
Sync acknowledge
System, establishing

variables 119,

T
Tri-state control
TSC

U
User Stack Pointer

V
Variety in clocks
VTL-09, sample programs

Z
Zero-offset indexed

57
56

14

9
27
43
51
13

19
42
42

113

31
10
31

59-111
31

9
17
25
58

118
58

115
21
24

120-124

15
15

27

13
124

45

Edited by Robert E. Ostrander

176

