THE COMPLETE RAINBOW GUIDE TO s'

0S-9 LEVEL Il

VOLUME I: A BEGINNERS GUIDE TO WINDOWS

By Dale L. Puckett
and Peter Dibble

From the publishers of
THE RAINBOW?®™ The Color Compu‘lerfvlonthly Magazine
; PR ® :

Volume I: A Beginners Guide to Windows

By Dale L. Puckett and Peter Dibble

Faisoft, Inc.
Prospect, Kentucky

THE COMPLETE RAINBOW GUIDE TO 0S-9
LEVEL Il

Volume |: A Beginners Guide to Windows

Editor: Jo Anna Wittman Arnott
Technical Editor: Cray Augsburg
Art Director: Rita Lawrence
Cover lllustration: Tracey Jones

The Rainbow Bookshelf™ books are published by Falsoft, Inc., Lawrence C. Falk,
President; James E. Reed, Executive Editor.

Copyright® 1987 by Falsoft, Inc., The Falsoft Building, 9509 U.S. Highway 42,
P.O. Box 385, Prospect, Kentucky 40059.

The authors have exercised due care in the preparation of this book and the
programs contained in it. Neither the authors, the publisher, nor Microware make
any warranties either express or implied with regard to the information and
programs contained in this book. In no event shall the authors or publisher be
liable for incidental or consequential damages arising out of the furnishing,
performance, or use of any information and/or programs.

The Complete Rainbow Guide to OS-9 Level Il — Volume I: A Beginners Guide
to Windows is intended for the private use and pleasure of individual purchasers
of this publication, and reproduction by any means is prohibited, with the
exception that the program listings may be entered, stored, and executed in a
computer system.

Tandy Color Computer is a ®trademark of the Tandy Corporation. OS-9 and
BASICO09 are ®trademarks of Microware and Motorola. UNIX is a ®trademark
of Bell Laboratories, Inc. THE RAINBOW is a ®trademark of Falsoft, Inc. The
Rainbow Bookshelf™ is a trademark of Falsoft, Inc. Maxwell Mouse: copyright®
1986 by Logan Ward and Falsoft, Inc. Koronis Rift and the Koronis Rift game
screen are ™ and © 1987 Lucasfilm Ltd. (LFL) All Rights Reserved. Used under
authorization.

First published in 1987.

ISBN: 0-932471-09-9
Library of Congress Catalog Card Number: 85-70113

Printed in the United States of America
12 3 45 6 7 8 9 10

Sandra Blackthorn
Jody Doyle

Jody Gilbert

Jill Hopkins

Judi Hutchinson
Cynthia L. Jones
Tracey Jones
Angela Kapfhammer
Jutta Kapfhammer
Heidi Maxedon

T. Kevin Nickols
Denise Webb

ACKNOWLEDGMENTS

table of contents

Foreword ix

Preface Xi

CHAPTER 1 LET'S GET STARTED 1
Booting OS-9

Preparing a working system disk
A one-drive system

The repeat key

Background tasks

Rebooting

The “I Quit” key

CHAPTER 2 PLAYING AROUND 19
Opening windows
Using windows
Execution directories
Data directories

CHAPTER 3 LET'S DEFINE OUR OWN
WINDOWS 35
Handcrafting a screen
Making text windows
Basic window types
Window colors
Making a device window
Merging in fonts
Creating overlay windows
Making a graphics window

CHAPTER 4 AUTOMATING THE WINDOW
GAME
Changing a file
Editing procedure files
Translating commands
Creating processes
Inheritance

CHAPTER 5 GETTING READY TO DRAW
Setting up
Making a graphics screen
Pixel positions
Graphics cursors
Background patterns

CHAPTER 6 FIRST STEPS WITH BASICO09
Understanding programming
Writing a program
Listing your work

CHAPTER 7 DRAWING WITH 0S-9
PRIMITIVES
Drawing a box
Line drawing commands
Using RunB

CHAPTER 8 BUILDING FRIENDLY TOOLS
English language commands
Combining modules
Getting tools in gfx2
A mini drawing program
Setting a CoCo alarm

CHAPTER 9 OF FILE TREES AND OTHER

THINGS 0S-9

Current working directories

BASICO09 i-code

Subdirectories

Modpatch

The magic of /dd

Tmode vs. Xmode

Making new system disks

Config using a pipe

Customizing your disks

Telling a device from a file

CHAPTER 10 A REAL BASIC09 PROGRAM
Printing the ASCII table
Unprintable characters

Vi

49

67

85

91

113

137

155

CHAPTER 11 SELECTING COLORS: THE

PALETTE

Color identifiers

Binary codes for colors

Default color scheme

Mixing colors

Binary to Hexadecimal conversion

Control from BASIC09

CHAPTER 12 GETTING SERIOUS: A SCREEN-
ORIENTED TEXT EDITOR
Screen data structure
Controlling the screen

CHAPTER 13 SOUPING UP SCRATCHPAD
Beyond one screen
Supporting files
Scrolling

CHAPTER 14 USING LIBRARY CODE
Outside-in development
Working toward CalcDate

CHAPTER 15 LIVING DANGEROUSLY
Error-free programming
Avoiding Debug
Program stubs

CHAPTER 16 LETYOURCOCO TWIDDLE ITS
THUMBS
Saving old colors
A humming CoCo
A terminal on a terminal
The CoCo icon
Pixel storage
Hex translation

CHAPTER 17 PUTTING IT ALL TOGETHER
Packing and combining procedures
RunB
Some warnings
Building the menu file

INDEX

Special items index
General index

vii

169

179

191

211

223

245

261

267

We at Falsoft are pleased to present The Complete Rainbow
Guide to 0S-9 Level Il — Volume I: A Beginners Guide to
Windows. We're sure you'll find this book to be quite helpful in
your study of the new windowing capabilities of OS-9 Level |l on
the Color Computer. Dale Puckett and Peter Dibble offer easy-
to-understand tutorials and examples for beginner and old pro
alike.

The world of the Color Computer is expanding by leaps and
bounds, and we’re pleased that so many of you turn to Falsoft for
your information source. We're pleased because long ago we
made a commitment to the CoCo Community to broaden the base
of knowledge about our computer and its vast potential. Your
response has let us know that we’re keeping that promise.

Dale and Peter, authors of The Complete Rainbow Guide to
0S-9 (published in 1985), have repeated their earlier success at
making the OS-9 operating system understandable to everyone.
This volume focuses on windowing abilities and the incredible
power they bring to the Color Computer, and gives some helpful
applications, too. Maxwell Mouse and CoCo Cat will be looking
over your shoulder throughout the book; we hope you enjoy their
antics.

Dale and Peter have included many sample programs that are
instructional and useful, too. They will help ease the learning
process.

| hope you enjoy this first volume of our two-volume set on
0S-9 Level lI. It's a pleasure serving the CoCo Community.

Lawrence C. Falk
Publisher

FOREWORD

PREFACE

welcome to our second
rainbow guide to 0s-9!

In The Complete Rainbow Guide to OS-9, we explained how
0S-9 works — inside, as well as on the command line. We gave
you the foundation and structure needed to build a stable of OS-
9 programming skills. We hope you will continue to learn from
it as you use this book to move up to the fascinating windowing
environment made possible by Tandy’s Color Computer 3 and
0S-9 Level II.

in this book, The Complete Rainbow Guide to OS-9 Level I,
Volume I: A Beginners Guide to Windows, we're taking a more
relaxed approach. You’'ll get your hands on the keyboard early.
We'll watch over your shoulder as you read some of your first error
messages and try to help you understand what they mean. The
best way to use this book is with your manual open in front of
you for easy reference.

We'll suggest a task you might want to accomplish and then
set about finding a way to do it with your OS-9 tool kit. But, we’'ll
also take time out to play in an early chapter. As a matter of fact,

Xi

A HANDS-ON APPROACH

WHAT DO | HAVE AT MY FINGERTIPS?,

55

DO | NEED ADDITIONAL HARDWARE?

we don’t plan to let the material get too heavy at all. CoCo Cat
and Maxwell Mouse will be looking over your shoulder, too!

We'll be showing you how to do the same job several different
ways as we introduce 0OS-9’s versatility. Since BASIC09 is part of
the OS-9 Level Il package, we’ll also introduce you to it! in fact,
by the time you reach the end of the book, you will have learned

how to program several of the key parts of a Sidekick-type desk
accessory package using BASIC09.

If we had to answer that question with only one word, we
would scream “power!” But, let’'s use a few more.

0S-9isthe key you need to unlock the treasure waiting inside
your new Color Computer 3. It's the gateway to an ever growing
list of application programs that can increase both your produc-
tivity at work and your pleasure at play. OS-9 brings you
applications that let you crunch numbers in a spreadsheet, build
effective databases, draw impressive pictures and communicate
with other computers, online databases or bulletin board systems.
As you progress through this new OS-9 Level Il guide, we'll show
you how to set up your system to run several of these applications.

Think of OS-9 as a tooibox full of tools. Just as an apprentice
carpenter learns how and when to use a hammer while building
a house, you'll learn how and when to use filters and other OS-
9 utilities to get your work done.

We recommend you install 512K of memory soon. Some of
the high resolution graphics windows you may be using can take
up to 32K bytes each. Since the OS-9 system workspace alone
uses 64K of memory, you can see how easy it is to quickly run
out of memory on a 128K machine.

We also recommend that you use double-sided disk drives
while running OS-9. As we have already noted, the OS-9 toolbox
is quite full. It takes two single-sided disks just to hold the system
and utility programs. If you only have two drives, that doesn’t leave
any room for your data files or your own programs. If you can
swing it, a hard disk will increase your enjoyment of OS-9 many
times.

Xii

PROLOG

Microware Systems Corporation’s 6809-based OS-9 operat-
ing system was first exposed to the consumer market on the Radio
Shack Color Computer in October 1983. It created quite a stir.
Power-packed and efficient, OS-9 brought a UNIX-like environ-
ment to an inexpensive microcomputer for the first time.

In 1987, history repeated itself. The selection of Microware’s
0OS-9 Level [l as the operating system for the new Color Computer
3 has already introduced thousands of new users to this powerful
operating system.

Dale L. Puckett is a free-lance writer and programmer who
first learned about bits, bytes and BASIC when he built a “television
typewriter” — an SWTPC CT-1024 — in 1975. When the keyboard
didn’t arrive with his kit, he wired a set of nine slide switches
together and put his first message on the screen one byte at a
time.

A month later he built an SWTPC 6800 microprocessor with
12K of memory and has been programming ever since. A cassette
storage unit wasn’t available then, so he often left his computer
on for weeks at a time after finishing a long program.

His programs inciude DynaSpell, Esther, Help, Lk and
Readtest. He aiso designed and is co-author of The Speller, which
runs on the IBM PC and Apple Il, and Hayden Speller on the
Macintosh.

Dale is a contributing editor to THE RAINBOW and author of
that magazine’s monthly column “KISSable OS-9.” He serves as
the director at large and is a former president of the OS-9 Users
Group, an lowa corporation with members worldwide. He has
previously written for HOT CoCo, InfoWorld, Micro and '68 Micro
Journal.

An amateur radio operator (KOHYD) since 1956, Dale has held
a first-class radiotelephone operator’s license since 1962. He has
worked at several radio and television stations in Kansas and New
Jersey.

Puckett received a bachelor of science degree from the
William Allen White School of Journalism at the University of
Kansas in 1966. He also earned a master of arts in management
from Webster College at St. Louis, Missouri.

xiii

ABOUT THE AUTHORS

ACKNOWLEDGMENTS

Dale is a lieutenant in the United States Coast Guard and
presently serves as the Chief, Internal Information Branch at
Coast Guard Headquarters in Washington, D.C. He lives in
Rockville, Maryland, with his wife, Esther.

Peter Dibbie was born in Waterbury, Connecticut, and
received a bachelor of science in chemistry from the University
of Connecticut. He has held jobs as an applications programmer,
a systems programmer and the assistant director in charge of the
University of Rochester Computing Center's user services
department. He is presently a graduate student in the University
of Rochester computer science department. He has had several
0S-9 articles published in THE RAINBOW and, until recently, wrote
a monthly column called “OS-9 User Notes” for '68 Micro Journal.
He also recently served two terms as vice president of the OS-
9 Users Group. Peter and his wife, Catherine, live in Honeoye
Falls, New York.

We thank Lonnie Falk at Falsoft who first published The
Complete Rainbow Guide to OS-9; Jo Anna Arnott, our editor, and
the entire staff at THE RAINBOW. Without their encouragement and
support, this book would have never been published. They
demonstrated the faith and patience that let it work.

Dale thanks his wife, Esther Puckett, who patiently watched
while he searched for words that wouldn’t come, edited those that
didn’t work and tried every example in the book. She deserves
much of the credit for his success.

Special thanks go to Brian Lantz who contributed the Alarm
procedure in Chapter 8.

Xiv

CHAPTER 1

let’s get started

Welcome to the exciting world of computing. The Color
Computer 3and OS-9 Level Il will let you do many jobs today that,
a dozen years ago, required a mainframe computer.

We hope that when you finish this book, you will be able to
use your Color Computer to automate a number of the nasty tasks
that eat up your free time. We also hope you pick up enough
confidence with OS-9 that you will start to use it to find solutions
to a wide range of problems.

First, put your mind at ease. Forget that OS-9 is an operating
system! That term sounds too scary. Rather, think of OS-9 as a
giant toolbox full of interesting gadgets that can help you get your
work done. If you would rather, think of it as a giant toy box full
of toys that just happen to be tools too.

Think of yourself as the producer. You set the stage (bought
the computer) and hired the actors (the applications programs).
This makes you the boss. Think of OS-9 as the director. As you
read this book, you will learn to take charge of OS-9. It will then
direct your applications programs to make sure they run in the
right windows at the right time. Working together, you should be
able to stage quite a show. You may even make beautiful music
together.

WHAT DO | NEED TO START 0S-9?

(A

o
{

FIRST, TURN EVERYTHING ON

=N

Enough commercial — let’s dive in!

You can run OS-9 Level |l on any Color Computer 3 equipped
with one disk drive and 128K of memory. You'll only be able to
open one graphics window in a 128K Color Computer 3.

Ideally, then, you will find smoother sailing if you start your
0S-9 experience with a Color Computer 3 loaded with 512K of
memory and two disk drives. You'll also want a printer to capture
a hard copy of your work, and you will most likely want to connect
a hardware serial port to your Color Computer eventually. This
will let you use it to communicate with other computers. A serial
port can also be used to connect your computer to a modem,
which will letyou reach large commercial database systems where
you can make airline reservations, read the latest news or find just
about any fact you can imagine.

To connect this external hardware, you need to use the Color
Computer Multi-Pak Interface. It has four slots that let you plug
in a disk controller and three other hardware devices — a serial
communications port, Modem Pak and hard disk controller
perhaps.

Let's talk about disk drives for a moment. Since OS-9 is
essentially a disk-based operating system — don’t worry, we won't
mention that scary phrase too many times — you will find that
it stores most of its tools on a floppy disk. You'll know this soon
because, when you are running OS-9, your disk drives will seem
like they are running all the time.

If you haven’t already purchased your disk drives, you should
stop now and consider two things. Because OS-9 needs to get
information from your disks frequently, you'll want them to be fast.
And since OS-9 itself fills two single-sided floppy disks, you will
most likely want to use double-sided or maybe even double-sided,
quad-density drives. Remember, you also need to have room to
store your data.

We can’t put it off any longer. It's time to get your feet wet.
Hook up your Color Computer, Multi-Pak Interface, disk drives
and any other hardware you want to use.

Follow the directions that came with your Color Computer
and Multi-Pak Interface. Additionally, you’ll want to make sure

that the floppy disk controller cartridge is plugged into Slot 4 of
the Multi-Pak Interface. It will not work in the other three slots.

Most veteran OS-9 users plug their RS-232 Pak into Slot 1 and

their Modem Pak in Slot 2. A hard disk controller or RAM disk
cartridge often fills Slot 3.

IT'S TIME TO BOOT 0S-9

No, don’t kick your CcCo! The word “boot” is short for
bootstrap — a buzzword that describes a process where a very
short and stupid program loads another program that’s a little Q\gj{“
smarter. That program then loads another program that’s even ' W
more intelligent. The process continues until the desired program
is completely loaded in your computer’'s memory. That program
then runs and takes control of the computer. So when we say we
are going to “boot” OS-9, we mean we are going to load it and
get it running on your Color Computer.

e
Plasnti

If you have finished hooking up all of your hardware, go ahead
and turn it on. Follow the order suggested in the manuals that
came with your hardware. We usually turn on our monitor first.
Then, our disk drives, Multi-Pak Interface and Color Computer in
that order.

THE BIG MOMENT IS HERE

When you turn on your Color Computer, it should print an
OK message on your screen, most likely in black letters on agreen
screen. |f so, take the disk labeled “OS-9 Level Two Operating
System — System Master” out of its sleeve. Check to make sure
that a write-protect tab covers the square notch along the side
of the disk. If so, insert the disk in Drive 0. Close the door to your
disk drive, turn to your keyboard, type DOS and press ENTER.

If you have hooked up everything properly, your disk drives
should begin to spin and you’'ll soon see the message 0SS BOOT
in the middle of your Color Computer's screen. The drives will
continue to spin, and you'll hear the heads move back and forth
along the surface of the floppy disk.

A few seconds later, you'll see a new message on your screen:

0S5-9 LEVEL TWO VR. ©82.00.01
COPYRIGHT 1986 BY
MICROWARE SYSTEMS CORP.

L ICENSED TO TANDY CORP.

ALL RIGHTS RESERVED

* llelcome to 0S-9 LEVEL 2 *
¥ on the Color Computer 3 %

yy/mm/dd hh:mm:ss
Time?

0S-9is asking you to tell it the time and date. You can type it like
this:

8770415 23:59:59

Did you make it to the post office in time to get your income
tax in the mail? Next year you will know how to set up your Color
Computer to use an OS-9 database or spreadsheet program. Tax
preparation will go much easier, and you may even have your
refund check by the time the deadline rolls around.

0

If you didn’t make it on time, you probably aren’t in the mood
to fool around typing the slashes and the colons. Those keys are
a pain to touch-type. OS-9 lets you do it the easy way:

87 04 16 00 91 15

Better late than never! And, it's easier this way. Your disk drive
should spin again and, in a second or two, more information will
appear on your screen.

April 16, 19827 90:01:15
Shell
0S3:

The 0S9: message is a prompt that means your Color
Computer is waiting for you to give it a command. It will be quite
happy to sit there and wait until you are ready for your next step,
so take your time. Take a deep breath and enjoy your accom-
plishment.

BUT, | DON'T CARE ABOUT THE TIME

You can skip typing the two-digit number representing the
seconds field if you like. That field is optional. In fact, the system
will even let you answer the Time ? prompt by simply pressing
ENTER. You'll see something like:

77?7 20, 1900 00:00:00
Shell
059:

Don’t be tempted. You may not care what time it is, but your
computer needs to know. Besides, all those zeros are certainly
not aesthetically pleasing.

After you learn the basics, you'll start running a lot of
applications programs that create data files for you. When OS-
9 saves these files, it enters the date and time the file was created
into the directory. It also keeps track of the date and time when

the file was last modified. If you give your system a bogus time,
you could confuse one of your applications programs that
depends on the date and time to make a delete/not delete
decision. You could be sorry. Or, you could easily become
confused yourself and delete the wrong file. It’s not worth skipping
a few keystrokes.

Many modern software developers are acutely aware of this
need. They use a program named Make that looks at the date and
time stamp on a file to determine which source code files need
to be recompiled to build an applications program. Many times
only one module in a program needs to be recompiled. This means
Make needs only recompile one module. It merely links the rest
of the modules with the new module. This saves the programmer
a lot of time.

HOW TO PREPARE A WORKING SYSTEM DISK

When you started OS-9 Level |l this time, you used your
original system master disk. This disk is precious and must be
saved from accidental damage. It’s the only one you have. From
now on you will want to work with a copy of the system master
disk when you boot OS-9. Working with a copy is a cheap price
to pay for insurance.

But you say you don’t have a working system disk. Let’s see
if we can solve that problem.

Before you can store OS-9 programs or data on a new disk,
you must format that disk. Formatting is a process that writes a
fixed pattern of information on every sector of a disk. The
0S-9 tool or utility that does this job for you is named Format.

While Format works, it checks your disk to verify that every
sectoronthe disk is good. If it finds a bad sector, it simply removes
that sector from an allocation map on the disk. If a sector is not
recorded in this map, OS-9 does not know that it exists.

You need to know this for two reasons. First, this verification
process protects you from the bad data you might read from that
bad sector. If you don't write to the bad sector, you won'’t have
to worry about reading bad data from it. And OS-9 won't write
anything on it if it doesn’t know the sector exists.

The second reason you need to know that Fcrmat checks the
integrity of your disks is related to Backup, the next OS-9 tool or
utility you will run in the process of making a copy of your
0S-9 system master disk.

Backup can only make a copy of a disk on another disk that
is formatted in exactly the same way. This means that if Format
finds three bad sectors while it's preparing your disk and writes
them out of the allocation map, the two disks will not be identical.

One will be formatted with $276 sectors. The other will have only
$273 sectors. Backup will not let you make a copy on this $273-
sector disk. But don’t fret, you wouldn’t want it to anyway.

However, you may feel free to go ahead and store your data
on this new $273 sector disk. The $273 sectors that Format verified
and placed in the map are fine. Only the three sectors that are
now forgotten are bad.

Our formatting sequence here assumes that you have two
disk drives. Your original system master disk is still mounted in
Drive /d0. Notice that, when we are running OS-9, we call disk
Drive 0 /d0. That's the name OS-9 knows that drive by, and if we
tell it to do something to a disk on /d0, OS-9 will go straight to
Drive 0. It won’t even stop to collect $200.

It's time now to take a new disk from the box and place it in
Drive /d1. Shut the door on the drive and we'll begin. Type:

format ~sdl
and press ENTER. You will see:

COLOR COMPUTER FORMATTER
Formatting drive 7dl

y (yes) or n (no)

Ready?

Go ahead and answer OS-9's prompt with a ‘Y’ and in a few
seconds you'll hear disk drive /d1 start to spin. You'll also hear
a distinct clicking sound as your drive steps from track to track.
If you count the clicks, you'll hear exactly 35 — the number of
tracks you are formatting. In a few seconds the drive will stop and
you'll see a new message on your screen:

Disk name:

Answer with:
0S5-9 System Disk

and press ENTER. OS-9 will immediately begin to verify the data
on each track. It will count the tracks and print the number of each
sector in Hex (hexadecimal notation) on your screen as it goes.
It should look something like this:

000 001 002 003 004 005 006 007
008 009 00A 08B ©QOC 00D ©0OE 0oF

1o ©11 912 013 814 015 0l 017
018 @19 ©1A 1B ©0l1C 01D ©0lE 01F

020 021 022
Number of good sectors: $000276

6

Did you know that $022 in Hex notation is the same as 34 in
decimal notation? The Format tool set up tracks 0 through 22 in
Hex, or 0 through 34 in decimal. This means the system formatted
the disk for 35 tracks. If you divide 276 Hex — which is 630 decimal
— by 35, you will know how many sectors OS-9 formats on each
track. It had better be 18.

We'll trust you to do your homework. If you don’t believe that
276 Hex is the same as 630 decimal, type:
free -7dl

and press ENTER. You should get an answer that looks like this:
“05-9 System Disk” created on: B8
7704716
Capacity: 639 sectors (1l-sectaor
clusters)
620 Free sectors, largest block
620 sectors

You're moving right along! You have successfully run two
O0S-9 tools, Format and Free. And you have a freshly formatted
0OS-9 disk to prove it. You ran one tool because you needed it to
help you make a new system disk. You ran the other for fun. Let’s
go for number three.

NOW, TO FINISH THE JOB

If your success is contagious and you feel like formatting the
rest of the disks in the box, let us show you a trick. If not, stand
by to make that copy of your system master disk.

(4

If you decide to format the rest of the disks, you will be
running the OS-9 Format utility command (remember, that’s just
two long words that take the place of a four-letter word: tool) nine
more times.

Eachtimeyourunformat, OS-9 will need to goto your system
master disk in Drive /d0, load it into memory and then run it. Since
it takes quite a bit of time to load a tool from a floppy disk, you
might want to try this. Type:

load format
and press ENTER.

Now, when you place your new disk in Drive /d1 and type
format ~dl, you'll notice that Format goes to work instantly.
However, if you take this course of action, we have a “gotcha” for
you.

Remember the old saying, “what goes up must come down”?
Well, it works the same way here. Everything that is loaded must

ON TO THE BACKUP

eventually be unloaded. After you have finished formatting the
remaining nine disks (gee, you're ambitious), type:

unlink format

and press ENTER.

That should do the job nicely. If you're wondering why you
must unlink a tool after you use it, consider this. Each time you
load a tool, you are using at least 8,000 bytes of memory in your
Color Computer. That's not much, but if you get sloppy and leave
a dozen of these programs laying fallow in memory, you will be
wasting 8 x 12 or 96K of memory. You couldn’t be that slothful
in a 128K machine if you wanted to. There wouldn’t be enough
memory to go around. Trust us; unlinking your tools after you're
through with them is simply a very good habit to get into. Just
think of it as putting your tools back into the tool box.

Now, let's back up that disk. Leave your original OS-9 system
master disk in Drive /d0. Take the freshly formatted OS-9 disk you
made and place it in Drive /d1. Close the door and type:

baclkup H56K

and press ENTER. You'll see the following messages. (We typed
the Ys and you should too.)

Ready to backup from 7d@ to /dl1?: y
0S-3 System Disk is being scratched
Ok ?:zy

Sectors copied: $0276

Verify pass

Sectors verified: $0276

059:

Notice that since you didn't tell it which drive you wanted to
back up, OS-9 decided that you wanted to back up the floppy disk
in Drive /d0 onto the floppy disk in Drive /d1. This is one of the
many defaults that makes OS-9 easy to use. By the way,
“scratched,” as used above, means “written to.”

Notice also that since we knew we were using a 512K Color
Computer and knew that OS-9 lets each tool use up to 64K of
memory while it's running, we decided to let Backup use 56K of
memory to do its job. If you subtract 8K (the amount of memory
required to load the Backup module) from 64K, the maximum
space OS-9 allows you to use, you get 56K. We used every last
drop.

IF YOU ONLY HAVE ONE DISK DRIVE

Many new users of OS-9 will be using only one disk drive.
Since OS-9 is much easier to work with on a system that has two
drives, this book will assume that the reader is using such a
system. However, to make things easier for those with only one
drive, we will show you how to format a disk and back it up on
a one-drive system.

In general, you will follow the directions for a two-drive
system, but there will be some important differences. When you
pooted OS-9, several commands (tools) were loaded into
memory. Some were not, however. Two important examples of
commands that are not loaded into memory are the Farmat and
Backup tools. Now, if you were to place a blank disk in your disk
drive and enter the Format command, OS-9 would give you an
error message. This is because OS-9 tried to load the Format
command from the system disk which was mounted in the drive.
Since the disk in the drive is blank, OS-9 will be unable to find
the Format tool and will, therefore, return an error. So what do
we do?

The best thing to do is manually load the tools we need into
memory. Before replacing the system disk in the drive with the
blank disk to be formatted, enter:

load format

This will load the Format tool into memory and eliminate the need
for OS-9 to load it from the disk during the formatting process.
Now, place the blank disk in the drive and enter:

format #d@

The output you see on the screen will be almost the same as
described earlier in the text. The only difference is that you are
formatting a disk in Drive O instead of Drive 1. You will also answer
the prompts in the same manner.

When OS-9 has finished formatting your disk, remove it from
the drive and replace it with the System Master again. Since we
will start the backup process with this disk in the drive, we will
not need to load the Bacikup tool into memory first. Just enter:

backup s 7d® ~/d@ #48K

This line tells OS-9 you want it to perform a single-drive
backup of the disk mounted in Drive 0 to another disk you will
put in Drive 0. It also tells OS-9 to reserve 48K of memory for the
backup process. This is important since you will be alternately
switching the System Master Disk in Drive 0 for the disk we just
formatted. The more memory we can reserve for this process, the
fewer times we will have to “swap” these two disks.

WHY USE 56K?

Before answering ‘Y’ to the
Ready to backup from 7/d@ to /d@?:

prompt, remove the System Master Disk and place your freshly
formatted disk in Drive 0. After you answer with a ‘Y’, you will see:

Ready Destination, hit a key:

As OS-9 proceeds with the disk backup, you will be prompted like
this to alternately place the source and destination disks in the
drive. Just remember that, in this case, the source disk is your OS-
9 System Master and the destination disk is our freshly formatted
disk. When you have inserted your formatted disk and pressed a
key, you will see:

05-9 System Disk
is being scratched
OK?:

“Scratched” means written to. Answer ‘Y’ and follow the
prompts. When the backup is completed, you will see:

Sectors copied: $0276
Verify pass
Sectors verified: $ 276

If you're wondering why you would want to use the maximum
amount of memory when you copy data from one disk to another,
consider this. Backup is 1,202 bytes long. If you do not ask it to
use a large amount of memory to transfer your data, it will use
oniy 4,688 bytes.

How do we know this? We read it off the screen of our monitor.
We used another 0OS-9 tool to find out. You can too. With your
system master disk still mounted in Drive /d0, type:

ident -x backup

and press ENTER. You'll see:

Header for: Backup

Module Size: $04B2 #1202
Module CRC: $129C2B (Good)
Hdr parity: $SE

Exec. off: $0176 8374
Data size: $1250 #4688
Edition: $@8 1e
TysLa At/Rv: $11 $81

Prog mod, 6803 obj, re-en R/0

10

This report tells us that Backup will read slightly more than
4,000 bytes of data from the floppy disk in Drive /d0 into memory
and then stop and write those bytes from memory onto the disk
in /d1. It will repeat this sequence until it copies the entire 161,000
bytes stored on the disk in /d0. When you watch your drives
running during an operation like this, you’'ll notice that the red
lights on the two drives go on and off, back and forth, continu-
ously. All of this disk action takes time.

On the other hand, when you tell OS-9 that you want Backup
to use 56K of memory, you'll notice that the red lights only go on
and off three times each. The Backup operation takes a lot less

time.
WHEN YOU MAKE A MISTAKE
Every once in a while you'll make a mistake and receive an Q
error message. When you do, OS-9 lets you know with an error R
message. Let’'s make a few mistakes together now so we can show e

you how to tell what went wrong.

Now that you have a working system disk, take out your
original system master disk and store it somewhere a long
distance from your computer. Put the working system disk in Drive
/d0. Always use your working system disk when you boot and run
0S-9. Type:

dir

and press ENTER. You'll see a list of the directories and files stored
on your system disk. Now type:

di
and press ENTER. You'll see:
ERRCR #216

Our mistake is obvious. We must have been in a hurry and
we pressed the ENTER key before we typed the ‘r in dir. You
probably noticed that after you typed the first command, your
drives quietly went to the directory track on the disk and you
received your report rather quickly. However, the second time,
when you typed di, your drives most likely came on and ran
awhile, making a bit of noise as they searched the directory for
a file that didn’t exist on the disk.

As you may have already guessed, Error #216 is Pathname
Not Found. Let's iet OS-9 show you. Type:

error 216

11

0OS-9 should return with:
216 - Path Name Not Found

Now you know how to get an English-language error message
from OS-9. After a few hours you will have memorized a handful
of the common error messages. You may never remember the rest.
But it doesn’t matter. OS-9 always reports an error number when
something goes wrong. And you can always use the “error” tool
above to find out what happened. Just change the error to match
the number OS-9 reports each time you receive an error report.

If you're wondering where OS-9 finds the English-language
error messages it prints, type:

dir sys

You'll see a listing of all the files stored in the SvS directory of your
working system disk. In that listing — in fact it's the first file —
you'll see a file named errmsqg. Therein lie the magic answers.

In our example, the reason the pathname was not found is
obvious. We typed the name of a file that didn’t exist. Sometimes,
however, your error may transcend the common typo.

For example, if you had typed dir properly, but had put the
wrong disk in the drive, you would have received the same error
message (if that disk did not contain a file named dir). Likewise,
the same error message would have been printed on your screen
if you had accidentally set your current execution directory to a
directory that did not contain a file named dir — even though
there was a copy somewhere else on the disk.

Sometimes finding out what caused an error can be like
solving a good mystery. It's a challenge but it can also be fun.
Especially when you start to understand what makes OS-9 tick.
Hopefully, you'll have that edge when you finish this book. If not,
we invite you to consult The Complete Rainbow Guide to OS-9
and The Basic09 Tour Guide for additional help.

WHAT IF | CHANGE MY MIND WHILE TYPING?

The best place to notice a typo is before you press ENTER. If
you are lucky enough to notice your mistake then, OS-9 gives you
a way to fix your mistakes quickly.

If you press the back arrow key while typing a command line,
you will notice that OS-9 backs up the cursor and deletes the
character behind it. It does the same thing if you hold down the
key marked CTRL and press the H key at the same time. Using one
of these two methods, you can easily back up to your mistake and
retype the rest of the line. It sure beats retyping the whole thing.

12

Every once in a while, you’ll mess up the line beyond repair.
If this happens, hold down the SHIFT and press the back arrow.
You’'ll see the entire line disappear in front of your eyes. If you
prefer to use the CTRL key, hold it down and press the X key. You'll
get the same result. Try both of these editing keys several times
until you get the hang of it. It will save you a lot of time in the
long run.

If you can’t seem to make the connection between CTRL-x and
deleting a line, try to think in terms of crossing, or “X-ing,”
something out on a piece of paper. It will help you remember the
key combination.

ARE THERE ANY SHORTCUTS?

Glad you asked! OS-9 has many special keys that can help
you get your work done faster. For example, there are keys that
will repeat your last command line, interrupt a program, quit a
program and another key that causes your Color Computer to wait
on you.

The “wait” key does just what its name implies. It stops the
text from scrolling on your screen until you tell it to start again
by pressing any other key. This gives you a way to stop and study
several sentences in the middle of a long text file white you are
listing it to your screen.

To tell your Color Computer 3 to wait, hold down the CTRL
key on your keyboard and press the W key. When you are ready
to list the rest of your file, press any key to tell OS-9 to continue.

If you have used OS-9's Tmode tool to tell OS-9 to pause, it
will automatically stop scrolling when it has sent out enough lines
to fill the window you are using. As long as the lines in your file
are shorter than the width of your window, this automatic pause
feature works perfectly. However, if you have extra long lines in
your file, you may need to stop the text from scrolling with the
CTRL-W key combination.

THE REPEAT KEY

You can use the OS-9 “repeat” key to increase your produc-
tivity and save your finger tips. You'll love it. To give it a try, hold
down the CTRL key and press the letter A.

Every time you press CTRL-A, your last command line will
magically reappear. You'll find the CTRL-A key combination is
really handy when you need to run the same command line several
times. To run the command again, you need only press ENTER.
Let's give it a try! Type dir and press ENTER. You should see a
listing of the contents of your current data directory. Now press
CTRL-A and ENTER. Your trusty Color Computer 3 should list the
directory again. If you think the repeat key is neat with a three-

13

PUSHING A JOB INTO THE BACKGROUND

THE GREAT ESCAPE

letter command, wait until you use it with a pathlist 72 characters
long!

You'll find that using the CTRL-A combination sure beats
typing a long command line over and over. Use it every time you
get the chance.

If you ever need to interrupt a program while it is running,
you can use the OS-9 “interrupt” key. Just hold down the SHIFT
key and press the BREAK key. Or, hold down the CTRL key and press
C.

Here’s what happens when you send an interrupt signal to a
program. As soon as you press the SHIFT-BREAK keys, an Error
#003/and the 053: prompt appear on your terminal screen. But,
that’s only half the magic. Give it a try. Type:

list filename >/p

Substitute window.glr4 for filename. As soon as the printer starts
running, press the SHIFT-BREAK combination. Watch what
happens. Did the 0S9: prompt reappear on the screen? Isn't
something strange going on? Why is your printer still printing?
What’s going on?

Would you believe that when you pressed SHIFT-BREAK, you
told OS-9 to run the printing job as a background task? That’s
what happened.

To prove it, type the List command again. This time leave
off the >-p. Your window should fill with the same listing that is
being printed. The printer should continue to print until it finishes
the job.

Here’'s another handy key. Sometimes you need to redisplay
the command line you are typing. To do this, press CTRL-D. D for
display, maybe? Programmers working on older teletype termi-
nals, which produced hard copy output but couldn’t erase deleted
characters, used this key a lot.

0S-9 has one more special key. It lets you escape. The CTRL-
ESC key combination on your Color Computer 3 sends an end-
of-file signal to OS-9. This gives you a way to send an end-of-
file signal to any process that receives its data from the keyboard.
To use it, hold down the CTRL key and press the ESC key at the
same time.

There's only one catch to the great keyboard escape. When
you use the CTRL-ESC combination, you must type it as the first

14

character on the line.

Are you impatient? Do you hate to sit and wait for a computer
to finish one job so you can command it to do another? Wait no
more! OS-9 lets you type ahead.

While OS-9 is running one program, you can type another
command line or answer the next prompt if you know what it is
going to be. Sometimes you may be able to stay several command
lines ahead of your Color Computer.

Unfortunately, there is a gotcha with type ahead — you will
be typing blind. This is only a minor slow down, however, and it
is much better than sitting around twiddling your thumbs. Aiso,
you may have trouble with missing characters if you type ahead
while the Color Computer’s disk drives are running.

OTHER 0S-9 MAGIC

THE “1 QUIT” KEY

When you get tired of a program and want to abort the
process, never fret. OS-9 gives you a way to do it. Just press the
BREAK key. You can also hold down the CTRL key while you press
the E. The E must stand for “End it!”

We almost forgot something, control-nothing, that is. The
CTRL-0 (zero) key combination lets you toggle the shift lock on
the keyboard. If your keyboard is only sending out uppercase
letters, you can get it to send lowercase letters by holding down
the CTRL key and pressing O.

To change back to all uppercase letters, you simply press the
CTRL-0 combination again. That’s why we call it a “toggle.” By the
way, when the keyboard is sending out lowercase letters, you can
demand that it give you an uppercase letter by holding down the
SHIFT key.

Here’s an interesting problem to ponder. It is possible to type
lowercase letters on the keyboard but only see uppercase letters
on the screen. Why?

This happens when you set the Tmode uppercase lock mode
to UPC. To make this change, type:

tmode upc
To see the lowercase letters again, use this command line:

tmode -upc

15

THE “CTRL-NOTHING” KEY

-

TURNING THE KEYBOARD MOUSE ON AND OFF,

REBOOTING

1 QUIT

Remember, the shift lock function — the CTRL-0 key combi-
nation — only works visibly when you have used the Tmode tool
to tell your window device to recognize both upper-and lowercase
characters.

Since the Color Computer 3 and OS-9 Level |l are very
graphics oriented, you will find that many third-party software
applications programs you can run will use a mouse. If you don't
own a mouse or just don’t feel like mousing around at the time,
you may want to use the keyboard mouse. We won’t be using this
feature in this book, but you can use the four arrow keys and the
two function keys marked F1 and F2 to simulate a mouse if you
tell OS-9 what you are doing. To tell OS-9 you want the keyboard
mouse, hold down the CTRL key and press the CLEAR key at the
same time.

When you get tired of the keyboard mouse and want to go
back to the real mouse, just press the same two keys again. You'll
wind up back on the real mouse. By the way, when you are using
the arrow keys as a mouse, you will not be able to use them as
arrow keys. Don’t even try.

Occasionally your Color Computer may lock up and refuse
to accept any commands from the keyboard. If it does this, you
may have to reboot your computer. You can do this by pressing
the (square-shaped) reset button located at the right-rear of your
Color Computer 3.

At other times you may want to reboot OS-9 for another
reason. For example, it is possible to have several disks that will
boot up and use different hardware attached to your computer.
To change hardware, you usually only need to reboot with the
proper boot disk. You do this by pressing the reset button after
you swap the disks.

Most actors like to make a graceful exit when they leave the
stage. It's also a good habit to get into when you are working with
a computer. If you want to exit from OS-9 gracefully, follow these
simple rules. Never turn your computer off while a program is
running. Turn it off only when you can see the OS-9 prompt.

Before you turn off your computer, make sure you remove
your floppy disks from your drives. Once they are safely stored
in their sleeves, you can safely turn off the power. Start by turning
off your disk drives and printer. Your monitor shouid be turned
off next, followed by your computer and Multi-Pak Interface.

16

You've learned a lot in this chapter, so you may want to make
a quick review and practice using some of your new tools again
before we move on.

17

CHAPTER 2

playing around

We put you through a lot in Chapter 1. It's time to have some
fun! Now that you have a brand new OS-9 Level Il working system
disk, we can move ahead full speed.

When you booted OS-9 the first time, you probably noticed
the familiar 16-line, 32-column green screen with black letters.
The original master system disk that comes out of the package
is set up to use a terminal device descriptor named ~term that is
set up to talk to the VDG (Video Display Graphics) in your Color
Computer.

Let's take a quick look and see what other devices are
available for us to use now. Type:

mdir

and press ENTER. Your Color Computer will fill the green screen
with a listing of the modules, or programs, presently loaded in
memory. Notice that it stopped with the cursor in the lower-right
corner. It's almost as if there were more. Press the space bar or
any other key and see what happens.

Now the listing of modules has grown by another five lines.
The OS-9 Mdir tool paused and waited for you to read the

19

LET’S OPEN THE BUILT-IN WINDOWS

&

information on the screen before it finished your listing. It did this
because the 7term device descriptor you are using was set to
pause on the System Master Disk. If you would rather it scroll
nonstop, type:

tmode -pause
and press ENTER.

Repeat the Mdir command you ran earlier and watch what
happens. OS-9 is versatile. The change you just made is one of
many ways you can customize your OS-9 Level Il based Color
Computer. If you want to see some of the other characteristics
programmed into your - term device, type:

tmode
and press ENTER.

For a descriptive listing of the many Tmode parameters shown
on your screen, consult your OS-9 Level Il operating system
manual (see “System Command Descriptions” in the OS-9
Commands section). For a detailed explanation of this and other
0S-9 subjects, pick up The Complete Rainbow Guide to OS-9.
For now, we need to get back on track. Run the Mdir tool again
and we’ll look at the listing together.

Look at the three rows of names beginning six lines from the
top of the list.

TERM W Wl
W2 W3 W4
W5 W6 W?

All of the modules listed here are OS-9 device descriptors. Each
one of them tells a device driver how the device named is
configured. Will it pause after you fill the screen? How many
columns wide is the window? How many rows will fit in the
window?

We'll start our tour of the windowing system by taking a look
at the windows built into OS-9 when we turn it on. To switch from
one window to another from the Color Computer keyboard, press
the CLEAR key. Press that key now and see what happens.

if your system disk was set up like ours, nothing happened.
When you first start OS-9, only the ~term device descriptor has
been initialized. You'll notice that following TERM, there are eight
window device descriptors named W and W1 through W>. These
device descriptors correspond to window devices named ~w and
swl through ~uw>.

20

Notice that in the Mdir output listing they are named W and
W1 through W?. As you look at this list, you are looking at a list
of module names. We will initialize them by using their module
name. When we start talking to them later, we will need to use
their device name — the module name with a slash in front of it.

You've stumbled into one of OS-9's secrets. You can tell you
are communicating with a device if there is a slash in front of the
pathname. File this information away for now; it's going to come
in handy later on. Type the following two lines:

iniz wl
date t>7/wl
Now, press the CLEAR key and see what happens. You're

looking at your first homemade OS-9 Level Il window. You should
see the date and time displayed on the top line of the new window.

\)

After you initialized the window named -wl, you ran the
0OS-9Dbatetool. Youtold Date to send its output, the date and time,
to a device named w1, the window you just initialized. In “OS-
9 speak,” you have redirected the output of the Date utility
command to the window device, ~uwl.

If you'relooking at your new window on an RGB color monitor
such as the Tandy CM-8, you're probably wondering if something
is wrong. The colors don’t look quite right.

Press the CLEAR key again and you’ll find yourself staring at
the green screen again. Type:
montype r

and press ENTER. Now, press the CLEAR key again. That looks
much better, doesn’t it? The black letters on the white screen with
the red border wake you right up!

Let’s initialize the rest of the numbered windows so we can
take a look at them. First, press the CLEAR key again. Then, type:

21

iniz w2 w3 wé w5 we w?

and press ENTER. Press the CLEAR key. There’s the window with
the date and time. Press it againt That's the green screen! What
happened to the other windows we just initialized?

You're right, we have initialized the windows numbered W2
through W?. However, we have not written anything to them. Let's
give one of them a try!

date t >/w2

This time press the CLEAR key twice. If we're together, you
should be looking at white letters printed on the blue background
of a small window in the upper-right corner of the same screen
that holds the window with the black letters on a white back-
ground. Notice the white block cursor under the date in the small
screen. Press the ENTER key and see what happens.

Whoops! Nothing happened because the window the cursor
is located in is presently only an output device. We'll show you
how to make your windows act like independent terminals a bit
later. For now, let's continue to explore. Press the CLEAR key to
get back to the green screen and type:

dir >7uw3

Press the CLEAR key three times and take a [ook. That’s nice!
A listing of the files on your working system disk has been
displayed in black tetters on a cyan window that's 40 columns wide
and 12 lines deep. Since you pressed the CLEAR key three times
after typing the command in the green screen, the cursor should
have moved to the same screen. Do you see it under the listing
of filenames? Right on!

22

g './

Let's try it again! Press the CLEAR key once to get back to the
green screen and we’ll go for another surprise.

dir sys >/w4

. J

That's right, you're getting the idea! Press the CLEAR key four
times. Notice how the cursor moves from window to window each
time you press the CLEAR key? This is getting to be window
heaven. This time you'll see a nicely formatted listing of the files
in the SYS directory of your System Master Disk. Do you remember
the Error tool we used in Chapter 1? There’s the name of the file
— errmsg — the answers came from. Hey! I'll bet the helpmsg file
contains online help messages for the many OS-9 tools. Let’s try
itin the next window. Press the CLEAR key to move the cursor back
to the green screen, then type:

help dir >/w5

Let's take a look. This time, press the CLEAR key five times.
Yep! That looks like part of a help message. But, it's not all there.
Window -w5 is much too small to list help messages. Let’s try
something else. Back to the green screen, most honorable CLEAR
key.

date >/w5
help dir >/uw6

23

Let’s take another peek. Six presses of the CLEAR key should
do it this time. Much better! So that’s the format of the output from
the OS-9 Help tool. When you type Help followed by the name
of a valid OS-9 utility command, Help will show you the proper
syntax for the tool you named, tell you what you would use it for,
and describe any options you may want to use on your command
line. In the command line above, we told Help to display its output
in a window device named -uw6. In black letters on ~uw6’s white
background, that’s exactly what it did.

(

\ Y
Well, if memory serves us right, we have one window left.

Press the CLEAR key again. You should be back to the green
screen. Let’s go for it.

dir x >/w/

Don’t worry, you won’t wear the CLEAR key out. Press it seven
times! In front of you, in white letters on a blue background, you
should see a list of the commands available in the CMDS directory
of your OS-9 Level Il working system disk. You are looking at
window device w?. This window lets you write to 24 lines, which
can contain up to 80 columns of text.

HOW CAN WE USE THESE WINDOWS?

You've completed a tour of the seven predefined windows that
were programmed into your System Master Disk by Microware
and Tandy. We’'ll see if we can put them to work for you now. In
later chapters we'll be discussing setting up your Color Computer
to run a few major applications programs. For now, we'll try to
keep it simple. At the same time, we hope this chapter will spark
your imagination enough that you’ll jump right in and discover
how the OS-9 Level Il windowing environment can help you solve
many common problems.

YOU CAN PRINT MANY THINGS IN WINDOWS

Many new computer users share a common problem. They
find it hard to remember the names of the dozens of computer

24

commands they must use to operate a sophisticated computer.
Then, when they finally master the names, they can’t remember
the syntax for all those commands. We think the OS-9 Level Il
windowing environment can really help you with this problem.

So far, you have given OS-9 all your commands from the
green screen named ~term. It wouid be handy if you could work
on ascreen where you could see two or three windows at the same
time. To do that you must tell one of the windows on the screen
that you want it to be a terminal. You do that by starting a shell
in the target window. Use the CLEAR key to go back to the green
screen one more time and we’ll give it a try!

shell i=/w5&

and press ENTER. Now press the CLEAR key until the cursor comes
to rest following the 0S9: prompt in the small, light blue window.
Type:

displayc

How about that! It's a small terminal, but it's a terminal and
you were able to clear your screen. Since the window you are
operating from is located on the same screen as two other
windows, you will want to take advantage of the situation. For
example, from your miniature window you could list a help
message for a command in the second window and leave it
displayed there while you try out that command in the third
window.

However, before you can start, you need to know what
commands are available. Type:

dir x >/uwb

This command lists the names of the files in your current
execution directory in black letters on the white 80-column
window at the bottom of our screen.

WHAT ARE EXECUTION AND DATA DIRECTORIES?

. As you have probably surmised, OS-9 allows several different
directories on a disk. When you boot OS-9, two directories are
selected for immediate use. These directories are referred to as
your execution and data, or working, directories.

An execution directory is one that contains executable (
programs or commands. A data directory is generally one that
holds procedure files, source code for high-level languages, such
as BASICO09, and text files. When you first boot OS-9, your execution
and data directories are automatically set to ~de-CMDS and ~do
respectively. This means that the executable programs you are
running, such as Format and Backup, actually reside in the CMDS
directory on your system disk. Also, unless you specify otherwise,
any files you create with the Build tool will be saved in the root
directory of Drive 0. The “root” directory is simply the “main”

25

USING DEINIZ

directory of a disk. When we use /d0 or /d1 by itself, we are
referring to a root directory.

In the previous examples, when we type dir, we are asking
for a listing of all files in the current data directory, or ~d@. When
we issued the command, dir SYS, we were asking for a listing of
all files in the svs directory. To see what commands are in the
CMDS directory, we use dir x. We could, however, have used dir
CMDS instead since the CMDS directory is our current execution
directory (this is what the little x stands for).

It is possible, and quite easy, to change your current
execution and data directories to something other than CMDS and
»d@. This is done with the chx and chd commands that will be
covered a little later.

\U4

Ever wonder what Deiniz could do for you? Type:
help deiniz >-w4
So Deiniz is used to detach a device, huh? If you Deiniz a

window, it will probably disappear. What's your guess? Why not
find out firsthand? Let’s do it together.

deiniz w6

All gone! Do you suppose you can bring good old ~k6 back
to life? Can’t hurt to try!

iniz w6 ; dir x>/uwb
Magic!

Microware and Tandy did you a big favor when they set up
the OS-9 Level Il shell file. Remember, each file you load takes
up at least 8K of memory, whether it needs it or not. Since the
shell is only 1,532 decimal bytes long, there is plenty of room left
in the shell’s 8K memory block for a few more of the OS-9 tools
you use most often. To find out which OS-9 tools are loaded with
the shell file when you start your Color Computer, type:

ident -x -sshell >/uw6
The tools are: Copy, Date, Deiniz, Del, Dir, Display, Echo,
Iniz, Link, List, Load, Mdir, Merge, Mfree, Procs, Rename, Setime,

Tmode and Unlink. Now that's a bargain!

OK, you're from Missouri. You want to confirm that those
tools are actually in memory. Type:

mdir >7w6

There they are at the bottom of the listing. You can thank the
sharp programmers at Microware and Tandy for that trick. Since

26

those tools are in memory all the time, you can run them almost
instantly. OS-9 doesn’t need to go out to your floppy disk drives,
find them and load them into memory every time you want to run
them. The speed with which the Mdir tool responded just a
moment ago is a perfect example.

Now that you are getting used to the idea of working with
three windows at the same time, let us show you that OS-9 really
can do more than one thing at the same time. Start by typing:

dir x>7/wd ; dir x>/uwb

What happened? On our screen, OS-9 listed the names of the
files in our current execution directory to the window in the upper-
left corner of our screen. When it was finished, it immediately
listed the same filenames in the white 80-column window in the
bottom half of our screen. When you typed the line above, you
told OS-9 to run two commands sequentially, or one after the
other. However, life was a little easier because you were able to
type both commands at the same time on the same command line.

The magic in that command line lies in the semicolon (;)
between the >-w4 and the second dir. When you type a semicolon
in an OS-9 command line. you are telling your Color Computer
that you want it to run the two commands on either side of that
semicolon sequentially. Essentially, the command line you typed
works the same as the foliowing set of OS-9 command lines.

dir x>/u4d
dir x>7wb

There is a difference, however. If you had decided to type the
two command lines above individually, you would have needed
to wait for the first command line to finish its job before you could
type the second. You could have tried to type it blind into
0S-9's type-ahead buffer, but because the command you were
running was reading the disk drive to find the list of filenames in
your current execution directory, you probabiy would have lost
a few characters.

This happens because the hardware disk controller that plugs
into your Multi-Pak Interface and acts as alink between your Color
Computer and your disk drives pulls the “halt” line up on the 6809
microprocessor and will not let it do anything else while it is
reading or writing a sector from a disk. |f you type something while
this halt line is high, it will be destined to go to that big bit bucket
in the sky.

We still want to show you that OS-9 can do more than one

job at the same time, so let’s take another tack. We can’t use the
type-ahead buffer, but we can put our two command lines in a

27

RUNNING PROGRAMS IN WINDOWS

short procedure file and let 0S-9 do the typing for us. When we
type the procedure file, we will type an extra character at the end
of each command line. Type:

build ConTask
Enter the following lines at the ? prompts:

dir x >7wdd
dir x >7uwb&

Press ENTER twice after the last line.

You have just used the OS-9 Build tool to type your first
0S-9 procedure file. The Build command in the first line above
creates a new file in your current data directory (unless you
changed it with chd, it should still be #d@) named ConTask. We
thought about naming the file in our example ConJob, but we didn’t
want you to get the wrong idea.

After Build created the file ConTask, it wrote the next two lines
you typed into that file. When you pressed the ENTER key without
anything else on the line, you were signaling the Bui ld tool that
you were ready to quit. Let’s take a look at your new file. Type:

display ¢ >7wd ; list contask >/w4

In white letters on that freshly cleared blue screen, you can
concentrate on your handiwork. Notice the ampersand (&)
character. That character is very special to OS-9 users because
they use it almost every day. In fact, they use it every time they
need to tell OS-9 to do more than one thing at a time.

When you type the ampersand character, you are telling
0S-9 that you want it to run the task you just started in the
background. Can you predict the scenario of events that will take
place when you run your first procedure file? Give up? That's OK;
your Color Computer should be doing the work for you anyway.
Type:

display c ; contask

What happened? What are those two numbers at the top of
your control window in the upper-right corner of your screen?
Why did the 059: prompt pop up so soon? Glad you asked. Let's
see if together we can figure out what happened.

The moment you pressed ENTER, OS-9 went to work for you.
It cleared the command window you were working in because you
used the OS-9 Display tool in the first part of your command line.
Display sends the hexadecimal characters following it to the
standard output path. When you are set up to type command lines
in window ~w5, the shell interpreting those commands sends its
standard output to window ~w5. The c in your command line tells
0S-9 to clear a window or screen. Since the shell sent the c to
window w5, OS-9 cleared that window for you.

That's enough window washing for the moment! Let's move

28

on. The 8005 on the top line of your command window is trying
to tell you something. In English, it’s saying, “l have just started
background task number five.” A moment after OS-9 started task
number five, it started task number six. It also ran task six in the
background. You know that because of the 8806 message and
because a second after you see that message the OS-9 command
line prompt, 059: , appears.

Shortly after the 8005 appeared, you should have noticed a
listing of filenames begin to scroll in the window located near the
upper-ieft corner of your screen. That was process number five
in action. We should briefly pause here to tell you that in OS-9
parlance, a process is simply a program that happens to be
running.

Likewise, a moment after the 2806 message appeared in your
control window, another listing of filenames started to scroll
through the 80-column window along the bottom of your screen.
At the same time, the listing action continued in the window at
the upper-left corner of your screen and the command line
prompt, 059:, appeared in your control window. At least three
things were happening at the same time.

With OS-9 Level |, you do not have to stop after running only
two processes. In fact, you will be able to run several major
programs at the same time without running out of memory on a
512K Color Computer. So you can prove to yourself that OS-9 can
do more, repeat the last command and, as soon as the command
line prompt appears in your control window, type:

list window.glr4

Were you fast enough? Probably not, but if so, OS-9 began
to list a procedure file named window.glr4, which is stored in the
root directory, or your current data directory into your small
control window, while it continued to list the filenames in the other
two windows. More magic!

Just in case it was hard for you to notice that OS-9 was doing
two different tasks while running your procedure file ConTask
because the two windows were both receiving listings from the
same directory, we’ll change one of the jobs in ConTask and add
a third in another procedure file named ConTask2. Type:

build ConTask?
display c >7wé
display © >/w5
display c >7uwb

dir x >7uwd4&

list sys-serrmsg >/wb&
dir e

Be sure to press ENTER twice after the last line.

29

Qo

BUT THERE’S ONE THING YOU CAN'T DO!

Y

Let’s get brave and go for the action right away! Type:
Display c ; ConTask?2

How did it work? Hopefully, you saw a listing of the files in
your current execution directory in the upper-left window, alisting
of the file containing OS-9’s English language error messages in
the bottom window and an extended directory listing of ~de, your
current data directory, in the small control window. Did you notice
that a single copy of your OS-9 Dir tool was actually running in
two windows at the same time?

We need to make a very important point about window
devices before we go any further. You cannot send the output from
a program to a window you are already using as a terminal.

Let's say the same thing in OS-9 speak. If you have started
ashell in a window, you cannot send output from another process
to that window. You can tell if you have started a shell in an
OS-9 Level Il window because you will see the 059: prompt in that
window. Go ahead and confirm it for yourself so you can see what
may happen.

You are presently using window ~w5 as a terminal. You have
a shell running in that window. On that same screen you can see
window number four, #w4, and window number six, ~w6. All three
windows in this screen are device windows, but #w5 is the only
one that is presently running a shell.

From your command window, ~u§5, type:
dir x>7w4

The light on your disk drive should light up and you’ll see the
filenames of utility programs stored in the CMDS directory.
Everything should work as it did earlier.

Now, we’'ll start a shell in window ~w4 and repeat our
command line above, so you can see what will happen when you
try to send output to a window that already has a shell running
init. Type:

shell 1=7w4&
dir x>/wd

Almost immediately you'll notice the word shell, followed by the
prompt 0S9: printed on window ~w4. Then, attempting to obey
your second command line, OS-9 tries to send a listing of your
current execution directory to the same window, <w4. What
happened?

30

In our terminal window, ~u5, the black cursor went to the line
following our short command line and sat there. Nothing
happened on the blue window named ~u4.

Now, press the CLEAR key until the cursor comes to rest in
window -w4. Tap the ENTER key once. Although the drive motor
runs briefly, nothing else happens. Tap it again! This time you will
most likely see the first line of the output of the OS-9 Dir tool,
something like: Directory of . 18:26:08.

If you keep pressing ENTER, you will eventually see all of the
output from the Dir tool. Before you reach the end, you will need
to press ENTER once for every line of output from Dir. This mode
of operation will drive you nuts. So, always avoid redirecting
output to a window with a sheli in it.

“OK,” you say. “But what do | do about the shell that is running
in window 7w4? How do | get rid of it?” Try executing it. If your
cursor is still in window w4, and is located in the first column
following the last 0S9 prompt, type:

ex

Now, use the CLEAR key to move the cursor over to window w5
and use OS-9's Display tool to clear window ~u4. Like this:

display c>7uw4

If it worked and you have a clear blue screen, you have
successfully removed the shell from window ~w4. To recap, if you
want to remove a shell that is running in a window, type ex in the
first column after the 0S9 prompt. You can then clean the window
from another command window using the Display tool. To
remove the window altogether, you must then use OS-9’s Deiniz
tool.

deiniz 7w4

Did the upper left-hand corner of your screen turn red with
anger? If so, window ~uw4 is gone. Things can get complicated if
you want to start window w4 up again in the same place. We'll
deal with these complications in the next chapter. To start another
device window named ~w4 on another screen, you can position
the CLEAR key in window ~u5 and type:

iniz w4
echo Hello World >7w4
Press CLEAR seven times to see your new screen.

If you want to learn more about OS-9 theory and find out how
the magic that lets windows work is created, we hope you will read
The Complete Rainbow Guide to OS-9. For now, relax — you're
on your way!

31

SETTING UP FOR SOME REAL WORK

IF YOU’'RE A WRITER

Are you beginning to see the possibilities hiding beneath the
surface of OS-9 Level II's powerful windowing environment? We'll
stop here and encourage you to take a few moments to play
around with OS-9 Level II's predefined windows. Then, we'll share
a few ideas that may inspire you. In the next chapter we’ll show
you how to define your own windows so you can set them up to
fit your jobs.

Perhaps you fancy yourself as the next Danielle Steele, Tom
Clancy, or maybe even the next Ernest Hemingway. If so, you
probably bought your Color Computer to write with and you want
your writing tools to always be only a second away.

With the Color Computer loaded with 512K of memory and
0S-9 Level Il windows, you can do just that. Let's assume that
when you bought your Color Computer you also purchased a
word processing program with a companion outliner and spelling
checker. For want of a better name, we'll call them Magic Word,
Magic Spell and Magic Line.

The secret to having these word processing tools a second
away is to have them in memory at all times. We could load them
all atonetime if we used the OS-9Buildtool to create a procedure
file that would load our word processing files into memory for us.
For example:

build LoadWP
load Magiclord
load MagicSpell
load MagicLine

You would need to press ENTER twice after the last line.

After you had created the file LoadWP and safely stored it in
the root directory of the disk in Drive /d@, you could run it any
time you wanted to by simply typing:

loadWP

If you are a serious writer, you will want to enter LoadWP as
one of the lines in your OS-9 StartUp file so that you will have
these writing tools in memory each time you start your Color
Computer. We'll show you how to build a customized StartuUp file
in a later chapter.

After you do this, Magic Word, Magic Spell and Magic Line
will be loaded for you automatically every time you boot Color

32

Computer OS-9 Level Il. You will be able to start writing
immediately. Now if someone would just write a program that
could write a book!

If you are a C programmer, you could build a similar
procedure file named LoadC to load each of the programs needed
by your C compiler. If you are in this for entertainment, you could
build a similar procedure file to load all of your game programs.
After your most-used applications programs or programming
tools are loaded, they will be ready for you to use at a second’s
notice.

In the next chapter we'll show you how to create windows that
look the way you want them to look, show you how to make them
the size you want them and place them exactly where you want
them. We’ll also show you how to make them the color you want
and let you play around with the border, background and
foreground colors on the fly.

33

CHAPTER 3

let’s define our own

Once you've exercised the windows we showed you in
Chapter 2 for a while, you’ll most likely be ready to move on. It's
sort of like moving into a new house. Shortly after the moving van
leaves, you feel like you have to put up your own curtains and
window shades. When you get a house, you want it to reflect your
personality. The same goes for its windows.

After you have read this chapter, you'li no longer need to peek
into a Color Computer window that doesn’t reflect your person-
ality. You'll be able to roll your own.

We'll start by creating atext window or two in the same screen.
We'll pick our own size and color. We may even come up with a
more useful configuration than the standard windows pre-defined
in the device descriptors. However, the important thing to
remember as you begin to follow our examples is that by
emulating them, you will be able to define your own windows to
suit your needs.

You'll be using two OS-9 tools to build most of your windows.
Wcreate is a tool that lets you define a window and display it on
a screen. Display is a standard OS-9 tool that lets you send any
number of non-printing codes to a window or other device
attached to your Color Computer.

Wcreate has several advantages that caused us to pick it to
create our new device windows. This OS-9 windowing tool lets

35

windows

you give it the size and location of the window you are creating
by typing decimal numbers. Display, on the other hand, requires
you to type hexadecimal numbers. Unless you think in hexadec-
imal, Wcreate will save you a lot of translation.

OUR FIRST HAND-CRAFTED SCREEN

In our first experiment, we’ll create one screen with five
windows. Four of these-windows will be device windows, and the
fifth will be an overlay window. All but the overlay window will
be 80 characters wide. All will be text-only windows. We'll create
each of these windows from the 059: prompt by typing individual
command lines.

Our first window will be located two lines down from the top
of the screen. It will be two lines deep. We'll set it up to be a
command window, or terminal, by starting a shell in it. Imme-
diately after we create this window, we’ll move into it by pressing
the CLEAR key. Once there, we’'ll stay there and create all of our
new windows from this control window.

We will create our command window first because to create
a window on the same screen as another, you must be operating
in that screen. For example, if you create two customized windows
from ~term (the green screen) you will wind up with two windows,
but they will appear on different screens. You won'’t be able to see
them at the same time.

Next, we’ll create a window on the top two lines of the screen
and put atitle in it. After the title is in place, we'll create an overlay
window at the right end of the title window and display the date
in it. Two additional 80-column by 10-line windows will round out
our first screen. The first will be located four lines from the top
of the screen, the latter, 14 lines from the top. When we are
finished, all 24 lines in the 80-column by 25-line screen will be
full.

Once you have created these windows, you can use them in
many different ways. For example, you could follow the same
course we charted in Chapter 2 and use one of the 10-line windows
\ to display a listing of the tools available in your OS-9 CMDS
directory while you run them from the command window and
display their output in the second 10-line window.

Or perhaps you have memorized the names of your OS-9tools
by now and are more interested in looking at a listing of the files
you have stored in one of your data directories. Once these file-
names are displayed in one 80-column, 10-line window, you can
work on them using the OS-9 tools, or utility commands, which
you can call to action from your command window. You can send
the results of your work — the output of the OS-9 tools — to the
second 80-column, 10-line window.

36

Later you might want to take advantage of OS-9’s ability to
send its error messages and data output to a different path. By
using the OS-9 redirection operators on the command line, you'll
be able to send error messages to the first 10-line screen, the data
output to the second. Or, maybe you’ll want to change the size
of those two screens and create a four-line window to capture the
error messages and a 16-line window to display the data.

Additionally, since four of the windows on your screen are
device windows, there will be nothing to stop you from starting
a shell in each one of them and running an applications program
from within each window. In the future, many applications
programs will automatically configure themselves to the size of
the window they are running in. This opens up many additional
opportunities.

You could start a shell and turn the two 10-line windows into
command windows. After you have the shells running, you can
use the CLEAR key to move to each window. You'll know the new
shells are running because you’ll see the OS-9 prompts. Once
your cursor has come to rest next to the OS-9 promptin a window,
you can use any OS-9 tool or run any applications program in that
window.

The screen editor that comes with the OS-9 Developers
Package is a perfect example. If you need to rewrite a document,
you could move to each of the new command windows and run
the screen editor by typing its name on the command line. You
can then open the document you need to rewrite using the copy
of the screen editor running in the top window and display it 10
lines at a time while you do the actual rewrite with the copy of
the screen editor that is running in the bottom window.

This is a perfect place to pass along an important point about
0S-9. Because applications programs like the screen editor are
re-entrant, OS-9 only needs to keep one copy of the program in
memory. The two screen editing windows in our example are
actually taking their time sharing the one piece of code that is
loaded into your Color Computer's memory. However, each
window is working with data in two distinct data memory areas.

In the future, you’ll be able to run OS-9 applications from a
visual desktop that lets you point to an application and then click
a button on your Color Computer mouse to run it. When this new
visual interface named Multi-Vue arrives, a clipboard will allow
you to transfer data between two different applications.

In our screen editing example, this means you could use the
CLEAR key to move into the top editing window, mark a block of
text and copy it to the clipboard. Once the desired text is on the
clipboard, you can use CLEAR to move back to the bottom editing
window. Once you are back in this window, you can move your

37

insertion point to the desired location in your new text file and
paste the material from the clipboard into the new document.

A FEW ADDITIONAL POINTS ABOUT WINDOWS

The windowing system is actually built into OS-9. That’s why
you are able to create a window from the command line prompt.
There are two types of built-in windows, device and overlay.

You can cause a device window to act like an independent
terminal by starting an OS-9 shell in it. Once you have started this
shell, you can run any OS-9 tool or applications program in that
window. With many of the older OS-9 tools and applications
programs, you'll run into a “Gotcha!”

For the most part, these programs assume you are running
0OS-9 on a computer terminal or in a fixed-size screen on your
Color Computer. They have never heard of windows. Newer
applications and tools will take care of the screen-size problem
for you automatically, however, and you won’t have too much to
worry about.

As you start to design your own screens, remember this:
Device windows may not overlay each other. You cannot put one
device window on top of another and then move back and forth
between them. If the area filled by two windows occupies the same
space on the screen, you will need to create these windows on
two separate screens. If you create them on two separate screens,
you won't be able to see both device windows at the same time.

All is not lost, however, because on many occasions an OS-
9 overlay window will do the job. An overlay window can be placed
on top of all or any part of a device window — or on top of another
overlay window for that matter. Any number of overlay windows
may be stacked like this. But, remember: There must always be
a device window on the bottom of the stack.

If you are a programmer, you'll find yourself using overlay
windows when you want to send the person using your applica-
tions program a message. On some computers, overlay windows
are known as dialog boxes. One more thing. You cannot open up
a graphics overlay window and draw a picture — a stop sign
perhaps — if the device window underneath that overlay window
is a text window. In OS-9 speak, overlay windows assume the
screen type of the device windows they overlay.

MAKING TEXT WINDOWS

it's almost time to dive in and create your first customized
screen. But first, we must give you a quick overview of the choices
you have when you get ready to create your own screens.

Before you create a window, you must determine how big you
want it to be, its color and its type. Let’s look at the size first.

38

Your windows can be any size as long as they are smaller than
the screen on which you plan to place them. The size of the screen
is determined by the type of screen you create. There are six basic
screens you can generate with OS-9 Level Il. Two of them are text-
only screens; the others are designed to handle graphics at
varying resolutions. In addition to the six basic screen types, there
are two other types that let you control the location of the next
window you generate.

THE BASIC WINDOW TYPES

0S-9 Level Il can generate two screens that will accept text
dataonly. If you create a Type 01 screen, you will be able to display
24 lines holding 40 characters each. The Type 02 screen gives you ’C
24 lines that will hold up to 80 characters each. If you are short
on memory, or need larger characters because you are using a
television set for a monitor, you will want to generate Type 01
screens. Each Type 01 screen uses 2K bytes of memory. You can
use eight colors with both Type 01 and Type 02 screens.

§

When we switch from text windows to graphics windows, we
start to use more memory. And we start defining our windows in
terms of pixels instead of characters. OS-9 uses two sets of
standard fonts that et you display text in your graphics windows.
One of them is six pixels wide; the other is eight wide. This is to
give you an idea of the size of a pixel.

The Type 05 and 06 graphics screens use less memory than
any other. They require 16K. The Type 05 screen lets you display
640 pixels horizontally across the screen. This equals approxi-
mately 80 characters of text if you are using the eight-by-eight
pixel character font — approximately 106 characters if you choose
the font that uses six-pixel-wide characters. A Type 05 screen is
192 pixels, or approximately 24 characters, deep. If you create a
Type 05 window, you are limited to two colors.

A Type 06 screen supports 40 characters of text on 24 lines.
This screen allows a graphics resolution of 320 pixels by 192 pixels
in any of four colors.

The two remaining screen types require 32K of memory. One
of them, Type 08, generates screens 320 pixels wide by 192 pixels
deep. Again, that's approximately 40 characters on each of 24
lines. If you use the six-pixel-wide font, you can expect to see
approximately 53 characters on each line. A Type 08 screen lets
you use 16 colors.

The other basic screen is Type 07. With this screen you can
display your words and pictures on a screen 640 pixels wide by
192 pixels deep. You can use four colors with this screen.

The two default screen types that you use are Type 00 and
Type FF. If you tell OS-9 Level |l to generate a Type 00 window,

39

it places that window on the screen where it is displaying the
current process. Remember, in OS-9 speak, a process is a
program running. You generate a Type FF window from within
one of your programs when you want that window to appear on
the currently displayed screen.

Perhaps a table is in order.

TABLE 3-A: Window Sizes
Number of
Type Size Colors Memory Needed
01 40 X 24 characters eight 2K
02 80 X 24 characters eight 4K
05 640 X 192 pixels two 16K
06 320 X 192 pixels four 16K
07 640 X 192 pixels four 32K
08 320 X 192 pixels sixteen 32K

THE BASIC WINDOW COLORS

There are eight basic colors you can choose from when you
are displaying text or graphics material in a window. Each of these
basic colors has a number assigned to it. To pick a color, you
display the proper number in your command line. We'll show you
how to select the color of your foreground, background and
border when you create a new window. Later we’ll show you how
you can change any of these values on the fly.

Since you are going to be “painting by number” so to speak,
we suggest you make several copies of the table below and post
it all around in your computer room.

TABLE 3-B: Available Colors
Screen Color Decimal Number Hex Number
White 00 00
Blue 01 01
Black 02 02
Green 03 03
Red 04 04
Yellow 05 05
Magenta 06 06
Cyan 07 07
White 08 08
Blue 09 09
Black 10 0A
Green 11 0B
Red 12 oC
Yellow 13 oD
Magenta 14 OE
Cyan 15 OF

40

We show you the hexadecimal numbers in this color chart
because these are the ones you will need to type when using the
0S-9 Display tool to create windows or change the color in an
existing window.

We're ready now to move ahead and make our first custom-
ized screen. However, before we can type a single character, we
must decide what we want our first window to look like. Earlier
we said we needed to make our new command window first, start
an OS-9 shell in it and and then generate the other windows on
our screen. Before we enter our command line, we need to answer
some questions. We will jot the answers down in OS-9 speak —
numerical form — and then type our command.

® What type of screen do you want?

¢ What is horizontal coordinate of upper left-hand corner?
® What is vertical coordinate of upper left-hand corner?

¢ How wide is the window?

® How tall is the window?

® What color do you want your characters?

® What color do you want your background?

® What color do you want your border?

We'll use the OS-9 Display tool to generate this first window
to show you how it works. This means you’ll need to answer the
questions for the first window in hexadecimal.

Earlier we said this window will be a text-only window, which
will start two lines down from the top of the screen. It will be 80
characters wide, two lines deep. Further, it will generate black
letters on a white background. The screen’s border will be blue.
The answers to our gquestions in decimal and hexadecimal are
printed below.

Characteristic Decimal Value Hex Value
Window type 2 2
Upper left horizontal 0 0
Upper left vertical 2 2
Horizontal size 80 50
Vertical size 2 2
Color of characters 2 2
Color of background 0 0
Color of border 1 1

Now that you have answered these questions, you are ready
to create your first custom window. Use the CLEAR key to move
the cursor to the green screen with the black letters and enter each
of these lines:

iniz wl

merge sys/stdfonts >/wl

displaylb20202502201>/uwl

shell i=/wl&

41

MAKING A DEVICE WINDOW

Press the CLEAR key to arrive in the window you just created.
You should be Iooking at a blue screen with a small white window
located two lines below the top of the screen. If not, remember
to type montype r from the green screen. You should see the 053:
prompt displayed in black type. Let's review the steps above and
point out a few areas where it is easy to make a mistake.

(1]

it is a good idea to reserve a block of memory for the first
window on a screen by using the OS-9 Iniz tool. OS-9 often takes
care of it for you automatically, but it is always better to be safe
than sorry. Strange things can happen in a windowing environ-
ment unless everything is just right.

MERGING IN THE FONTS

You must merge the file sys/stdfonts into a buffer before you
create a graphics screen. If you don’t, you won’t be able to see
the characters you send to a graphics window. All characters will
appear as dots. However, you only have to use this command line
once during a session. That makes it a good candidate for your
startup file. If you put it there, it will be run for you automaticaily
every time you start OS-9 on your Color Computer.

Here’s an important point you must remember about merging
the stdfonts file into your system. Your fonts can only be merged
into a window device. They cannot be merged into the VDG
device. Remember! The device named ~term with its black letters
on a green background is a VDG device. You cannot merge the
stdfonts file to it. It won’t know what to do with them. Always
merge your stdfonts file to a window device. You can tell a device
is a window device because its name starts with a w. Always merge
your stdfonts file to one of these window devices.

Now let’s talk about the line that was hard to type. Display

is an OS-9 tool that sends a list of hexadecimal characters to the
standard output device. These characters are usually non-

42

printable control characters — they cause your Color Computer
to do something, but they do not show up on the screen.

The first two characters, 1b 20, have a name. When they are
sent together, they are known as DkSet — or device window set
—in OS-9speak. If you look closely, you'll notice that the numbers
following these two characters are the hexadecimal answers you
gave to the list of questions earlier.

After you typed the number that answered the last question,
you typed >-wl. The right caret tells the OS-9 shell to redirect the
standard output path used by Display to the device named ~ul.
If you had not typed the re-direction operator, those characters
would have been sent to the green VDG screen where they
wouldn’t have met anything and nothing would have happened.
However, when the window device named -ul receives your
characters, it takes them for action and creates the window you
ordered.

CREATING OVERLAY WINDOWS

Press CLEAR until the cursor follows the 0S3: prompt in your
new window. Now, let's create the title window and an overlay
window where we’'ll display the date. Enter the following:

wcreate /w2 -s=0 @B 2021

echo Color Computer Window Classroom >/ w2
display lb 22130020265 >w2

date t >/w2

.)

WCreate seems to be a little easier to use than Display when
it comes to creating new windows. Let’s take a look at our latest
sequence of OS-9 command lines.

The statement Wcreate /w2 tells the OS-9 windowing code
that we want to create a new window named ~w2. The -s=8 means
that we want the window we are creating to be displayed on the
same screen as the current process. If we do this, it will

43

automatically adopt the characteristics of that screen. In our case,
the new screen will be a Type 02 text-only window, which can
display 24 lines of 80 characters each.

After typing the -s=0 to define the window type, we entered
the answers to the rest of the questions in our list. However, notice
that this time we answered the questions with decimal numbers
rather than hexadecimal numbers. That’s a big improvement over
the Display command we first showed you. The @ 2 1 at the end
of the list tells OS-9 that we want it to display white letters on a
black background with a blue border. Guess what!

A moment after you typed that command line, a black window
popped into the first two lines on the screen. Our next command
line uses the OS-9 Echo tool to display a title on our new window.
In white letters against the black background, it reads “Color
Computer Window Classroom.” Did you notice how similar the
0S-9 Echo tool is to the PRINT statement of BASIC?

After we displayed the title in our new window, we moved on
to create an overlay window in that same screen. Once again, we
called on the trusty OS-9 Display tool. Following Display we see
1b 22. In OS-9 speak, these two hexadecimal characters mean
OWSet — for overlay window set.

The number 1 tells OS-9 that we want it to save the information
displayed on the device window before it creates the overlay
window. If we hadn’t wanted OS-9 to save the information
displayed, we would have typed the number @ when we created
the overlay window.

If you save the information displayed on a device window
while creating an overlay window, that information will imme-
diately pop back on the screen when the overlay window is closed.
You close an overlay window by displaying the sequence 1b 23
on it. Like this:

display 1lb 23 >7w2

If you have opened the overlay window from withir a high
level programming language like BASIC09, you simply close the
path to the overlay window. When you close the path, the window
disappears immediately.

Notice that the numbers used in the command line that create
the overlay window are all typed as hexadecimal numbers. We
typed the 30 to tell OS-9 that we wanted the window to start 30
Hex characters — or 48 decimal characters — from the left edge
of the screen. The @ that follows places the top of the overlay
window along the top edge of the screen, and the next two
hexadecimal characters tell OS-9 that we want this overlay
window to be 20 Hex — or 32 decimal — characters wide and two
lines deep.

44

And finally, the last two characters in the command line tell
0S-9 that we want it to print magenta letters on a yellow
background. Notice also that we redirected the output of the
Displaytool to the window where we wanted to create the overlay
window, /u?2.

As a rule of thumb, you almost always display the window
codes to the window where you want the action to take place. You
always do this with the OS-9 standard output path redirection
operator, the right caret, >.

Finally, after we created the overlay window, we ran the OS-
9 Date tool with the time option enabled to display the date and
time in our new overlay window. Notice that we also redirected
it output to #w2. If we had not done this, the date and time would
have been printed in window ~ul.

Next, we move on to create two windows where we can
display the output of our OS-9 toois and applications programs.

wcreate w3 -s*0 0 480 10241
echo Hello Window Three >-w3
wcreate 7w4 -s=0 0 1480102 7 1
echo Hello Window Four >-w4

/

Take time here to notice another difference between the
Wcreate command and the DWSet display sequence. The latter is
always redirected to the window where we want the action to take
place. The Wcreate output is not redirected. Rather, the window
device it is creating is named as part of the actual command.

WHAT IF | CHANGE MY MIND?

You have just taken a look at your finished screen, but you
don’t quite like what you see. You think the entire screen would
look a little better if the command window w1 was cyan like the
bottom window. No problem, go ahead and change it. Type:

display 1b 33 7

45

Not bad! Notice that we did not need to redirect the output
of the OS-9 Display tool here because we wanted the action to
take place in window -wl — where we typed the command. Now,
how do you suppose it would look if we made the border magenta?
Try it:

display lb 34 6
Doesn’t look too great! How about red? Type:

display 1b 34 4

It just might work if we make window device w3 green. Again,
notice that we did not need to redirect the output of these
commands since the border is global to the entire screen. Let’s
check out a green screen!

display 1b 33 3 >7w3

Notice that we did need to type the redirection operator here
to make sure OS-9 changed the background color of the right
window. But, what's wrong? The background color of our window
is still red. Or is it? Let’s clear that window and find out.

display c >7w3
Looks a little loud. Let’s give blue a try!

display lb 33 1 >/uw3
display c >7w3

Looks like a winner! Now, let's make a billboard out of the
window at the bottom of the screen by creating two overlay
windows. We’ll print our message on the second overlay window.
But first we'll display some information on the screen so we can
show you that it’s still there when we close the overlay windows.

dir x >7/wé

displaylb221224c 60 2>/wd

echo Hello Overlay One >/w4

displaylb 221224621 5>/w4

echo For The Best 05-9 Theory Read The Complete Rainbow
Guide To 05-9 >7w4

46

Let’s close the overlay windows and see if our directory listing
is still intact on window device ~w4.

display 1b 23 >7w4 ; display 1b 23 >7uw4

These windows are really amazing! There’s the directory
listing. Just the way we left it.

MAKE A GRAPHICS WINDOW TO DRAW

You use the same techniques to create a graphics window that
you used to create text windows. Just answer the type question
with a different number in your command line.

Sincethe screen we are working on is atext screen, we cannot
create a graphics window on it. This means the window we are
about to create will appear on another screen.

wcreate “w5 -s=7 00801202 4

BREAKING WINDOWS

One of the things we haven’t shown you about windows in
this chapter is how to get rid of them. We did show you how to
close the overlay windows, but you also need to be able to remove
your device windows to free the memory they use. Don’t worry,
the command is almost the same. To get rid of a window, you
merely type:

display 1b 24 >7w2
That command line should have wiped out your customized
window device -w2. Now wipe out window device ~wl — the one
you're typing in.
display 1lb 24 >/uwl

Did you notice what happened? Since you were running a

47

shell, OS-9 closed your customized window as you requested.
But, it fell back into the pre-defined window -wl. Window ~ul is
described in the device descriptor w1l that is loaded into memory
when you boot OS-9. The moral of the story? To get rid of a
window that is running a shell, you must first get rid of the shell
in that window. To do that, move to the window in question and

type:
ex

After you press ENTER, you'll notice that you can no longer
type in this window. You can, however, press CLEAR until you
return to another OS-9 shell where you can remove the window
you were operating in using the display 1b 24 sequence.

That’s it for creating windows! In the next chapter we’ll fire
up a graphics window or two and show you several ways to use
0S-9’s built-in drawing tools.

48

CHAPTER 4

automating the window

When you work with a computer, you must pay attention to
detail. These modern machines almost make you think you are
back in your fourth grade English class where the teacher made
you dot every ‘i’ and cross every ‘t’.

Probably about the fifth time you received an error message
after slowly typing in an OS-9 command line using the hunt-and-
peck method, you were very frustrated. And all you wanted to do
was make your Color Computer print, “Hello World!”

Your predicament calls for an OS-9 hero known as the
procedure file. We showed you how tc use the OS-9 Build tool
to put together a procedure file in an earlier chapter. Those first
procedure files helped us get a few small jobs done, but now it's
time to get serious. So serious, in fact, that we need to show you
how to work with the OS-9 text editor.

Why would you want to edit a file? Let’'s use the OS-9
techniques we practiced in the last chapter to explain. After you
got comfortable with the idea of filling a screen with custom
windows designed to solve your problems, you most likely had
an urge to experiment.

49

game

“lI wonder how it would work if | change the size of that
window from two rows to four? If | do that, I'll need to make the
other display window 12 rows deep instead of 16. | sure am going
to have to type a lot of these silly commands before | can start
doing my real job.”

While you were using the OS-9 Build tool, you wound up in
serious trouble if you made a mistake just before you pressed
ENTER. Your mistake was entered in the procedure file. To change
it, you had to delete the entire file and start over. Then, the next
time you tried, you made a mistake on another line. It seemed like
you just couldn’t win.

With an editor you can enter OS-9 command lines directly into
a procedure file like you did with the Build tool. After you run
the procedure file the first time and find a few mistakes you want
to correct, you can then reopen the procedure file with your text
editor and change it. Usually, you just need to change one or two
characters. This done, you can quickly close the file and run the
procedure file again. if you like what you see, you can keep it.
It you want to change another thing or two, you only need to start
up the editor again and make the additional changes.

We'll start you off with the editor, and a file containing English
language text, which is easier to understand. Then, we’'ll move on
and show you a few tricks you can use when you enter the
command lines needed to create and manipulate OS-9 windows.
In fact, we'll automate all those steps you slowly typed in by hand
in the last chapter.

When you were using the OS-9 Build tool to enter those
procedure files early in the book, you may not have realized that
you can also use Build to save real information. For example, a
short list of names and addresses is a very handy thing to have
at your finger tips. It's much easier to tell your Color Computer
to find a name for you than it is to search through several hundred
business cards scattered all over your desk.

Here's how you might build a list of names and numbers.
Type:

build address_list

Rainbow, Prospect, KY 40059

Puckett, Dale L.; Rockville, MD 20852

Internal Information Branch, USCG Headguarters 20593

When you are finished, press ENTER. As long as your list of
names and addresses is short, you can use the OS-9 List utility
command to find a name. Just type:

list address_list

50

Later, when the list grows and your OS-9 utility program
library expands, you can use a more powerful OS-9 pattern-
matching utility command like Grep to find a single entry in your
file.

But what happens when someone in your name and address
file moves? Then, you’'ll need to find a way to change the address.
For starters, you can use the OS-9 Edit application. It comes with
0S-9 Level |l for the Color Computer.

Edit is an extremely powerful text editor that you can use to
both prepare and change text files. You can use its macro
capability to automate many tasks. For now, we’'ll stick with a few
basic techniques to help you get started entering and editing your
own files.

Here’s how you can edit the address file you created with the
Build tool earlier. Type:

edit address_list

The OS-9 edit program will load and in a few seconds your
screen should look something like this.

059: Edit address_list
END OF FILE
E:

The E: prompt tells you that Edit is waiting for you to give
it a command. Let’s start by making sure we have the right file.
To list the entire file, at the E: prompt type:

1%

Now let’s insert a new name at the beginning of the file. At
the £: prompt, press the space bar and type:

Pimental, Bruce A.; Seattle, WA. 98118

The space tells Edit that you want it to insert the text that
follows in front of the line you just listed. Let's see if our new
edition is in place. Type:

-%] %
You should see:

Pimental, Bruce A.; Seattle, WA. 98118

Pimental, Bruce A.; Seattle, WR. 38118

Rainbow, Prospect, KY 40059

Puckett, Dale L.; Rockville, MD 20852

Internal Information Branch, USCG Headguarters 20593

51

CHANGING A FILE

Good! Edit moved its pointer to the very top of your file. The
-* told it to do this. When it arrived at that point in your file, it
listed the line at which it was pointing to your Color Computer
screen — the line you just added.

After it listed that line, it read the 1%, which told it to list your
entire file. That's why the line you added appears twice in the
listing above. The main thing to remember while you are using
Edit is that when the program prompts you with an £: after it lists
a line to the screen, it is pointing to the first character in that line.
If you insert something at this point, it will show up in front of
that line.

Likewise, if you issue Edit's Delete command by typing
single ‘d’ at this point, it deletes the line that was just printed.

Let’'s show you how to add a new name and address at th:
bottom of the file. Type:

+%
Midgett, Randy, Governors Is., NY 10004

Notice that we always type our Edit commands as the very
first character after the prompt. Press the space bar once before
making the next text entry, but if you accidentally press the space
bar before you type a command, you will wind up inserting the
command you type into your text file. Let’s see if we managed to
insert that name in the right place. Type:

_%] %
You should see:

Pimental, Bruce R.; Seattle, WA. 98118

Pimental, Bruce A.; Seattle, WA. 98118

Rainbow, Prospect, KY 40053

Puckett, Dale L.; Rockville, MD 20852

Internal Information Branch, USCG Headguarters 28593
Midgett, Randy; Governors Is., NY 10004

Now let's imagine that Bruce Pimental moves to the Silicon
Valley. We'll need to change his address. Type:

%
Cx/Seattle, WA. 98118/Sunnyvale, CA 940877/

Now check your file by typing -*1*. You should see:

Pimental, Bruce A.; Sunnyvale, CA 94087

Pimental, Bruce A.; Sunnyvale, CA 94087

Rainbow, Prospect, KY 48053

Puckett, Dale L.; Rockville, MD 20852

Internal Information Branch, USCG Headquarters 20593
Midgett, Randy; Governors Is., NY 10004

52

This sample editing session should give you a feel for the OS-
9 Edit application. Practice by adding a number of names and
addresses from your personal telephone book.

As you practice, try some of the commands listed below. Our
table gives you an overview of the editing commands that you'll
need to get started. After you master these, study the operating
system manual you received with OS-9 Level Il. You'll have the
Edit tool aced in no time.

TABLE 4-A: Beginning Editing Commands
Keys Action
space bar Inserts text following the space at the position
of the edit pointer.
ENTER Moves edit pointer forward one line.
+ Moves edit pointer forward one line.
+6 Moves edit pointer forward six lines.
+* Moves edit pointer to bottom of file.
/ Moves edit pointer to bottom of file.
- Moves edit pointer back one line.
-4 Moves edit pointer back four lines.
-* Moves edit pointer to top of file.
Csold stringsnew string” Changes first “old string” to “new string.”
C37o0ld /new 7 Changes next three occurrences of “old” to “new.”
C*/bad word/good word” Changes every “bad word” to “good word.”

Edit has many other commands that can make your editing
easy. After you master these, dig in and we’ll go to work on a long
procedure file.

Here’s the one thing you must always remember. When you
give one of the commands above to Edit, you must start typing
it at the first character position in the line. If you press the space
bar first, Edit will insert the line you type.

Finally, when you are satisfied with your data file and are
ready to stop editing, don’t forget to type:

q

This causes Edit to save your file in your current data directory
and returns you to the shell.

EDITING PROCEDURE FILES

Practice editing some English language files first. When
you're ready to move on, join us here and we’ll give you a few tips
to help you edit your procedure files.

First, consider the color chart we discussed in the last
chapter. Red, white and blue make sense. The numbers ‘4’, ‘0’ and
‘1’ somehow just don’'t seem to make it in the real world.

53

Why don’t you type the real name for the colors you want
when you define your windows? After you have entered the
complete procedure file, you can go back and use Edit’s global
change function to change each occurrence of “red” to “04,” each
“white” to “0,” etc. At least you’ll feel like you understand what
you are trying to create.

In fact, there are some things you will be typing while creating
customized window devices that won’t mean much in English. For
example, how on earth would you ever guess that display 1b 20
means “Make a Device Window”? Why don’t we call it MakeDW when
we type our long procedure file? You can use Edit's global editing
feature to translate it into a form OS-9 can digest.

If we play our cards right, we may even be able to put the
global change commands needed to convert our English lan-
guage procedure files back to OS-9 usable procedure files in a
special edit command file we can redirect into Edit. [f we do this,
you’ll be able to sit back and watch while Edit does the work
automatically.

We'll take a look at an English language version of our
procedure first. Then, we’'ll convert it to a valid OS-9 procedure
file and test it on our Color Computer.

THE LISTING: Engl ishScreen

echo Create four text windows and
echo several overlay windows

echo on the same screen.

display a

echo New window devices will be
echo named W1 W2 W3 and W4.

* Notice that we could not type /Wl

% in the Echo command line above

* We could do this by typing double quotes
* around the entire line ... like this:

display a
echo "New window names: /W1, /W2, /W3 and /W4!"

o

* First, create four windows on the same screen
* Make it an 80 X 24 text screen

* The "-z" tells wcreate to take its input

* from the standard input path, which is the

* Notice that we

* put the information it needed on the next

* four lines. Normally, a blank line would have

* followed our four lines of window definitions

* but we put an asterisk because it causes 0S-9

* to show you what it is doing "live" while you are

54

* running the procedure file.

* You should run this procedure file from a window

* device, ie, /W1, /W2, etc. Do not run it from a VDG
* device like /TERM.

wcreate -z

/wl -s=2 @ 2 80 2 black white blue
/w2 9 @ 89 2 white black blue

/w3 @ 4 80 1@ black red blue

/wh @ 14 80 1@ black cyan blue

X

* Print a Banner in Window /W2

clearscreen >/w2
echo Color Computer Window Classroom >/w2
k4
* Create an Overlay on the right end of window /W2
e
makeoverLay 3@ @ 2@ black magenta yellow>/w2
Ve

Y/
* Now Print the Date and Time in that window ETL
*
date t >/w2
%
* Identify windows /W3 and /W4
e
Echo Welcome to Window /W3 >/w3
Echo Welcome to Window /W& >/w4
%

* Now change the Color of the command window to Cyan

v

background cyan >/wl

e

* And change the border color to red
%

border red >/wl

%

* Make the background of window /W3 blue

%

background blue >/w3

clearscreen >/w3

echo I'm still Window Three >/w3

* Display a directory listing in window /W4
¥

dir x >/w4

* Create an overlay window covering your file names

* But, tell 0S-9 to save your directory listing
W

makeoverlay 2 2 4C 6 white black >/w4

%

55

* Display a message in the overlay window
k3

echo Hello from Overlay Window Number One >/wé

% Two overlay windows are better

* Notice that the coordinates of the second window
% are relative to the device window, not the first
* overlay window as you might suspect.

makeoverlay 4 4 46 2 blue yellow >/wh
* Make sure we know the Overlay Window Works

* Note that the following line must all be typed on one line.

echo For the BEST 0S-9 Theory READ The Complete Rainbow Guide to 0S-9 >/w/
k4

% To display text on an open overlay window, we send

)

% the text to the device window it overlays.
W%

%* Start an 0S-9 Shell in window /W1

v

selectwindow >/wl

shell i=/wl&

Create the file above using £dit. To do this, type:

load edit
edit EnglishScreen

After you see Edit’s £: prompt, type the procedure file, just
like you typed the names when you were working with the address
file earlier in this chapter. Don't forget to press the space bar
before you enter each line.

You may skip typing the comment lines if you want. They are
the lines that begin with an asterisk (*). However, by adding
comment lines to your procedure files when you first type them,
you will be able to tell what you were trying to do when you pull
the listing out of a file folder and try to run it six months later.

TRANSLATING YOUR COMMANDS MANUALLY

After you have typed in the procedure file, exit Edi t by typing
a g in the first position following the E: prompt. This saves the
procedure file you typed in an OS-9 file named EnglishScreen.
That file will be stored in your current data directory.

Since you loaded the Edit module into your Color Comput-
er's memory before you began to enter the procedure file, you will
be able to re-enter £dit and go right back to work quickly. But

56

first, you will want to save a copy of the English language version
of your file, Engl ishScreen. Type:

copy Engl ishScreen MakeScreens

You can now keep the English language version of your file
intact. This will help you translate the actual procedure file,
MalkeScreen, when you look at it months from now. But now, it's
time to translate MakeScreen into a format OS-9 can understand.
We'll make the first change manually. Then, we'll show you how
to do the job automatically. In fact, you'll be able to use the
Translate file we describe over and over again if you like this
technique. First, type:

edit MakeScreens
At Edit's E: prompt, type:
E: c.black.2.

Edit will echo the line that you just changed and you will
notice that the number 2 has been substituted for the word black.
0OS-9 understands 2when you display itinawindowing command.
It would not have understood the word black.

Now exitEdit temporarily by typing a gimmediately following
the £E: prompt. Edit will save a new copy of MakeScreen that
contains the single change you made.

Making a dozen changes manually could become quite
tedious. Once again, however, the magic of OS-9’s redirection
saves the day. By redirecting the input or output of an OS-9
application we can often perform miracles. The problem at hand
is a perfect example.

Run OS-9’s Edit tool again and type in the following lines.
Remember while working within the editor that you must press
the space bar before you begin typing each line.

edit Translate
When the E: prompt appears, type:
THE LISTING: Translate

¢* .white.{.

c* .blue.l.
-

c*% .black.2.
c* .green.3.
c* ,red.4.

c* .yellow.5.

57

c* .magenta.6.

c* .cyan.7.

c* .makeoverlay.display 1b 22 1.
c¢* .background.display 1b 33.

c* .border.display 1b 34.

c* .clearscreen.display c.

c* .selectwindow.display 1b 21.

After you have typed these lines, you can exit the editor to
save your new file. It will be stored in your current data directory.
Its name will be Translate.

After you try this method, you'll probably want to add many
additional lines to the file Translate. You could use names like
TextWinB0, TextWind®, HiResWin2Color, HiResWin4Color, Med-
ResWin4Color and MedResWinlG6Color.

These names would translate to “display 1b 20 02,” “display
1b 20 01,” “display 1b 20 05,” “display 1b 20 07,” “display 1b 20
06” and “display 1b 20 08.” If you feel other names would make
more sense, the ball’s in your court. Name that window!

Time out for a warning! Before you begin, decide how you
are going to type these names. MedResWin4Color is easy to read
and understand. But, medreswind4color is much easier to type.
Unfortunately, we have a “gotcha!”’ If you have typed medresuin-
4color in your English language procedure file and MedResWin-
4Color in your Translate file, Edit won’t be able to find
medreswindcolor and your procedure file will not be translated.
If this happens and you try to run it with OS-9, it will not work.
0S-9 won'’t recognize medreswin4color either. In computer
speak, Edit’s change function is “case sensitive.”

Back to work. You have typed in an English language
procedure file and a special command file for the OS-9 Edit tool.
Translate will let you automatically translate your English
language procedure file to OS-9 window talk. To perform this
magic feat, type:

edit 44K MakeScreens <translate

That’s all there is to it. The OS-9 £dit tool will do the rest.
Before you type the command line above make sure that you have

58

turned off the pause feature in the window you are running Edit
in. In case you need a gentle reminder, you can do that by typing:

tmode -pause

The result of your translation is shown in the listing of the
file MakeScreens that follows.

The power in the Edit command file Translate comes from
the fact that you only need to type it in once. After you have done
that, you can use it to translate your English language procedure
files to OS-9 window talk forever. You will probably want to enter
more English language definitions into Translate so that all of
the OS-9 features you use regularly will be available in English.

You’ll also most likely want to create another transiate
command file for the many OS-9 high resolution drawing
commands. Most of them can be generated from the 0S3: prompt
using the Display tool.

In the future, you may wind up purchasing one of the more
advanced OS-9 tool kits. There are several of these utility
packages on the market and almost all of them are full of filters
that you can use in an OS-9 pipeline. The TR — for Transliterate
— tool is one of the most popular and can be found in most of
the packages.

Most versions of TR let you transiate a file on a character per
character basis. However, at ieast one TR we know of lets you
translate entire English language words. This one would come in
handy here and you could do the same job you did with your Edi t-
based Translate file. Your command line would look like this:

tr “clearscreen”display c” EnglishScreens > MakeScreens

If you plan on using this TR to translate your English language
procedure files to OS-9 window talk, you will most likely want to
build a procedure file that loads TR and then runs it a number of
times — once for each translation you need to make.

' When TR finishes, your procedure file will unlink TR and return
you to the 0S9: prompt. This is the type of job that is made to
be done in the background while you are using your Color
Computer to do other work, or play. Remember, to tell OS-9 that
you want it to run these TR processes in the background, you will
need to put an ampersand (&) at the end of each command line
in your procedure file. This character tells OS-9 to run the process
it is starting in the background.

While you're still learning about computing, Edit —atool that
comes with OS-9 Level |l on the Color Computer — does the
translation job quite nicely. Here are the results after we used
“translate” to get from English to OS-9 window talk.

59

THE LISTING: MakeScreens

echo Create four text windows and
echo several overlay windows

echo on the same screen.

display a

echo New window devices will be
echo named W1 W2 W3 and W4.

k3

ki

Notice that we could not type /Wl

in the Echo command line above

We could do this by typing double quotes
around the entire line ... like this:

display a
echo "New window names: /W1, /W2, /W3 and /W4!"

v
e
%
%
e
¥
v
¥
%
¥
%
k4
¥
e
k3

¥

First, create four windows on the same screen
Make it an 80 X 24 text screen

The "-z" tells wcreate to take its input

from the standard input path, which is the

Notice that we

put the information it needed on the next

four lines. Normally, a blank line would have
followed our four lines of window definitions

but we put an asterisk because it causes 0S-9

te show you what it is doing "live" while you are
running the procedure file.

You should run this procedure file from a window
device, ie, /W1, /W2, etc. Do not run it from a VDG
device 1like /TERM.

wcreate -z

Jul -s=2 @ 2802291
J2 9 g8g 2921

Jul @ 480 19 2 4 1

Jub § 14 89 19 2 7 1

¥
v
k3

e

Print a Banner in Window /W2

display c >/w2
echo Color Computer Window Classroom >/w2

e
%

%

Create an Overlay on the right end of window /W2

display 1b 22 1 3@ @ 28 2 6 5>/w2

k3
%
%

Now Print the Date and Time in that window

date t >/w2

60

: Identify windows /W3 and /W4

Echo Welcome to Window /W3 >/w3

Echo Welcome to Window /W4 >/wé&

: Now change the Color of the command window to Cyan
:isplay 1b 33 7 >/wl

: And change the display 1b 34 color to 4

¥

display 1b 34 4 >/wl

*

* Make the display 1lb 33 of window /W3 1

%

display 1b 33 1 >/w3

display ¢ >/w3

echo I'm still Window Three >/w3

v

% Display a directory listing in window /W4

%

dir x >/wh

%

* Create an overlay window covering your file names
%* But, tell 0S-9 to save your directory listing
%

display 1b 22 1 2 2 4C 6 § 2 >/wh
%

* Display a message in the overlay window
%

echo Hello from Overlay Window Number One >/wé

%

* Two overlay windows are better

* Notice that the coordinates of the second window
* are relative to the device window, not the first

* overlay window as you might suspect.
%

display 1b 22 1 4 4 46 2 1 5 >/ub
%

% Make sure we know the Overlay Window Works

k4

* Note that the following line must all be typed on one line.
echo For the BEST 0S-9 Theory READ The Complete Rainbow Guide to 0S-9
>/wh

k.4

* To display text on an open overlay window, we send

* the text to the device window it overlays.

Y

% Start an 0S-9 Shell in window /W1

%

display 1b 21 >/wl

shell i=/wl&

61

Compare the listing of MakkeScreen above to the individual OS-
9 command lines you typed in Chapter 3. They are almost
identical.

The Wcreate command line is the major exception. You need
to use a different syntax when you use Wcreate in an OS-9
procedure file. The secret to that syntax lies in the -z option at
the end of the command line.

Essentially the -z lets Wcreate tell the OS-9 shell, “Hey, get
my input from the standard input path. | don’t want to wait all day
for some jerk to type my commands.”

Since Wcreate is being run from within an OS-9 procedure
file, the standard input path is already feeding the characters from
the file into the shell. After Wcreate issues the -z option, it also
will get its characters from the procedure file. The next four lines
contain our input 10 Wcreate.

We made one off-the-wall change in the procedure file
MakeScreen. Normally, you must follow the list of windows you
are defining with Wcreate with a blank line in your procedure file.
If you do this, however, Wcreate sends you back to the window
that you used to start the procedure file and you will not be able
to watch the magic.

We wanted you to see everything pop on the screen live while
the procedure was running. In the process, we discovered that if
we failed to terminate Wcreate’'s window list with a blank line,
Wereate would simply send its “usage” or help message to the
window that started the procedure file. But, it leaves the screen
receiving your new windows active and you can sit back and watch
the show.

We only used a handful of the windowing commands available
in OS-9 Level Il in this chapter. Generally, the OS-9 windowing
tools work in the same manner and are generated with the Display
tool. An excellent description of all available windowing com-
mands is listed in alphabetical order in the Windows section of
the OS-9 Level Il manual.

PROCEDURES CAN HELP REMOVE WINDOWS

While you are perfecting a procedure file like MakeScreen, you
will find you need to debug your instructions several times before
you get the windows to look just the way you want them to fook.
To survive this process, you must find a way to remove the inferior
windows before you make another attempt.

Every time you run MakeScreen or a similar procedure file, you

will generate four new windows. |f you merely edit your procedure
file and run it again, you will run into all kinds of problems and

62

you'll find yourself memorizing the definition of Error Number 184
— Window Already Defined.

You'll remember from Chapter 3 that you can close a shell
running in your windows by typing:

ex
But, the window the shell was running in will remain open.
You must then remove the window with the OS-9 “device window
end” command, 1b24. You do that like this:

display lb 24 ~>/w4

That command line will remove window ~w4. But, what about
the other four windows? You got it. You'll need to type that
command line three more times. The next time you can redirect
the output to window ~w3, etc. That could be a real pain. But OS-
9 has several tools that can speed us along.

USE THE SHELL’S EDITING KEYS

After we enter the command line above and the 0S9: prompt
returns, we can simply hold down the CTRL key and press the A
key. In a split second our previous command line will pop back
on the screen. The cursor will be sitting immediately after the 4
in 7wd.

Press the back arrow on your Color Computer keyboard until
the cursor backs over the 4. Then, type a 3 in place of the 4 and
press ENTER again. Next time, use the same technique to change
the 3 to a 2, and then the 2 to a 1. Almost painless. But, there's
a better way.

You guessed it. Since you're going to be debugging for an
hour or more, you may want to use the OS-9 Build tool or Edit
to enter a short procedure file. We called ours Kill4W. It looked
like this.

display lb 24 »>-w4
display lb 24 >>7u3
display lb 24 »>/w2
display lb 24 >7uwl

You must be careful when you remove windows, especially
those that are being used by copies of the shell. If you don't, it
is possible to create pure pandemonium. For example, if you
reverse the list in the procedure file above to remove 7wl, /w2,
+w3 and w4 in that order, it will not work. It will remove all four
windows. But after you kill window ~uw4, the system will get lost
because it doesn’'t know where to go and your Color Computer
will hang up.

The best way to avoid this problem is to keep one window
device or the ~term device open and running a shell at all times.

63

Think of it as the home window. When you open and close
windows, do it from the home window. Following this protocol
should keep you out of trouble.

If you understand how OS-9 works, you will know what is
happening when you open a window and start a shell and can feel
at ease when you open and close windows, and start and Kill
shells. You’'ll know which windows you can kill and which you
can’t kill because you understand the hierarchy of OS-9 pro-
cesses. This is a good place for an explanation.

IT"S EASY TO CREATE PROCESSES

You'll find that it is very easy to start a new process with
0S-9. In fact, the shell and kernel do most of the work for you.

To create a new process, type the name of the module — or
the file that contains the module that contains the program — at
the 059 prompt. When you do this, you are passing a request for
a particular action to the OS-9 shell. When you make this request,
you must also give the shell the names of any files or other
information the new process will need.

The shell first tries to find a module with the name you gave
it in the module directory. Remember, this directory contains the
name of all modules that are present in memory. If it finds the
name of your program in the module directory, the shell will link
to the module and run it for you.

If the shell cannot find the name of your program in the
module directory, it looks for a file by the same name in your
current execution directory. If it finds the file, it will load it into
memory, link to it and run your program.

The kernel sets aside an area of memory that your program
can use for data storage. It finds out how much memory your
program needs by reading the storage size value from the module
header.

When the kernel starts a new process, it assigns a unique 1D
number to it. These ID numbers can range from one to 65,535.

If any of the steps above are unsuccessful, the shell does not
create your process. Yet, it won't leave you hanging. It lets you
know what happened by printing a message that contains a
special error number that tells you what went wrong.

64

0S-9 processes are a lot like people. In fact, if you think of
. 0S-9 as a family of processes, you will find it much easier to
understand. Let’'s look at the genealogy of a family of OS-9
processes.

When a process creates another process, it becomes a parent.
The new process is called a child. Further, if the child creates
another process, it also becomes a parent. A process can create
any number of children.

This whole discussion may seem absurd. Yet, the family
concept makes OS-9 much easier to understand. If you apply it
when you look at the output of the OS-9 Pracs utility, you can
almost visualize a family tree.

Just as human children inherit characteristics from their
parents, OS-9 child processes inherit a number of properties from
their parent process.

Forexample, each person using a computer running OS-9 has
been assigned a user number. |f a person starts a process, that
process belongs to him — it carries his user number. If that
process then starts another process, the child process inherits his
user number and belongs to him also.

Other properties that are inherited by a child process include
the standard input and output paths, the process priority, and the
current execution and data directories.

For example, if the standard input and output path used by
a parent process is sending data to a window device named w7,
any children created by that process will also send their output
to 7w?.

Likewise, if you start a process with a low priority, any
children created by that process will also have a low priority. This
is important because the process priority tells the 6809 micro-
processor how important a job is to you. If you give a process a
low priority, the 6809 will give it a very small share of its time.

The bottom line — you cannot remove a shell that has created
other shells (a parent) until the shells it created (its children) are
terminated. To do so is to create chaos within your Color
Computer.

First, be careful when you type on your Color Computer
keyboard. You will have to be extra careful if you cut your teeth

65

R

PROCESSES, LIKE PEOPLE, HAVE MANY CHARACTERISTICS

! %;,g‘g‘[,?é\\@

A

T

CHILDREN INHERIT THEIR PARENTS’ PROPERTIES

OTHER WINDOW CAUTIONS

on the Color Computer 1 or 2. Remember when you needed to
hold down the CLEAR key to emulate the CTRL key? On the Color
Computer 3, it is very easy to accidentally press the CLEAR key
while you are holding down the CTRL key — especially if you are
reaching for the ESC key to send an end of file signal.

If you do press the CTRL-CLEAR combination, you are going
to be in for an interesting surprise the next time you attempt to
back space to correct a typing error. The left arrow flat out doesn’t
work. Actually, it is working — but as one part of a keyboard
mouse instead of as a backspace key. Be careful.

Two more quick window notes and we’ll let you practice until
you wear out the keyboard. First, if you plan to create graphics
windows with the Wcreate t00l, you must make sure you have
merged the sys-stdfonts file into a graphics window — any
graphics window will do — before you run Wcreate. If you run
Wcreate and then merge in the sys/stdfonts file, you will not be
able to see any text on your new window. You will see dots instead.

The easy way to solve this problem is to add a line in your
0S-9 start-up file to merge sys-stdfonts. Since the window
descriptor w4 has been predefined to be a graphics window, we
use the following line.

merge sys/stdfonts >/w4

Remember that the sys/stdfonts file oniy needs to be
merged into the system once. Once it is there, all windows you
create can use it.

Finally, if you have quite a bit of Color Computer 2 software
that ran on Level I, Version 2.00.00 of OS-9, you may want to run
more than one VDG window. The VDG window is the 32-by-16
green screen that comes alive when you first boot OS-9. Since
it emulates OS-9 Level I, most software written for Level | OS-
9 on the Color Computer 2 can also run on the Color Computer
3. But, what if you want to run one Level | program in one window
while you are running another in ~term? BRemember, 7term is the
only Level | compatible window.

First, pick a window. Make sure that it is not active, and run
the OS-9 Deiniz tool on it. Then, run the OS-9 Xmode tool to set
the number of lines on the screen to 16 and the type to 1. After
you do this, you can Iniz the window and open a path to it. When
you see it, you'll be back in green screen heaven. Here’s what the
command sequence looks like:

deiniz 7w3
xmode 7w3 type=1 pag=16
shell 1=7w3&
That’s it for windowing. In the next chapter we’ll create a smali
command window and a large graphics window. We’'li help you

get the artist in you out of the closet as we explore the many OS-
9 drawing commands.

66

CHAPTER 5

getting ready to draw

Our goal in this chapter is to show you how you can set up
your system to work on several major projects at the same time.
When you are through, you’ll know how to write a procedure file
that will automatically prepare your Color Computer for the day’s
work. You’ll also pick up a few more tricks and OS-9 subtleties
along the way.

Your Color Computer will automatically open four windows,
starting a screen editor in one window and BASIC09 in another. It
will leave a shell you can use to run scores of additional OS-9 tools
in a third window and create a display-only screen where you can
print messages or study the output of your programs. You will be
able to switch from testing a BASIC09 procedure to writing a
paragraph of documentation about it with a single keystroke. The
VDG green screen will also be available for additional tasks.

By using our procedure file as a model, you can set up a
similar environment to do the work most dear to your heart. For
example, you could start a screen editor in one window, a
spreadsheet program in another, a database program in a third
and a professional drawing application in a fourth. With a single
keystroke, you could then take a look at the latest financial data,
prepare an illustration or ponder the mailing list for the sales pitch
you are writing.

67

N

After setting up a model work environment, we'll start your
introduction to the powerful graphics primitives you can use
directly from the OS-9 Level ll command line. We'll show you how
to write a procedure file that will set you up with a two-window
screen where you can experiment with OS-9’s graphics cursors.

In this chapter you’ll learn how to use the graphics cursors
by typing short commands at the O0S-9 prompt. Learning how
things work at this low level will help you understand what is
happening when you use the same commands from BASIC0S. In
the next chapter we’ll give you a brief introduction to BASIC09, the
high level language that comes with OS-9 Level Il on your Color
Computer. Then, we'll move back 1o the drawing board and help
you draw a few pictures from the OS-9 command line and BASIC09.

While we're drawing with the OS-9 Disglay tool, we’'ll show
you how you can put several drawing commands into a procedure
file to create an impressive graphics presentation. Once you've
completed a dress rehearsal and are satisfied with the pictures
you've created, we'll show you how to redirect the output of your
procedure file into another file. This fiie will contain only the actual
codes the OS-9 Display tool sends to your windows to perform
drawing magic. Finally, we'll show you how you can merge this
new file to the window of your choice for automated, high-speed
drawing.

Since we're starting to tackle more ambitious assignments in
each chapter, we thought this would be a good time to show you
how to set up your system so you can work without stopping. After
you emulate this procedure with your own applications programs,
you will no longer need to wait for your applications tools to load
into memory when you change from one to the other.

In fact, we’ll show you how to work in a manner that won't
require you to exit your applications programs. This means you
won't even have to wait for them to start up. They'll be ready to
work immediately. We created an OS-9 procedure file to do the
job.

Actually, we set up two procedure files. The first is our
standard StartUp file, which is always stored on the root directory
of the working system disk. Our second procedure file is named
StartApps.

We set up our StartUp file to do only those jobs that we need
to do every time we start our computer. It is important that you
remember the jobs you need to do might be different because you
are using different peripheral hardware. But, you can use ours as
a model.

After you experiment with StartUp and Star tRpps a few times

and ponder the issues, you'll see how you can create a number
of different StartApps files that let you do different types of work

68

with your Color Computer.
THE LISTING: StartUp

*

% Lock shell and std utils into memory
¥

link shell

*

echo * DaleSoft

echo * Dale and Esther Puckett

echo * Rockville, MD

*

display a a

*

% Note we did not run the setime

% tool because we are using a

% real time hardware clock.

%

date t

echo Setting monitor type

montype r

%

* You have to run montype every time
% you boot. Just as well put it in
% StartUp.

*

dfoff

Our customized hardware requires

us to run df@off. 0S-9 switches our
current execution directory and

current data directory to /H@/CMDS

and /HP automatically when we boot 0S-9.
However, the motor in /D@ continues

to run so we run "d@off to shut it off.

¥ ok % % % ¥ X ¥ O

echo Setting Printer 1f's

xmode /p 1f

*

* OQur Epson printer requires this command.
%

iniz w7

Echo Merging Fonts to /W7

merge /dd/sys/stdfonts >/w7

shell i=/w7&

*

% Now we'll load the applications
% we know we'll need every time

*

Echo Loading Screen Editor

load ds

69

Echo Loading RunB

load rundb

Echo Loading Basic@9

load basic@9

Je

* You will want to substitute the

* name of the screen editor you

* purchased for "ds" in the command

% line above. "ds" is the name of the

¥ file and module that contains our

% screen editor.

"
echo Type CLEAR for 80 Columns

%

* It's always a good idea to send

* messages to computer operators so
* you won't leave them wondering

* what to do next.
%

We have been extremely liberal with our comments in this
StartUp procedure file. You should do the same thing when you
create your customized version. The comments will help you
determine what you were trying to do if something doesn’t work.
They will also help you remember what you did, months from now.

Remember, to putacomment line into an OS-9 procedure file,
you type an asterisk (*) in the first column of that line.

Can you see how to display your own personalized sign-on
messages by using the OS-9 Echo tool? Also, did you notice that
we used the default device descriptor — #w? — the one built into
the 0S39Boot file that came with the OS-9 Master System Disk when
we created window -w?? This gave us a quick way to create an
80-by-24 text window where we could start a shell with a big
screen to work in.

Toward the end of our StartUp file, we tetll 0S-9 to load the
major applications programs needed every time we start up our
Color Computer. The choice here is personal and you will find
it easy to follow our model when you set up your own system.

Our screen editor gives us a convenient way to edit text files.
BASICO9 gives a tool we can use to write quick utility programs or
complicated applications. And we will need RunB, BASIC09’S run
time interpreter, every time we want to run a “packed” BASIC09
program.

Later in the book we’ll show you how you can merge several
needed modules into the Gfx2 file so they’ll be in memory every
time you need them — without using any additional memory. Also
in a later chapter, we feature a simple screen editor written in
BASICO9. If you haven’t purchased a screen editor yet, this one will

70

get you started. But, those are other chapters!

Notice also that we used the OS-9 Echo tool to send messages
to our start-up window every time we told our Color Computer
to perform a task that would take more than a second or two. This
can relieve a lot of worry.

For example, if you see a message that says “Loading
BASIC09,” you know that the operation will take a while and you
won't worry when nothing happens for a few seconds. These
messages become especially important if you load five or six
major applications programs at a time. Without a message, the
operator could wind up staring at a static screen for more than
a minute.

SETTING UP OUR SYSTEM TO DO A LOT OF WORK

Now take a long look at the OS-9 procedure file StartApps.
After you run it — or a similar customized version — you will have
BASIC09, a screen editor, two OS-9 shells and a display window
ready to use instantly. Each will only be a CLEAR key away.

Each one of the applications you instaill with your own
StartRpps will have a full 80- by 24-column screen to work in. You
will be able to flip from the middle of an editing assignment to
the middle of a BASIC09 programming project with a minimum
number of keystrokes. You will need to be working on a 512K
Color Computer to use a procedure file like StartApps, however.

THE LISTING: StartApps

% First, we'll create our windows

* Notice that we have already created

* /W7, a 8¢ X 24 Text Window in the

% StartUp file so we won't need to
repeat those steps here. In fact, we
couldn't create /W7 again here anyway.

We would cause an "error 184" -- 0S-9's
window already defined error."

We have also started a Shell in /W7.
This gives us a place where we can run any
0S-9 text-based tool on a large screen.

Notice also that we have already merged the
sys/stdfonts file into window /W7
in our startup file.

We'll almost always need these fonts
when we're working with windows.

& % o % % % % % % ¥ % X ¥ X ¥ ¥

71

¥

Now we'll build an 8§ x 24 graphics window in
device /W6 and start Basic@9 in it.

We'll make /W6 a four color window that gives
us 64@ x 192 graphics pixels to work with.

Note here that 0S-9 Level II will give us a
chance to break old habits.

Instead of exiting Basic@9 with
"BYE" or a <CTRL><BREAK>

we will now want to just strike the
<CLEAR> key when we finish

working with a Basic@9 program.

This will take us to another window where
we can do another type of work.

Basic@9 will still be running when we
return to this window.

When we need to work with another
Basic@9 procedure, we will strike
the <CLEAR> key until the cursor

returns to the "B: " prompt.

We can then go back to work in Basicf@9.

iniz wé
display 1b 290 7 @ @ 50 18 2 @ 2 >/wé6
basic@9 #2PK <>>/wbk

%
%
*%
%
e
¥
¥
¢
¥
¥
v
%
Ve
Vv
%
%
v
W%
Y
Y

Basic@9 should be running now

and we can go to it by striking the
<CLEAR> key till we get to the
white window with the black letters.
Now we'll create window /W5

and start our screen editor in it.

We will want to follow the same
procedures when we exit the editor.

Instead of telling it to exit the file

we are editing and return to the Shell,
we want to simply have the editor write
the file we are working on to a disk file
and return to its own prompt.

The bottom line: We want to keep our editor

running so we can move to it at
a moments notice by striking the <CLEAR> key.

72

%

*

We predict that you can now begin
to see the time savings the 0S-9
windowing environment makes possible.

* ¥

%

iniz w5

display 1b 290 2 § @ 50 18 1 7 3 >/W5

ds <>>/wh&

%

* Note here that you should substitute

* the name of the screen editor you purchased

* for the "ds" we typed above. "ds" is the module
% and file name of the editor we are

* using as we prepare examples for

* The Complete Beginners Guide to 0S-9 Level II.

* To start work on your own text, strike
* the <CLEAR> key until you see the cursor
stop behind your editor's prompt.

¥

%

* Notice that we created a text window for our screen
* editor because text windows operate faster.
%
*
*
*

We created a four color graphics screen
for Basic@9 because we wanted to
experiment with the graphics commands.

* Now, we'll create one more window which
* we can use to display the output of the
% many 0S-9 tools.

Notice that we will not start a Shell in this window.
We want to keep it available for our use as a display.

Remember! You cannot send the output
of an 0S-9 tool to a window running a Shell
without creating much visual confusion.

We will also always leave the VDG --

or hardware screen -- named /TERM
active with a Shell running in it at

* all times. This gives us a home

to return to if everything goes haywire
* during a late night session.

%

iniz w4

display 1b 290 2 @ @ 590 18 2 g 1 >/w4

echo Display Window Number Four at your service >/w4
Yo .

% Notice that sending a message to window /W4

* opens a path to it and makes it appear on

* % ¥ % X ¥ % % * % %

%

73

% our monitor when we move to it with the <CLEAR>
* key. If we had not sent a message to it, that
* window would have remained invisible until we
* did.

We used an interesting OS-9 trick in the procedure file
StartApps. Can you pinpoint it?

We started both BASIC09 and our text editor in a special way.
We did not run them from an OS-9 shell. Rather, we started them
directly from our procedure file and redirected their standard
input, standard error and standard output paths to the window we
wanted them to appear in.

You snould be prepared for a surprise if you start BASIC09 or
any application using this technique, however. You won’t hurt
anything, but if you accidentally — or even purposely — exit
BASICO09 or your application, you will suddenly be looking at a dead
screen. You’'ll see the cursor on the screen but when you press
a key or type a command, nothing will happen.

Nothing is really lost, however, and if you want to restart the
process you can return to your home window — the green VDG
screen — and start your application again. Remember, an OS-9
process is nothing more than a program that happens to be
running. Since you loaded your program into memory in your
StartUp file, it will come alive quickly.

The secret of your ability to work quickly with OS-9 Level Il
is in the magic of the CLEAR key and the fact that you can leave
several of your applications running at the same time — albeit in
different windows. Every time you press this key, you will change
windows.

This means you could be in the middle of writing a compli-
cated paragraph for a user's manual you are preparing about a
new program when you forget exactly how the routine you are
describing works. No problem — if you are using OS-9 Level Il.

Just press the CLEAR key until your cursor appears back in
the window running your new BASIC09 program. List the procedure
or make a test run. When you are satisfied that you understand
what is happening, press CLEAR again until your cursor is back
in the window running your screen editor. You'll find the cursor
winds up back at the same exact position you leftitin. Magic! (And
very productive.)

MAKING A GRAPHICS SCREEN TO EXPERIMENT IN

When you start working with a powerful operating system like
0OS-9, you'll discover that there are many different ways to do the
same job. First, we’ll show you a procedure that will turn any

74

window you happen to be working in (except the VDG hardware
green screen) into a four-color, 640- by 192-pixel window
instantly! You'll find this window colorful and useful for many
tasks.

Then, we'll show you a procedure file that will create a four
color, 640- by 192-pixel screen designed just for experimenting.
The screen it creates will hold two windows. One will be a 20-line
display window you can use to display your graphics output. The
other will be a four-line command window where you can type
your commands. Let’s look at our instant graphics window
procedure first.

THE LISTING: Makeqw

* First we must terminate the

* window we are working in.

W

% 0S-9 will not allow us to have

* more than one window with the

* same name. We will send the code

% for the 0S-9 Device Window End call.

display 1b 24

%

*Now we must create a new window in

* the same device. Since we are already

* working there, we don't need to redirect

% the output from this procedure. The output
% goes to the standard output path which is

* the window we are working in. The next

* code we send is the 0S-9 Device Window Set
% call.

ki

display 1b 20 5 @ ¢ 50 18 1 § 4

* Now we must tell 0S-9 which font

* we want to use in our new graphics

* window. We do this with the 0S-9

* Font Call. The "c8" we see in the

* command line is hex for the number

* 208 in decimal. It is the group number
* that holds the fonts merged from the

* file sys/stdfonts. The $1 which follows
* tells 0S-9 to use buffer number one which
* contains the standard 8 x 8 pixel fonts.
¥

display 1b 3a c8 #1

¥

* Now we must select the window we just

* created. We do it with the code for the

%* 0S-9 Window Select call.

75

display 1b 21

e

* And finally, we decide to change the foreground
% color of our new window to blue with the 0S-9

* FColor system call.

¥

display 1b 32 1

k24

% That's all folks! Go for it!

¥*

Remember: You must have merged the sys/stdfonts file into
a window device before you run the procedure to make the
graphics window above. We did this in our startup file. If you forget
this, you will not be able to display any text in your new windows.
If you display text to a graphics window when there are no fonts
available in the system, you will see only periods on that window.

Run Makegw several times and watch it work. To run it, make
sure it is stored in your current data directory, then type:

makegw

If the file Makegw had not been stored in your current data
directory, you would have needed to type a complete pathlist to
the file. It might have looked something like this:

7h@-my_experimental_procedures/makegw

Now let's speed up the operation. Run this OS-9 command
line:

makegw >mgw

You have just sent the output of the OS-9 Display commands
you typed in the procedure Makegw to a new file named mguw. If you
were to look inside that file, you would see only the characters
that display normally sends to the standard output path. It would
look like this.

1b 24 1b 20 @7 00 00 50 18 01 00 @4 1b 3a c8 01 1b 21 1b
3201

You can see those characters if you use the OS-9 Dump tool
that comes with the OS-9 Software Developers Package. If you
have run Level | OS-9 on a Color Computer 2, you own the Dump
command from that package.

Caution: Do not get in the habit of running OS-9 Level | utility
commands on an 0S-9 Level || based Color Computer. Some of
them will not work. The reason they won’t work rests with the
differences between the memory management techniques used
in OS-9 Level | and OS-9 Level ll. For an excellent explanation

76

of OS-9 memory management, pick up a copy of The Complete
Rainbow Guide to OS-9.

Now that you have created the file mgu, stand by for some fast
action. Move to a text window — ~w? for example — and type:

merge mgw

That was quick service, wasn't it? If you want to turn another
display window into an OS-9 high resolution graphics window,
you can do it if you take advantage of OS-9’s redirection feature.
For example, if you are working from the VDG hardware green
screen and you want to change window device ~w? from an 80-
by-24, type-two text window to a type-seven, 640- by 192-pixel,
high resolution window, type:

merge mgw >/w’/

Thatshould do the trick. Experiment with this technique when
you get a chance and we’ll use it some more when we start
throwing pictures on your Color Computer screen. For now, let’s
look at a procedure file that will set you up to experiment with
the OS-9 graphics primitives.

THE LISTING: ReadyDraw

%*

* Merge all available fonts fonts into a window

* Notice we have two in our collection that do

* not come with 0S-9 Level II. In the near future
* you will likely see hundreds of fonts

* available for your Color Computer III.

¥

merge /dd/sys/stdfonts >/w

merge /dd/sys/ibm >/w

merge /dd/sys/future >/w

¥

* Now merge the graphics cursors

E3

merge /dd/sys/stdptrs >/w

%

* And the standard background patterns.

* for the four color -- type seven -- graphics window

% Other files are available in your SYS directory
* with background patterns for windows with

* both two and 16 colors.

%

merge /dd/sys/stdpats 4 >/w

¥

* Notice that we merged everything into the

* window device named /W. When you create

* a window on this device it uses the next

* available window number. By using /W we

* didn't need to remember the names of the

% windows where we had already started Shells.

77

* Remember, if you try to send output to a
* window running a Shell, you create much
* visual confusion.

* After everything is merged, we create our
* two new windows using the wcreate tool.

wcreate -z
Swl -s=7 g § 89 29
/w2 g 29 80 4

*

204
217

*Now start a Shell and prepare to move to it
*

display 1b 21 >/w2

shell i=/w2&

In Ready Draw make sure to leave out the lines that merge the
ibm and future fonts unless you have these fonts. Instead, you
could make them “invisible” by putting an asterisk in the first
column of each of the two lines.

Press the CLEAR key to move your cursor to the command
window you just created with the procedure file ReadyDraw and
we’ll show you how you can put some basic drawings on your
screen by issuing a series of display codes — or commands —
to the graphics primitives built into OS-9.

PLANNING OUR ATTACK

The temptation is to sit down and wing it. Unfortunately, it
doesn’t work that way when you start using graphics primitives.
if you wing it, you are certain to wind up with strange fooking
birds. If you want to create memorable images, you must take the
time to plan your work before you begin.

The first thing you need to do is start thinking of your screen
in a different manner. When computers first started to appear in
homes, most of them displayed only text. Very few of them could
draw pictures. None of them could do windows!

If you owned a Color Computer 2 before you purchased your
Color Computer 3, you probably got used to thinking of your
screen in terms of 16 rows of 32 text characters. On the Color
Computer 3, I'll bet you're enjoying the 24 rows with 80 characters.

To draw pictures, however, you need to start thinking in terms
of pixels — short for picture elements — rather than characters.
For example, on the screen you just created with the procedure
file above, you are looking at a 640-pixels-wide by 192-pixels-high
screen. Each one of these pixels is represented by one tiny dot
on the screen.

ReadyDraw created two windows on that screen. The drawing

78

window is 640 pixels wide and 160 pixels high. The command
screen at the bottom is 640 pixels wide and 32 pixels high.

When you display text on a graphics window like the one you
just created, your Color Computer actually draws the characters
on the screen. Each character from the first buffer in the stdfonts
file is eight pixels high and eight pixels wide.

When you type a character, the picture tube on your Color
Computer must display eight individual lines before you can see
the character. Each one of those lines is one pixel high. The
individual dots that make up the character you typed are
highlighted as the beam crosses them during its trip across the
screen. After the beam makes eight trips, you see the character.
Fortunately, your Color Computer works so fast that the entire
character seems to appear all at one time.

We've created two tables that show the relationship between
character position and pixel position. One deals with the
horizontal position on your window or screen. The other
compares vertical character positions to vertical pixel positions.
Make a copy when you are ready to draw with the graphics
primitives. Things will go a lot smoother.

‘ TABLE 5-A: Horizontal Character/Pixel Positions
} Character Pixel
| Position Position Hex High Hex Low
| 0 0 0 0
| 5 40 0 28
| 10 80 0 50
| 20 160 0 A0
30 240 0 FO
40 320 1 40
| 50 400 1 90
| 60 480 1 EO
; 70 560 2 30
‘1 80 640 2 80
I TABLE 5-B: Vertical Character/Pixel Positions
| Character Pixel
‘ Position Position Hex High Hex Low
0 0 0 0
2 16 0 10
5 40 0 28
7.5 60 0 3C
| 10 80 0 50
] 12.5 100 0 64
' 15 120 0 78
17.5 140 0 8C
20 160 0 A0
| 24 192 0 Co

79

We'll start our drawing exercise with some prefabricated
characters. If you pressed the CLEAR key when we told you to
earlier, your cursor should be sitting just behind the 05S3: prompt
— in a four-line green window with black letters. That's window
+w2. You should see a clear white screen with a red border at the
top of your screen. Its name is ~wl. Now, type:

display 1lb 39 ca 04 1b 4e @1 40 00 50

Where did that hourglass come from? It just popped up out
of nowhere. Not really! If you were to translate the escape code
sequence the Display tool sent to your screen into OS-9 speak,
it would read:

display GCSet Hourglass PutGC 320 B0

Let’s try a read-through. Essentially, you want OS-9 to use
its Display tool to “set,” or name, the graphics cursor you want
to use. Then, you want to actually put that graphics cursor on the
screen at a position 320 pixels from the left edge of the screen
and 80 pixels from the top. You want an hourglass to appear in
the middle of the white screen.

Go ahead, ask! If you want the cursor to appear at a position
320 pixels in and 80 pixels from the top, why did you type @1 40
@2 507 That’s an excellent question and a very relevant one. The
answer lies with the OS-9 Display tool, which accepts only
hexadecimal numbers as input. This means you must translate
your pixel position into hexadecimal before typing your command
line.

The coordinates 320 and 80 in decimal translate to 01 40 and
00 50. Because the high resolution screen is more than 256
characters wide — that’s FF or the largest single byte value in Hex
— you must give OS-9 both the most significant and least
significant byte of your coordinates. You must do this for both
the X and Y positions even though the Y position can never be
greater than 00 CO.

in computer speak, the OS-9 drawing commands expect you
give them 16-bit — or two-byte wide — coordinates. Display can
only send one byte at a time so you must split them up yourself.
For this reason you could probably get rich by writing and selling
an O0S-9 nisplay tool that can speak both decimal and Hex.

Since the abbreviations above still don’t make a [ot of sense,
let’'s move them one step cioser to English. We’'ll use two lines.

display Graphics Cursor Set
display Put Graphics Cursor

To issue the actual commands in two lines, you would type
an 0S-9 command line like this:

80

display 1b 39 ca 04
display 1lb 4e 01 40 00 50

The Graphics Cursor Set is the official English description of
GCset. The display codes you must send to issue the command
GCset are 1b 39. You must follow those codes with the group
number and buffer number. Both must be typed in Hex.

Likewise, PutGC stands for Put Graphics Cursor. To send it,
you display the codes 1b 4e. Those codes are followed by the X
and Y coordinates of the location where you want to display the
cursor. Let’s try something new. Type:

display 1b 39 ca 02 1b 4e 02 40 00 60

Did the hourglass on your screen turn into a pencil, drop
down two lines and jump to a position near the right edge of your
screen? What happened? Why did the hourglass turn into a
pencil?

Look closely at the command line you typed. You changed
the o4 following the ca to 82. That must mean the o4 calls for an
hourglass while the 82 summons a pencil! You're on track. We'll
put the rest of the OS-9 graphics cursors in a table so you'll know
what’s available.

Group # Hex Value Buffer # lcon

202 CA 01 Arrow

202 CA 02 Pencil

202 CA 03 Large Cross Hair

202 CA 04 Hourglass

202 CA 05 “No”

202 CA 06 Text Insert

202 CA 07 Small Cross Hair
TABLE 5-D: 0S-9 Four-Color (Type 07) Background Patterns
Group # Hex Value Buffer # Pattern

204 CC 01 Dots

204 cC 02 Vertical Lines

204 CcC 03 Horizontal Lines

204 CcC 04 Crosshatch

204 CcC 05 Left Slanted Lines

204 CC 06 Right Slanted Lines

204 CcC 07 Small Dots

204 CcC 08 Large Dots

To apply the information from these graphics cursor tables,
simply substitute the buffer number that represents the style of
cursor you want in your command line. For example, if you want
to display the international icon that means “no,” type:

81

Q
A=
)

:‘

display 1b 33 ca @5
display 1b 4e 02 40 00 6@

Let's experiment some more! tf you created window -w> in
your StartUp file, move to it with your CLEAR key and turn it into
a graphics window. Do you remember how? Use the Makegw
procedure file we showed you earlier or merge mguw, the fast version
of Makeguw. After you are sure that window ~w? is a graphics window,
press the CLEAR key until you get back to your small green control
window. Now type:

display 1lb 3S ca 02 1b 4e 82 40 00 60 >/w/

Move to window ~w? by pressing CLEAR. If the shell you started
in ~w? from your startUp procedure file is still running, you will
need to press ENTER several times. This lets the characters you
redirected to window device ~w? from your control window
through, and a pencil should pop on the window in the same
position it appeared in window ~ul.

If you are running -w? as a display window only — which
means you haven’t started a shell in it yet — you won’t need to
press ENTER. The pencil will appear on its own.

Now move back to w2, your four-line green control window,
and we'll try something different. Type:

display 1lb 39S ca 22 1b 4e 02 40 00 60 >/wl

Nothing happened! OS-9 appears to be placing its graphics
cursor at the coordinate specified on the selected screen. It pays
no attention to window boundaries.

To prove this, type the command line above over again, but
this time drop the redirection operator, > wl.

display 1b 39 ca 92 1b 4e 02 40 90 60

It worked! The display command sent its output to the
standard output path that was connected to window device
~w2. Yet, the graphics cursor appeared in window 7ul.

Now hold down the CTRL key while you press the A. Your most
recent command line should pop back in the window. Press the
left arrow twice and back over the 0. Replace it with 88 by typing
those two characters. Now press ENTER.

Did the pencil pop into the green control window? Was it
about one character position above the bottom of the screen?
That’s where you told it to go when you typed the B8. The decimal
equivalent of B8 Hex is 184. Since the screen is 192 pixels deep,
the point of your pencil should be located 192 minus 184, or eight
pixels from the bottom of the screen.

82

Remember: OS-9 graphics cursors are global to the selected
screen. They can be placed anywhere on the screen, inside or
outside a window. The first time you use an applications program
that lets you point to an icon on the screen with the mouse and
click the firebutton to perform a task, you’ll understand why the
cursor must be able to move anywhere on the screen. The main
reason the graphics cursors exist is to pinpoint the location of the
mouse on your screen.

Use the tables above to experiment with the OS-9 graphics
cursors. Notice two things. First, if you prefer to use the same
cursor all the time, you do not need to run the OS-9 GCSet
command each time you move the cursor. You only need to set
the graphics cursor the first time you display a cursor on the
screen. However, as you discovered, you can change the
appearance of the cursor any time you want by running the OS-
9 Gcset command.

Once you have told OS-9 which graphics cursor you want to
use with the GCcset command, you can move that cursor anywhere
onthe screen by running the PutGC command. But, I'lt bet you have
one more question. How do you get rid of a graphics cursor once
you have set it?

To remove a graphics cursor from your screen, you must run
the sCset command again. But this time you tell OS-9 that you
want a group and buffer number of zero. It should look like this
when you type it:

display 1b 39 00 00

Experiment with these graphics cursors until you understand
what is happening. Then, join us in the next chapter for a brief
introduction of BASIC09 followed by a few examples of OS-9
drawing.

S

83

CHAPTER 6

first steps with basic09
AT

You can do so much with OS-9 without resorting to program-
ming that you may happily forget that your computer is program-
mable. Most people who use computers don’t program them, but
someday you may want to write a program of your own. Whether
you want to program or just understand programming, this
chapter will help you get started.

We should start by warning you that programming can be
addictive. Seemingly normal people with a few weeks’ exposure
to programming have been known to neglect everything else and
program until they drop. They say that artists and scientists have
the same problem: The problem at hand becomes so involving that
the rest of the world is tuned out.

A computer program must be written in a computer language.
Fortunately, computer languages are much easier than human
languages. They have small vocabularies and simple grammar.
Unfortunately, computers insist on precisely correct usage. The
spelling, punctuation and grammar must be flawless.

A program is a set of instructions that solves some problem.
A programmer invents the solution and writes the instructions. If
a programming language is bricks and mortar, a program is a
finished house. Like a house, a good program is functional, and,
in a way, beautiful.

85

SETTING THE SCENE

w

THE FIRST STEP,

Imagine we are gathered around your computer. Most of the
time we are sitting at the keyboard and you are beside us watching
what happens and asking questions. You have read the BASIC09
manual, but you're not sure how to put it together and write a
program. We'll create a few programs in front of your eyes,
explaining as we go along.

We're going to be using BASIC09, the language that came with
your copy of OS-9. It is enough like other versions of BASIC that
you can run many BASIC programs under BASIC09. If BASIC is an
old friend, BASIC09 will feel comfortable. Unlike most versions of
BASIC, BASICO09 is a modern language. If you are a member of the
Committee to Stamp Out BASIC, you’ll want to forget BASIC09's
name, but you’ll love its elegant structure.

You will want a collection of books on hand while you are
reading this. We will show you how to construct a program, but
we’ll skip lightly over the details of the BAS!IC09 language. You
should definitely have the Basic09 Manual and The Basic09
Tourguide. The Basic09 Manual is the encyclopedia of BASIC09
with descriptions of every feature. The Tourguide explains things
in more detail with plenty of examples.

You can easily get OS-9 to print Hello World on your screen
by using the command:

echo Hello World

That’s how you get OS-9 to print Hello World on the screen
using the Echo utility program. BASIC09 is a general-purpose utility.
We should be able to get it to print Hello World, too. Let's see
if we can.

First, run BASIC09 by typing Basic®9 at the 059: prompt. If
OS-9 can start BASIC09, your screen will clear and you'll see a
copyright notice at the top of the screen. Under the copyright
you'll see:

Basic®S
Ready
B:
Pay attention to the B:. It is the BASIC09 command mode prompt.
If you got an error message when you tried to start BASICO09,
you should check two things before you go off on a major hunt
for the problem. If you got

ERROR #216

86

it means OS-9 couldn’t find BASIC09. Make sure BASICO9 is either
loaded into memory or in the current execution directory by
typing chx ~d@-CMDS before you try to start it. (For more
information on execution directories, see Chapter 2.) If you got:

ERROR #2007

0S-9 couldn’t find enough memory for BASIC09. You'll have to find
something to take out of memory before BASIC09 will be able to
squeeze in. Look into getting rid of a window or unlinking some
modules.

When you have BASIC09 running, type:
e Hello
at the B: prompt. BASIC09 will respond with:
PROCEDURE Hello
*
E:

It is telling you that you are editing a procedure called Hel lo.
The E: prompt indicates edit mode. Hello will start as a one-line
program: a print statement. Type:

print “Hello World”
at the prompt. Be sure to press the space bar once before typing
the statement. A space is the edit mode command for “insert the

following line in the procedure.” That’s it — a complete, working
program.

Type 1* (that's | as in list) at the next BASIC09 E: prompt. The
1* command tells BASIC09 to print out the procedure. You’'ll see:

PROCEDURE Hello
0000 PRINT “Hello World”
*

E:

BASIC09 always types important words like PRINT in capital
letters. 1t will come out that way even if you typed everything in
lowercase. Pay no attention.

You need to get out of edit mode to run your program. Type
g at the E: prompt to quit the edit mode. BASIC09 will return to
command mode and give you a B: prompt.

You can enjoy your program from the command prompt.

87

LISTING YOUR WORK

ENJOYING THE NEW PROGRAM

Every time you press the ENTER key, BASIC09 will print the directory
of BASIC09 procedures it knows about. So far, all it has is Hellg,
but it will tell you that Hel 1o uses 48 bytes of memory, plus another
22 bytes of data when it's running.

Run the program by typing run Hello at the B: prompt. You
should end up with something like:

B:run Hello
Hello World
Ready

B:

at the bottom of your screen.

Try running the program a few more times. Make up another
procedure that prints some other string, and play around until you
feel comfortable. Now try putting two or more print statements
into a program. Can you write a program that prints Hel lo World
down the side of the screen like this?

O +—+—m T

0O~ 0 &

You're probably getting annoyed with the ciutter on the
screen. Let’s start using some screen control to clear the screen
before writing on it. Start editing your Hello procedure. Re-
member how? Type:

e Hello
Now, type:
run gfx2(“clear”)

at the £: prompt. Be sure to put a space before run so BASIC09
will know that you mean to insert the line. If you list the program
again, you will see that the new statement is inserted before your
print statement. If you get back to command mode and run Hello,
you will find that the screen is cleared and “Hello World” appears
at the top. If, instead, you get an error message, you need to check
and make sure the module gfx2 is in memory. If it isn’t, you will
need to load it from the BASIC09 disk.

88

There are two things still wrong. Hello World would look
better in the middle of the screen and

Ready
B:

shouldn’t be right under it. We’ll use cursor positioning to fix both
problems.

After the screen is cleared, we want to put the text cursor near
the middle of the screen, and after printing Hel 1o World, we want
the cursor near the end of the screen. If you have a 32-by-16
screen, you'd like Hello World to start at column and row (10,7)
and ready to appear at (0,14). Use the BASIC09 editor to put the
iine

run gfx2(“curxy”,10,”)
just before
print “hello world”
and
run gfx2(“curxy”,0,14)
after it.
We could keep going for days. The procedure could graduate

to foreign languages or blinking letters. Siight variations on this
procedure can print any fixed message on the screen.

We have created the simplest program we could imagine. It
demonstrated that we could get BASIC09 to do something. There
are many possibilities for grander versions of the Hellc proce-
dure, and we tried a few of them.

It's always best to start with something simple even when you
know the final product will be compiex. We started with a one-
line program and expanded it to two lines, then to four lines. At
each stage we were able to test the procedure. We would have
found any problems early, while the procedure was as simple as
possible. In a four-line procedure, debugging isn’t a big issue, but
when we get to complicated programs involving several proce-
dures and hundreds of lines, an incremental approach will be
mighty useful.

89

TO SUM UP

CHAPTER 7

drawing with os-9

Your CoCo will shine after you learn the techniques in this
chapter. We’ll experiment line by line with a primitive drawing tool
to give you a feel for the way OS-9 drawing tools work. Then, we'll
create several procedure files that demonstrate the powerful
graphics toolbox hiding inside your Color Computer.

Our first procedure file will draw a number of objects on your
screen to show you the five basic geometric shapes you can create
with OS-9. Then, we’ll fill those objects with the eight different
patterns immediately available in OS-9 Level |l.

Another procedure file will show you how to create an image
by drawing from point to point. We'll then change the size of that
image by changing the size of the work area in our window. When
we do this, we’ll be taking advantage of OS-9's automatic scaling.

We'll save that smaller image in a buffer and put it back on
the screen as part of a larger picture later. But, we need to
experiment awhile first, so you will know just what to expect from
0S-9 when you start creating your own world-class computer art.

91

primitives

A NEW PHILOSOPHY

Computers are getting easier to use every day. This new-

WHAT (5 4 \ibTow © found ease of use is the result of a new approach to programming
A rawDow |5 Instead of approaching problems from the machine’s point ol
0y A view, programmers today are writing programs that attempt to

‘ solve problems using the same methods humans do.

For example, at the breakfast table we pick up an apple and
eat it. When we're finished, we pick up the dishes and wash them.
Later, we may pick up the morning paper and read it.

If you look carefully, you’'ll see a pattern in the events above.
In each example we selected an object, or group of objects, and
& then did something with them. We selected the apple from the
bowl and we ate it. We selected the dirty dishes and washed them.
We selected the paper from the newsstand and read it.

We can often use the same problem-solving approach while
working on our personal computers. We select a program by
pointing to it with a mouse or joystick. Then, we run it by clicking
a button on the same mouse.

We select a document by pointing to its name in a list or to
a graphics icon that represents it on our screen. Then, we open
it so we can complete our work.

Operating systems like OS-9 Level Il make it all possible.
Several Color Computer programs already let you work in this
manner. Soon, most of them will. But let’'s ponder how we can
apply the same philosophy to our drawing lesson.

Watch for a pattern as you type in the procedure files. You’ll
notice that in many places you are sending one set of display
codes to select an object — a graphics cursor perhaps. Then,
you'llimmediately send another set of codes to do something with
the object you selected — display that graphics cursor at a specific
location on your window, for example. You'll select a pattern and
fill a box with it. Or select a special font and print a message using
it. Or select a border and change its color.

With almost every step you take, you'll select an object and
then act on that object with a verb. When you take this approach
to the drawing tools and OS-9 Level |l windowing environment,
you’ll begin to understand what is happening. But more impor-
tantly, you'll understand what you need to do to make things
happen.

To make your job easier, we have organized the OS-9 drawing
and windowing display codes into a table with three columns. The
first column lists action verbs that describe a task you may want
to perform. The second lists the display code you must type to
make it happen. The third column lists additional information that
you must give OS-9 when you type the display codes.

92

TABLE 7-A: 0S-9 Drawing and Windowing Tools

To:

Change Background Color
Change Border Color
Change Default Color
Change Foreground Color
Change Palette Color

Change Working Area
Create Overlay Window

Create Window Device

Display Bold Text
Display Proportional Text

Display Transparent Text

Draw Arc
Draw Bar

Draw Bar Relative
Draw Box

Draw Box Relative
Draw Circle
Draw Ellipse

Draw Line

Draw Line and Move

Draw Line Relative

Draw Line Relative and
Move

Draw Point

Draw Point Relative

Fill Screen Area
With Pattern

Get Screen Pixel
Image in Buffer

Kill Buffer
Kill Overlay Window
Kill Window Device

Position Draw Pointer

Send
This

Code:

1B 33
1B 34
1B 30
1B 32
1B 31

1B 25
1B 22
1B 20
1B 3D
1B 3F
1B 3C
1B 52
1B 4A

1B 4B
1B 48

1B 49
1B 50
1B 51

1B 44
1B 46
1B 45
1B 47

1B 42
1B 43

1B 4F

1B 2C

1B 2A
1B 23
1B 24

1B 40

And Supply this Parameter:

Color Number

Color Number

None

Color Number

Palette Number, Color
Table Number

*** Location, Size

*** Save Switch, Location,
Size

*** Type, Location, Size,
Colors

Plain = 0, Bold Text =1

Plain = 0, Proportional Text
=1

Plain = 0, Transparent Text
=1

Radius, Area

Location of Opposite
Corner

Offset to Opposite Corner

Location of Opposite
Corner

Offset to Opposite Corner

Radius

Horizontal and Vertical
Radius

Location of Opposite End

Location of Opposite End

Offset to Opposite End

Offset to Opposite End

Location
Offset to Location

None

Group #, Bufter #,
Location, Size

Group #, Buffer #

None

None

L ocation

93

Continued

DRAWING A BOX

Position Draw Pointer
Relative 1B 41 Offset to New Location
Position Graphics Cursor 1B 4E Location

Preload Screen Image in

Buffer 1B 2B Group #, Buffer #, Type,

Size, and Number of
Bytes

Protect Window Device 1B 36 Do Not Protect = 0, Protect
=1

Put Pixel Image on Screen 1B 2D Group #, Buffer #, Location

Reserve Memory for Buffer 1B 29 Group #, Buffer #, Buffer
Length

Select Drawing Logic 1B 2F None=0,AND =1, 0R =2,
XOR =3

Select Font 1B 3A Group #, Buffer #

Select Graphics Cursor 1B 39 Group #, Buffer #

Select Pattern 1B 2E Group #, Buffer #

Select Window 1B 21 None

Turn Scaling On/Oft 1B 35 Scaling Off =0, Scaling On

=1

*** Use character location (80 by 24) or (40 by 24). Other locations are based on pixels
(640 by 192).

*** All pixel locations are entered by typing the high and low Hex byte of the horizontal
position followed by the high and low byte of the vertical position.

The point and line are the most basic graphics elements and
0OS-9 lets you draw both. We'll use line drawing commands later
to create a custom-shaped object. We begin our experiments now
with the special codes that let you print a box in a Color Computer
window.

While we're experimenting you can use Table 7-B to help find
your way around the Color Computer's windows while you're
learning to speak Hex. We plotted our positions on a piece of
student graph paper first and then used the table to translate those
positions into Hex values we could feed to our windows with the
Display tool.

The graph paper we purchased was numbered from 0 to 24
along the longest axis and from 0 to 18 along the shortest. We
multiplied every position on the long axis by 30 and numbered
the positions of pixel numbers 0 through 660. Remember the
screen is 640 pixels wide. We multiplied each numbered position
on the shorter axis by 10. That side of our graph paper was
numbered 0 to 180. The paper was roughly the same shape as the
640- by 160-pixel screen we are using to draw our first pictures.

94

TABLE 7-B: Pixel Locations
Decimal You Type

0 00
10 0 a
20 014
30 0 1e
40 028
50 032
60 0 3c
70 046
80 050
90 0 5a
100 0 64
110 0 6e
120 078
130 082
140 0 8c
150 096
160 0 a0
170 0 aa
180 064
190 0 be
200 0c8
210 0d2
240 0fo
270 1 Oe
300 12c
330 14a
360 168
390 186
420 1 a4
450 1c2
480 1e0
510 1fe
540 21c
570 2 3a
600 258
630 276
660 294

We'll start our drawing experiments by placing the draw
pointer at a location 16 pixels down from the top of the window
and 16 pixels to the right of the left edge. The draw pointer is
invisible, so you'll need to remember where you left it each time
you execute a command. Yet, if you think about it, you'll realize
that you want it to be invisible. If it was visible you would be left
with a bunch of highlighted pixels cluttering up your windows.
To position OS-9's draw pointer, type:

display 1h 400 10 8 10 >/ul

95

Notice that we didn't type 16, 16 to tell OS-9 where we wanted
it to print our cursor. Rather, we typed @ 1@ @ 1@. Sixteen decimal
pixels translates into 10 hexadecimal pixels.

Notice also that, when we send location codes to OS-9 with
the Display tool, we must type both the high and low byte of a
16-bit long Hex value. We must do this because one byte can only
count up to 256 decimal pixels, or $FF Hex pixels.

Our window is 640 decimal pixels, or 280 Hex pixels, wide.
We must do something with that extra '2° so we send it out
separately. Therefore, if we wanted to place the draw pointer on
the same line at the far-right edge of the screen, we wouid need
to type:

display 1b 402800 10 >/wl

Now that we have placed the invisible draw pointer where we
want it, let's draw an 80-pixel wide box with its upper-left corner
on the draw pointer and its lower-right corner on the very bottom
of our 160-pixel deep window. If you moved your draw pointer
by testing the last command line, make sure you move it back to
a position 16 pixels from the top and 16 pixels from the left edge
of your window. Do you remember how to move it? Now let’s try
for a box, type:

display lb 48 @ 60 0 a®@ >-wl

- Itlooks nice, but why isn’tthe bottom of the box running along
the edge of our window? The box we just drew looks like it is about
80 pixels, or 10 character spaces, wide. It should be 60 Hex minus
10 Hex is 50 Hex — or 80 pixels. But a0 Hex is 160 decimal, the
bottom line of pixels in our window. What happened?

Do you think our box is shorter because the OS-9 scaling
feature is turned on? Let’s turn it off just to make sure. Then, we'll
draw that box again.

displayc >7wl ; ¥ erase it first
display lb 350 >/wl
display lb 480 60 @ a@ >-wl
Error #189! Wonder what that means. Let’s find out. Type:
error 189

“189 — lllegal Coordinates.” Maybe we're trying to draw the
box one line too low on the screen. A0 is most likely the first line
of pixels in our green command window. Let's try something else.

display 1b 48 @ 60 @ 3f >-/ul

Perfect! The bottom of the box runs along even with the
bottom of our drawing window. Just what we wanted. Now, leave

96

this box on the screen while we turn the scaling back on and draw
it again. When you draw a box, the draw pointer returns to its
starting position so we should be ready to roll. Type:

displaylb 351 >/wl
display 1b 48 @ 60 8 3f >-/uwl

That’s interesting, the size relationship between our new
scaled box and the full-size box is approximately the same as the
relationship between the size of our 160-pixel deep drawing
window and the entire 192-pixel deep screen. Amazing! Now we
know what OS-9’s automatic scaling function can do for us.

It's easier to draw large images accurately than it is to draw
small images — especially if you are using a mouse. If we draw
our images large — on a full 640- by 192-pixel window perhaps
— and then reduce them down to a small screen size, they will
look much better.

Now, clear your display window and we'll redraw the box and
try to fill it with a pattern. Type:

displayc >7uwl
display 1b 48 8 68 @ 3f >/ul

Remember, we must always redirect the output of ourDisplay
codes to our drawing window, wl. Just for fun, go through some
of the steps above and leave off the > wl. You'll see a very short
and stubby box appear on the green command window for an
instant. Then OS-9 will issue another prompt and the top half of
your new drawing will scroll into that large bit bucket in the sky.

There are several lessons here. First, you usually must display
your drawings in one window and type your display codes in
another. The scrolling caused by your characters from the
keyboard will tear up your drawings before you get to enjoy them.
And second, OS-9 gives you a way to redirect your standard
output path. This is what makes it possible for you to type in one
window and display your output in another. You have been doing
that very thing in this chapter by typing the > w1 at the end of
your command lines.

Redirection saved the day here. And it's very useful for a
number of other jobs. For example, you may need to print a hard
copy listing of your name and address file to take with you on a
business trip. To do that, if your printer device is named ~p, you
need to change the ~u in the command lines above to a #p. For
example:

list names >/p

Let's move on now and see if we can put a pattern in our new
box. Try this:

97

display lb2ecc 5 >/uwl
display 1b 4f >/uwl

Nothing happened! The fill display codes didn’t work. Did you
wonder what the manual meant when it said, “Fills the area where
the background is the same color as the draw pointer. Filling starts
at the current draw pointer position”?

Let’s see! Our draw pointer is sitting in the upper-left corner
of the box we just drew. The box is made up of blue pixels. The
draw pointer is invisible so it must be blue, too. If the fill
command followed the scenario above, it must have retraced the
outline of the box and set all the pixels blue again. Maybe if we
move the draw pointer inside the box, we will see the pattern we
selected. Type:

displaylb 410404 >/uwl
display lb2ecc 5 >/wl
display lb 4f >/ul

There are the slanted lines promised in the book. | wonder
if we can change their color. Try typing:

display 1b 323 >7wl
display lb 4f >7wl

Error 186! Looks like we are stuck with the pattern we first
drew in the box. Oh well! Let’s erase the box and start over.

displayec >/uwl
display 1b 400 100 10 >/wl
display 1b 48 @ 60 @ 3f >/wl

That’s a funny looking box. Let’s try to fill it anyway!

display 1b 41 0404 >/wl
display lb2ecc 5 >/wl
display 1lb 4f >/wl

Whoops! Better make sure you have a solid line around any
area you try to fill in the future. Remember, also, that you must
be very careful with the color number you select if you start
changing colors during a drawing session.

With a four-color screen set up the way we are running it now,
we only have white, blue, black and green available. White is
already the background color so we can’t use it. If we do, our
drawing commands will work, but we’ll never see the results. For
example, on our present screen if we set the foreground color to
white, OS-9 will draw a white box on a white background. We'll
never know it.

It's easy to forget about this. Moments ago, we forgot we were

working with a four-color screen and decided to change the
foreground color to red — or number four. After we issued the

98

command, we couldn’t see anything we drew on the screen. After
0S-9 went through white, blue, black and green — or colors zero,
one, two and three — it rotated back to white again with number
four. We lost everything. The moral of the story? Be very careful
when you select your foreground and background color combi-
nations. In a later chapter we’ll be showing you how to work with
0S-9 Level II's color palettes to change colors on the fly. For now,
we'll stick to the four colors we’re using on this screen.

We’ll look now at a procedure file that will draw each OS-9
graphics primitive and fill it with a different pattern. When you
finish it, you'll be able to see them all on your screen at one time.

THE LISTING: Shapes

¥

% Start with a clear screen

* and a black foreground color
*

display c

display 1b 32 2

¥

* Position the cursor for the first box
* and draw it.

%

display 1lb 48 @ 46 @ a

display 1b 48 @ 8c @ 3c

Y

* Now position the circle and draw it.
*

display 1b 40 1 4a @ 29
display 1b 58 @ 32

%

% Now another box

¥

display 1b 49 1 e g 14
display 1b 48 2 6¢ @ 28

¥

*An Ellipse is next

Y

display 1b 40 @ 68 g 5a
display 1b 51 @ 58 @ 12

¥

* Now another rectangular box
Y

display 1b 40 @ e8 @ 46
display 1b 48 1 a8 g 6@

%

* Another ellipse would be nice
¥

display 1b 49 2 la @ 5a
display 1b 51 @ 409 @ 12

%

% Another Rectangle

99

*
display 1b 40 g 10 0 8@

display 1b 48 @ c8 @ 96

¥

* Time for a circle again

e

display 1b 40 1 4a @ 80

display 1b 5@ @ 30

¥

* And finally a bar filled

% with a different foreground color

* First, we must change the color
e

display 1b 32 3

¥
% That should make it green

%

display 1b 49 1 e 0 80

display 1b 4a 2 60 ¢ 96

%

* Now we should return the foreground color
* to the way we found it.

%

display 1b 32 2

¥

* Now for the patterns

%

* We'll move back to the circle first

v

display 1b 4@ 1 4a @ 8c

%

* Select a dot pattern

%

display 1b 2e CC g1

E

* and use the 0S-9 Flood fill display

* commands to put the pattern in the circle
%

display 1b 4f

¥

* Back to the Rectangle in the lower left
* hand corner of the screen.

Ve

display 1b 49 @ 20 9 99
¥*

* Notice we can put the draw pointer

* anywhere inside the rectangle.

%

* Let's put a green pattern in this rectangle
%

display 1b 32 3

¥

100

* And we'll use vertical lines for the pattern.
%

display 1b 2e CC @2

display 1b 4f

B

* Now we'll set the color to blue before we
* move on to fill the two ellipses.

*

display 1b 32 1

*

% The one on the right first

%

display 1lb 40 2 3a @ 5a

%

* Let's go for a horizontal line pattern this time
L3

display 1b 2e CC @3

w*

* Do it!

%

display 1b 4f
*

* Now to the other ellipse
*

display 1b 49 @ 78 @ 5a
*

* Where we'll put a Cross Hatch Pattern
*

display 1b 2e CC @4
*

* Let's keep it blue and go for it
*

display 1b 4f

*

* Back to the rectangle in the center of the screen
%

display 1b 4@ 1 4a @ 5@
¥

* where we'll fill with black left slanted line

%

display 1b 32 2

display 1b 2e cc @5

display 1b 4f

*

* Now, to the rectangle in the upper right hand corner

* We'll use green right slanted lines here
%

display 1b 49 1 £@ @ 29
display 1b 2e CC g6
display 1b 32 3

display 1b 4f

*

* Now, some small blue dots in the circle in the top row.

101

%

display 1b 2e CC 7

display 1b 32 1

display 1b 40 1 4a @ 28

display 1b 4f

Je

* And finally, we could use some Large green dots in
* our first square box in the upper left hand corner
%

display 1b 4@ § 58 ¢ 28

display 1b 32 3

display 1b 2e CC 8

display 1b 4f

*

display 1b 2e @ @

¥

% Let's dress up our window with a simple blue border
Y

display 1b 32 1

display 1b 48 #§ 5 @ 5

display 1b 48 2 7b @ 9b

¥

* Always say goodbye!"

%

% Position the cursor first.

W%

display 2 29 33
%

* Then send the messages!'
%

display 20 54 68 61 74 27 73 2@ 41 4c 4c 2@ 46 6f 6c 6b 73 21 29

% If we had used the echo command we would have

* sent a carriage return to the window and ruined our
* nice artwork. So we just displayed words as

% hex characters. Tricky!

* We'll clean up and return to Black cursor

display 1b 32 2
%

% That's All Folks !

e

After you type in Procedure Shapes, move your cursor to the
0S-9 prompt in your four-line green command window, which is
just below the four color, 20-line drawing window you made with
the procedure file ReadyDraw. Now type:

display lb 350 >/wl
display lb 2e 006 00 >/wl
displayc >7wl

shapes >-/wl

102

With those four OS-9 command lines, you turned off the
automatic scaling in the window named ~wl and cleared that
window. You also “de-selected” the current pattern. Then you ran
your new procedure file and redirected its output to window ~ul.

Since you turned off the automatic scaling feature in your
display window, OS-9 printed the objects you defined exactly
where you told it to with the display codes in your procedure file.
If you want to adjust the position or size of an object, you can
do so by editing the proper line in the procedure file. You can
automate the display process from your command window, 7uw2,
by using a line like this:

displayc >7wl ; shapes >/wl

If you leave OS-9’s automatic scaling off, the procedure file
named Shapes will print its final message as part of the blue
border. if, however, you have the scaling turned on when you run
Shapes, the message will appear by itself on the bottom line of
your display window. Try it both ways!

Each time you come back to this window to try a new version
of the procedure file, you need only hold down the CTRL key and
press A. OS-9 will reprint the command line above and leave your
cursor sitting at the end of the line. As soon as you press ENTER,
it will rerun the procedure file.

Better yet, you could put the clear screen code, display c,
into your procedure file. Then you won't need to type it each time
you test your procedure. That’s the way we handled it. If you do
it this way, your command line will look like this:

shapes >/wl

Of course, you can still use the CTRL-A shortcut to keep from
typing this command line over and over while you're testing your
procedure. It may be a short line, but we bet you didn’t buy your
Color Computer to practice typing!

Since you ran the procedure file Startfpps and have your
editor program running continuously in another window, when
you want to make a quick change in the script of your procedure
file, you only need to press CLEAR until your cursor returns to the
window running your editor. Once there, you can make the
change, save the procedure file to disk, and then press CLEAR
again until your cursor returns to the four-line command window.
Once there, simply press CTRL-A followed by ENTER and you’ll see
the output of your new version of Shapes immediately.

After you get the output from Shapes looking the way you
want it to, type:

shapes >s

103

This command line runs your procedure file, but it sends the
output to a file named s instead of a window. Now type:

merge s >7/wl

The OS-9 Merge tool gives you an excellent way to display
drawing commands rapidly. When you send display codes to a
window this way, OS-9receives them as fast as it can display them.

For example, you could handcraft a procedure file that
creates a window and displays the StartUp screen you want to
see each time you start a particular application on your Color
Computer. After you perfect your drawing, you can merge the
output of that procedure file into a file named StartUpScreen.
Then if you put thisline in your Star tApps procedure file, you will
see your special screen each time you start that application.

merge StartUpScreen >/wx

You will need to make sure that you redirect the output of the
merge command above to the same window that you created in
your procedure file.

Now, iet’'s move on to a procedure file that draws a full-size
figure on your display screen. Then, we’ll scale it down, save it
in a buffer and display it at several different positions on the
screen.

USING THE LINE DRAWING COMMANDS

We've shown you how you can use most of the OS-9 primitive
graphics tools to draw common geometric objects almost
everywhere on the screen. Now, we'll show you how to draw an
object that isn’t one of the standard drawing shapes. We'll use the
“draw a line and move” primitive to get the job done. Another
procedure file shows you how to draw your own letter X and fill
it with a pattern made up of blue slashes.

THE LISTING: DrawX

k3

* First, clear the screen
¥

display c

k3

* and use a black foreground for the outline
display 1b 32 2

* Position the draw pointer at the start

W

display 1b 40 @ 29 g 30

k]

* Now draw the rest of the letter

104

k3

display 1b 46 @ 39 ¢ 29
display 1b 46 @ 5@ @ 49
display 1b 46 ¢ 89 @ 29
display 1b 46 ¢ 99 @ 30
display 1b 46 @ 69 ¢ 59
display 1b 46 @ 99 @ 8¢
display 1b 46 ¢ 89 ¢ 99
display 1b 46 @ 50 @ 60
display 1b 46 @ 39 @ 99
display 1b 46 @ 29 @ 80
display 1b 46 @ 40 @ 50
display 1b 46 @ 20 @ 30
display 1b 408 @ 24 ¢ 30

e

% Let's select a pattern of blue slanted lines
* for the center or our letter

%

* First, the pattern
%

display 1b 2e cc 5
%

* Now, the Color

*

display 1b 32 1

%

* Apply them with the flood fill command code
%

display 1b 4f

*

* We must always turn the patterns off
* after we're finished.

*

display 1b 2e¢ @ ¢

*

* And, put the color back the way we found it
%*

display 1b 32 2
*

* That's all it takes to draw and X
*

Store the procedure DrawX in your current data directory.
Then test it by typing:

drawx >/wl

If you like what you see and don’t want to make any mod-
ifications of your own, type:

drawx >dx
merge dx >7/wl

105

%

Now that we have defined the basic shape of our letter, we
need to save a copy of it in a GET-PUT buffer so we can draw it
anywhere on the screen. Use the procedure file Getx to do the
job for you.

THE LISTING: GetX

This procedure file changes the working
area on the screen to a much smaller area.

It then turns on 0S-9's scaling and uses the
Merge dx command to print a smaller version
of the "X" we made with the DrawX procedure file.

We then Get the Screen image of the small "X"
into buffer number 5@ hex, group number 1

After we have loaded the small "X" into a buffer
we change the working area of window /W1 back
to the full window.

We are then free to draw our small "X's" anywhere
we want on the screen.

We'll do that last task in a separate procedure
file named PutX.

display 1b 25 g @ 28 6 ;% Change Working Area code
display display c ;% clear screen

display 1b 35 1 ;% make sure scaling is turned on
merge dx ;% display "X" in small window

%

%

¥

Now get pixel image in grp 8¢, buffer 1

display 1b 2c 50 1 9 9 0 9 @ 88 g 88
display 1b 25 @ @ 5@ 14 ;% back to full sized window now
display c ;% clear that screen

ki

Y% That's all for GetX folks!

After you run GetX, you will have that small X you drew earlier
stored in a GET-PUT buffer in your Color Computer’s memory. The
group number of that buffer is 80 or 50 Hex. The buffer number
is 1. Now that the procedure file Getx has loaded it into memory,
you can display it any time. One of the easiest ways to use GetX
is in another procedure file. Maybe we should have named this
one “Tic Tac Toe.”

THE LISTING: PutX

% This procedure file will display the small "X"
* loaded into GET/PUT Group Number 8@, Buffer 1
* at several locations on your Color Computer's screen

106

% In hex that's Group number 5@, Buffer 1

* In fact it will display three copies of the
* small "X" on the screen in a manner similar
* to a successful tic tac toe game.

* We'll even add the grid. You can draw, scale, get
% and put the "O's" for practice.

display c

display 1b 49 @ fg ¢ 18

display 1b 44 @ £ @ 90

*

* One line down, so we'll move the draw pointer
* and do another!

%

display 1b 49 1 86 @ 18

display 1b 44 1 86 @ 9¢

L4

* Time to add the horizontal lines
*

display 1b 49 @ le @ 3c

display 1b 44 2 54 ¢ 3c

*

* One more!

*

display 1b 40 9 le @ 6e

display 1b 44 2 54 @ 6e

*

* Now we need three "X's" to win!
%

display 1b 2d 590 1 @ 64 @ B
*

* Here's comes the second!
*

display 1b 2d 5¢ 1 1 14 @ 3F
%*

* and the winning move!
*

display 1b 2d 58 1 1 a4 @ 6F
*

% Now let's frame our good work!
*

display 1b 40 ¢ 8 ¢ 8

display 1b 48 2 79 @ 98

*

If you've worked through the exampies in this chapter, you
should have a pretty good handle on the OS-9 Level Il high
resolution graphics primitives. Use our procedure files as models.
Make a few copies of the tables and charts in the last three

107

DOING THE SAME THING WITH RUNB

chapters and keep them handy while you work. We hope you'll
find them a big help.

Pay special attention to the details of scaling. If you are
preparing an original drawing, you need to know if it is being
scaled or not, so you can make sure the final drawing looks right.

Now that you understand the basics of the primitives that
supply the graphics power to OS-9 Level |i, we’ll show you the
easy way to use them.

BASIC09, which we introduced in the last chapter, is a high-
level, PASCAL-like language that comes with OS-9 Level Il. BASIC09
includes a special graphics module named gfx2. This module
gives you access to a number of English language-like commands
that you can use to draw with your Color Computer. To help you
compare the gfx2 commands to the OS-9 graphics primitives, we
rewrote most of the procedure files from the early part of this
chapter into BASIC09 code that uses gfx2. Shapes_BASICOS is first.

Inthis book, BASIC09 listings will have a four-digit Hex number
at the beginning of each line. Do not type these numbers when
entering a line. They are internally supplied by your computer and
only show up when you list a file.

THE LISTING: Shapes.Bas

PROCEDURE MyShapes

2099
9936
9937
@P3E
994C
9@4D
P@5F
9979
g97A
9996
PPAE
pgcs
9@DF
99EP
gPF8
9112
g12F
9149
g161
9172
918¢
g1a4
g162

(* Basic@9 emulation of an 0S-9 procedure file

DIM myW:BYTE
OPEN #myW,"/W1":WRITE

RUN gfx2(myW,"clear")
RUN gfx2(myW,"pattern",@,9)

RUN gfx2(myW,"box",7@,10,140,60)
RUN gfx2(myW,"color",3,8)

RUN gfx2(myW,"pattern",b204,8)
RUN gfx2(myW,"£fil1",72,12)

RUN gfx2(myW,"color",2,0)

RUN gfx2(myW,"pattern",@,d)

RUN gfx2(myW,"circle",b33¢,32,50)
RUN gfx2(myW, "pattern",b204,7)
RUN gfx2(myW,"color",1,@)

RUN gfx2(myW,"fill")

RUN gfx2(myW,"pattern",@,9)

RUN gfx2(myW,"color",2,9)

RUN gfx2(myW, "box",480,20,608,40)
RUN gfx2(myW,"pattern",b204,6)

108

g1DC RUN gfx2(myW,"color",3,0)

gLF4 RUN gfx2(myW,"£il1l", 690, 30)

g29c RUN gfx2(myW,"pattern",@,@)

9226 RUN gfx2(myW,"color",2,9)

@23E RUN gfx2(myW,"ellipse",104,90,88,18)
@25E RUN gfx2(myW,"pattern",b20@4,4)

9278 RUN gfx2(myW,"color",1,9)

9299 RUN gfx2(myW,"£il1")

@2A1 RUN gfx2(myW,"pattern",?,d)

§2BB RUN gfx2(myW,"color",2,0)

@2D3 RUN gfx2(myW,"box",232,70,424,96)
P2FQ RUN gfx2(myW,"pattern",6204,5)

#30A RUN gfx2(myW,"£il1",248,74)

g321 RUN gfx2(myW,"pattern",@,d)

@33B

@#33¢C RUN gfx2(myW,"ellipse",538,90,64,18)
@35D RUN gfx2(myW,"pattern",b204,3)

9377 RUN gfx2(myW,"color",1,@)

@38F RUN gfx2(myWw,"£i11")

@3A0 RUN gfx2(myW,"pattern",@,d)

@3BA RUN gfx2(myW,"color",2,0)

@#3D2

#3D3 RUN gfx2(myW,"box",16,128,200,150)
@3EF RUN gfx2(myW,"pattern",204,2)

2499 RUN gfx2(myW,"color",3,9)

g421 RUN gfx2(myW,"fi11",18,13%)

@438 RUN gfx2(myW,"color",2,9)

@450 RUN gfx2(myW,"pattern",@,d)

g46A

g46B RUN gfx2(myW,"circle",339,128,48)
9488 RUN gfx2(myW,"pattern",b2@4,1)

P4A2 RUN gfx2(myW,"£ill")

@4B3 RUN gfx2(myW,"pattern",@,d)

@#4CD

@4CE RUN gfx2(myW, "color",b3,0)

P4LEb RUN gfx2(myW,"bar",480,128,608,150)
@504

9505 RUN gfx2(myW,"color",1,9)

g51D RUN gfx2(myW,"box",4,4,632,157)
p53A RUN gfx2(myW, "curxy",4,19)

g552 PRINT #myW," That's All Folks ";

The BASIC09 version of Shapes requires a lot of typing.
However, it is much easier to understand than the OS-9 display
code procedure file. Run them both and compare the way they
put graphics objects on the screen.

Notice: Before you run these BASIC09 procedures, you should
run the OS-9 procedure file ReadyDraw. These BASIC09 programs
assume that the prep work done in ReadyDraw has been completed
before they are run. If you are really ambitious, you may want to
add the functions performed by ReadyDraw to these programs. If
you do, they will stand alone. Don’t forget to create the DX file
before running GetX.Bas.

109

THE LISTING: DrawX.Bas
PROCEDURE MyX

jefrry] (* We have already created window /Wl so we won't do
g@34 (* it again here. However, we must open a path to it.
gpeA

gg6B DIM myW:BYTE

9972 OPEN #myW,"/W1":WRITE

2989 RUN gfx2(myW,"clear")

9992 RUN gfx2(myW,"color",2,9,4)
@gAD RUN gfx2(myW,"setdptr",32,48)
ggcy RUN gfx2(myW,"line",b48,32)

J@DE RUN gfx2(myW,"line",80,64)

@gF5 RUN gfx2(myW,"1line",128,32)
g1g¢ RUN gfx2(myW,"line",144,48)
9123 RUN gfx2(myW,"line",96,8@)

g13A RUN gfx2(myW,"line",144,128)
@151 RUN gfx2(myW,"line",6128,144)
2168 RUN gfx2(myW,"line",8@,96)

@17F RUN gfx2(myW,"line",648,144)
@196 RUN gfx2(myW,"line",32,128)
@1AD RUN gfx2(myW,"line",64,80)

glc4 RUN gfx2(myW,"line",32,48)

@1DB

g1DcC (* Now select a pattern

@1F3

PLF4 RUN gfx2(myW,"pattern",b2@4,5)
@20E

g20F (* Change the color of the fill
@22E

g22F RUN gfx2(myW,"color",1,0)

9247

g248 (* And finally, do the fill
@263

g264 RUN gfx2(myW,"£ill",649,59)

@27B

g27¢C (* Put things back the way they were
p2a9

@2A1 RUN gfx2(myW,"pattern",@,d)
@2BB RUN gfx2(myW,"color",2,0)

#2D3 CLOSE #myW

@2D9

#2DA (* That's all folks

THE LISTING: GetX.Bas
PROCEDURE myGet

2009 (* Draw a small "X" on the screen
9921 (* then save it a GET/PUT buffer
gg41 (* so you can use it later

g95B

995C DIM myW:BYTE

9963 OPEN #myW,"/W1" :WRITE

110

#9871

9072 RUN gfx2(myW,"cwarea",@,0,40,6)
2991 RUN gfx2(myW,"clear")

A3 RUN gfx2(myW,"scalesw",6"ON")
20 g y
P9BC SHELL "merge dx >/wl"
gocD RUN gfx2(myW,"GET",80,1,9,9,136,136)
JPEF RUN gfx2(myW,"CWArea",@,%,8¢,28)
P10E RUN gfx2(myW,"clear")
g12g
9121 PRINT #myW,"We have now put the 'X' in a buffer.”
PL4E PRINT #myW,"Now, we'll display it three times."
9179

17A RUN gfx2(myW,"put",8¢,1,15¢,18)
g g y¥,"p

196 RUN gfx2(myW,"put",8@,1,276,63)

g YW, P

@g1B3 RUN gfx2(myW,"put”,80,1,420,1099)
g1Dg RUN gfx2(myW,"killbuff",8@,1)

After you have typed in these BASIC09 procedures and
debugged them, you can run them from the four-line green
command window <w2, which ReadyDraw created on the same
screen as your display window, 7wl. Working from the 053: shell
prompt in your command window, change the current data
directory to the directory where you have stored your BASIC09
source code files. If you have loaded BASIC09 into memory with
a prep file such as StartApps, you will see your handiwork in a
few seconds when you type:

chd #dd/BARSIC@S_DIRECTORY
basic@9 Shapes.Bas

Also remember: BASIC09, RunB, Gfx2, SysCall and InKey must
be stored in your current execution directory (usually ~d@-CMDS)
or in memory before you can type a command line like the one
above. When you take your two Radio Shack disks out of the
package, you'll find that the program files above are stored in a
CMDS directory on your Config disk. You'll want to copy them on
to your working system disk. It'll make life easier.

We learned the hard way that you cannot redefine a GET/PUT
buffer. In the above program, we originally had 10’s instead of 9's
in the GET statement. Since we had just run the procedure file for
Getx, our system had defined our buffer that way. When we ran
the above BASIC09 program, it crashed. Since we had called the
buffer “group 80, buffer 1”7 in both cases, it tried to redefine the
buffer and couldn’t. Another way to circumvent this would have
been to use a different group and/or buffer number.

If you want to run these programs before_you get around to

creating a working system disk with them in your cMDS directory,
you can load them into memory from your Config disk and then

111

run them. If you have two disk drives, you could put the Config
disk in Drive ~d1 and type:

load 7dl/cmds/basic@S
load 7dl7cmds/runb
load 7dl/cmds/Gfx2
load 7dl7cmds/SysCall
load 7dl/cmds/ InKey
basic®3 Shapes.Bas

If you operate this way, a procedure file with these command
lines in it would be a very handy tool.

One of the things you’ll notice when you type in long listings
is how nice it would be if you had some commands you could type
and run automatically without holding down the SHIFT key to type
quote marks and a dozen parameters.

Since the Gfx2 file has plenty of room before it fills its 8K
memory block and there is additional room available in the RunB
block, we’ll create some BASIC09 tools you can pack and keep
resident inimemory. They’ll be ready to answer your call in a split
second, both from within BASIC09 and from the OS-9 command
line. That’s a job for the next chapter.

112

CHAPTER 8

building friendly tools

In this chapter we’ll show you how to use BASIC09 and a few
0S-9 tools from the CMDS directory on your working system disk
to make life simpler while you're using your Color Computer 3.

By the time you finish this chapter, you will have created
scores of English language graphics and windowing commands
and loaded them into memory. You'll be able to use them from
the OS-9 command line as well as from within BASIC09 at a
moment’s notice.

You'll also learn how to set up the optional high resolution
graphics mouse and how to read it. Then, we’ll watch over your
shoulder as you create a simple drawing program that uses the
high resolution mouse and a short program that lets you use OS-
9's “alarm clock” function.

While you were working your way through our exercises in
Chapter 7, you most likely decided that it is much easier to tap
0S-9's graphics and windowing ability from within BASIC09 than
it is from the OS-9 command line. You're right!

113

ENGLISH LANGUAGE COMMANDS MAKE SENSE

in this chapter we’ll take you one step further as we help you
build a set of tools that will bring some of BASIC09’s power to the
0S-9 command line. We hope it will make your Color Computer
easier to use.

Let’s start by looking at several different methods we could
use to do the same job — clear a window on our Color Computer's
screen. We can do it from the OS-9 command line by typing:

displayc

We can do the same thing from within a BASIC09 program by
typing:

run gfx2(“clear”)

Display c doesn’t mean much to most people. And while the
verb clear is easy to understand in English, the phrase run gfx2
doesn’'t mean a whole heck of a ot to anyone. To complicate
matters, typing (“clear”) is especially clumsy. Wouldn’t it be nice
if we could just type clear or possibly something shorter like cls
to clear a window? You could accomplish this by typing in the
following program:

PROCEDURE cls
(*¥ This procedure clears a Color Computer Window %)

run gfx2(“clear”)
end

After you type in the procedure above — and as long as you
stay within BASIC09 — you can run it by typing:

runcls

BASIC09 is a nice language, but who wants to run it all the time?
Can we set you up so you can clear a window from the OS-9
command line by simply typing cl1s?

The first thing you must do to accomplish this goal is save
the source code of your procedure. Do this immediately after
typing it in with:

Save

If you typed in several additional procedures before you
decided to save cls, you will need to type:

save cls
Remember: You must always save a BASIC09 procedure before

you pack it. When you run the BASIC09 Paclk command, your source
code is gone forever — unless you have previously saved it to a

114

disk file. And don’t forget, you will need the source code if you
must change your procedure later.

After you have saved your source code with the command line
above, you can turn it into a packed I-code module (which you
can run from the OS-9 command line) by typing:

pack cls

When you type this command, BASIC09 stores an executable
i-code module named cls in your current execution directory.
Usually this is the directory ~de-/CMDS. After you have run this
command line, you will be able to clear your screen at any time

by typing:
cls

Since the command is now designed to work from the 0s9
prompt, in order to run it from within BASIC®9, you will need to

type:
$cls

When you type cls, OS-9 looks in its module directory for a
module with the name cls. If it finds a module by that name, it
links to it and runs it. If it does not find a module named cls,
OS-9 looks in your current execution directory. It should find it
there since you just used BASIC09’s Pack command to store it there.
When it finds the file, OS-9 loads it and links to the module it
contained — cls.

When it links to cls, OS-9 learns that the module is a BASIC09
i-code module. This tells it that it must also load RunB, or link to
it if it is already in memory. Finally, after RunB is in place, OS-9
executes RunB with cls as a parameter, and your desire for a clean
window will be fulfilled.

If OS-9 can’t find RunB, you will be greeted with an Error 216
message. To be safe, you might want to load it into memory. |If
you followed our StartuUp file, it will already be in memory.

OS-9 keeps all of the preceding actions transparent. You do
not need to know about them. You must only remember to type
cls. After following the above scenario sentence by sentence, you
probably concluded that you could clear your windows faster if
the module cls were available in memory all the time. You are
correct. However, if you loaded the module cl1s alone, you would
be wasting a lot of memory.

GAINING EFFICIENCY BY COMBINING MODULES

The module cls is only 56 bytes long. However, because of
the way the memory management hardware inside the Color
Computer 3 works, you will be using an entire 8K memory block
when you load cls. The answer is to merge a number of modules
into one file. At first glance you would think you could put up to
8K or 8,192 bytes into your file.

115

However, because a 512-byte long block is mapped into each
64K workspace used by a task, you will want to keep your files
no fonger than 7,680 bytes. If you do this, OS-9 will be able to
load your modules at the very top of memory in each 64K work-
space.

If you run the OS-9 Ident tool to determine the size of the
module gfx2, you'll notice something interesting. Try it! Type:

ident -x gfx2

That is interesting! The module gfx2 is only 2,250 bytes long.
There must be a lot of space left in the 8K memory block it is using!
Let's see — 7,680 minus 2,250 equals 5,430. That’s 5,430 bytes we
can use for our English language commands.

The original gfx2 module plus the packed versions of the
BASIC09 procedures listed here add up to only 6,586 bytes. You
could even add the medium resolution graphics package gfx, and
your file would still fit in an 8K memory block. It is only 501 bytes
long.

THE LISTING: English.Language.Tools

PROCEDURE beep

9909
9936
9937
9943
gR4s

(* This command will cause your Color Computer to Beep

RUN gfx2("bell")
END

PROCEDURE Blink

9909
9936
g96D
PP6E
pgic
997E

(* This command will cause characters typed after you
(* run it to blink. Works with text type windows only.

RUN gfx2("blnkon")
END

PROCEDURE NoBlink

9999
Po2F
PU5B
gg87
ggce
ggcl
pgDg
ggp2

(* Use this command to turn off blink function.

(* However, characters sent after you typed

(* Blink will continue to blink. Characters

(* typed later won't. Only works with text type windows.

RUN gfx2("bIlnkOff")
END

PROCEDURE bold

go09
g@2D
9959
9951
#9952
#9965
pR67

(* Makes characters typed appear in BOLD type
(* Works only in a graphics window.

RUN gfx2("boldsw","on")
END

116

ROCEDURE NoBold
(* Turns off the bold switch so characters typed appear

9999
9938
ggal
9963
9964
gp78
ge7A

(* normal

(¥* Only works in a graphics window

RUN gfx2("boldsw","off")
END

PROCEDURE BorderBlue

9999
9937
g938
9949
gP4B

(* This command will turn

RUN gfx2("border",l)
END

PROCEDURE BorderWhite

909
gg3s
9939
gasA
ggac

(* This command will turn

RUN gfx2("border”, @)
END

PROCEDURE BorderBlack

a999
gg38
9939
gosA
ggac

(* This command will turn

RUN gfx2("border",2)
END

PROCEDURE BorderRed

009
p936
9937
ppas
ggan

(* This command will turn

RUN gfx2("border",4)
END

PROCEDURE BorderGreen

9099
gp38
9939
gpasa
ggac

(* This command will turn

RUN gfx2("border",3)
END

PROCEDURE BorderYellow

poog
9939
pg3a
Pp4B
gg4D

(* This command will turn

RUN gfx2("border",5)
END

PROCEDURE BorderCyan

poge
9937
gp38
gg49
gg4B

(* This command will turn

RUN gfx2("border",7)
END

border

border

border

border

border

border

border

117

of your

of your

of your

of your

of your

of your

of your

screen

screen

to

blue

white

screen to black

sCcreen

screen

screen

screen

to

to

to

to

red

green

yellow

cyan

PROCEDURE

9909
pp26
gp27
gp3é
g936
PROCEDURE
2099
p92a
gg2B
9938
#93D
PROCEDURE
ge99
g92B
ppac
g93c
PP3E
PROCEDURE
po9e
gg2B
ggac
g93C
P93E
PROCEDURE
9909
9929
gg2A
gg3A
g93c
PROCEDURE
9999
gpac
gg2p
#93D
gP3F
PROCEDURE
2909
p@2A
9928
pP3E
ppLp
PROCEDURE
iy
gpac
gg2n
po4ag
gga2
PROCEDURE
p999
gp2B

cls
(* This command will

RUN gfx2("clear")

END
LettersBlue

(* This command will give
RUN gfx2("color",l)

END
LettersBlack

(* This command will give
RUN gfx2("coloxr",2)

END
LettersGreen

(* This command will give
RUN gfx2("coloxr",3)

END
LettersRed

(* This command will give
RUN gfx2("color",4)

END
LettersYellow

(* This command will give

RUN gfx2("color",5)
END

WindowRed
(* This command will give

RUN gfx2("color",@,4)
END

WindowBlack
(* This command will give

RUN gfx2("color",d,2)
END

WindowCyan
(* This command will give

118

you

you

you

you

you

you

you

you

clear your screen

Blue letters

Black letters

Green letters

Red letters

Yellow letters

a Red window

a Black window

a Cyan window

gg2c RUN gfx2("color",@,7)

@@3F END

9941

PROCEDURE WindowBlue

goog (* This command will give you a Blue window
9928

ggac RUN gfx2("color",¢,1)

@@3F END

g4l
PROCEDURE LettersWhite

o909 (* This command will give you White letters
9928

gg2c RUN gfx2("color",@)

gg3c END

g@3E

PROCEDURE WindowWhite

jejefelr) (* This command will give you a White window
g926

g92D RUN gfx2("coloxr",1,0)

9940 END

g942

PROCEDURE Cursor

gog9 (* This command turns on your cursor

9924

2925 RUN gfx2("curon")

gg32 END

9934

PROCEDURE NoCursor

go@9 (¥* This command turns your cursor OFF

9925

9926 RUN gfx2("curoff")

9934 END

gg36

PROCEDURE WorkInTop

2o (* This command sets your working area to the top half of
g@3A (* the screen

9947

2948 RUN gfx2("cwarea",@,?,80,12)

pg62 END

po64

PROCEDURE WorkInFullScreen

o929 (* This command gives you back the full screen after
2935 (% working

@a3F (* in the top or bottom half only

A

gg6l RUN gfx2("cwarea",@,#,80,24)

gg7B END

997D

PROCEDURE WorkInBottom

9990 (* This command sets your working area to the bottom half
P@3A (* of the screen

119

go4A
9@4B
99265
gge7

RUN gfx2("cwarea",$,12,80,12)
END

PROCEDURE KillWindow

popg
g925
9948
pp66
9967
9974
9976

(* This command will remove a window.
(* You must redirect its output to the
(* window you want to kill.

RUN gfx2("DWEnd")
END

PROCEDURE MakeTextWindow

gpp9
g92D
PP4LF
pas9
9983
pPAL
POAS
gaca
ggcc

(* This command will make an 8@ column window
(* out of an unused window device.

(* It will have blue letters on a white background.
(* The border will also be white.

RUN gfx2("DWSet",2,0,0,80,24,1,0,0)
END

PROCEDURE Make4ColorWindow

9909
g@36
9958
g959
9989
ggc2
P@CE
PPCF
9192
911D
g11E
9143
9145

(* This command will make an 8¢ column graphics window
(* out of an unused window device.

(* Four colors will be available in this window.
(* It sports a pixel resolution of 64@ horizontal by 192
(* vertical.

(* It will have blue letters on a white background.
(* The border will be blue.

RUN gfx2("DWSet",7,9,9,80,24,1,9,1)
END

PROCEDURE Makel6ColorWindow

2999
gg2p
GPLF
po59
9983
gPBC
gpcs
ppco

J9FB
9115

9116
g13B
g13D

(* This command will make an 4@ column window
(* out of an unused window device.

(* Sixteen colors will be available in this window.
(* It sports a pixel resolution of 32¢ horizontal by 192
(* vertical.

(* It will have blue letters on a cyan background.
(% The border will be red.

RUN gfx2("DWSet",8,0,8,40,24,1,7,4)
END

PROCEDURE LettersBig

9999

(* This command will switch you to the larger (8 x 8)

120

9936 (* character font

9947

gg48 RUN gfx2("font",b200¢,1)

g@s5A END

g95C
PROCEDURE circle

9990 (* This command draws a large circle in the middle of a
g938 (* window

g4l

gg42 RUN gfx2("circle",b320,96,49)

@g5A END

gg5¢
PROCEDURE NoPattern

2909 (* This command turns off all patterns
9926

@927 RUN gfx2("pattern”,@,@)

gg3c END

993E

PROCEDURE LettersSmall

gogg (* This command will switch to the smaller (6 x 8)
2034 (* character font

9945

g046 RUN gfx2("font",200@,2)

g@s8 END

g95A

PROCEDURE GraphicsFont

g003 (* This command selects the
$933

g@34 RUN gfx2("font", 204, 3)
gg4s6 END

gp4as8

PROCEDURE HourGlass

9999

9936

#9937 RUN gfx2("gcset",202,4)
ga4A END

ggac

PROCEDURE MakeOverlay40

graphics character font

an overlay window

It will save the

gog0 (* This command will create

gg3B (* top

g941 (* top half of your screen.

gg76 (* underneath

#9983 (* it.

pg89

Po8A RUN gfx2("owset",1,2,2,36,12,1,0)
ggAC END

PPAE

PROCEDURE MakeOverlay8¢

2000 (* This command will create
9938 (* top
gp41 (* top half of your screen.

an overlay window

It will save the

121

(* This command selects the Hour Glass Graphics Cursor

covering the

screen

covering the

screen

9976
9983
9989
pgsa
ggAcC
PPAE
PROCEDURE
9999
ga27
PP2A
PP2B
gg38
Po3A
PROCEDURE

9999

gg28
9928
ggac
gg3a
pg3c
PROCEDURE
ppggp
9939
pa3l
Pg4u5
go47
PROCEDURE
9999
ga31
2332
9947
Po49
PROCEDURE
9999
9935
p943
9944
$@52
9954
PROCEDURE
9999
9031
ga59
Pa5A
@P6F
po8sl
p@82
g@9D
PoB2
PPB4

(* underneath
(* it.

RUN gfx2(“owset",1,2,2,76,12,1,0)
END

ReverseOn
(* This command turns on reverse video
(*

RUN gfx2("revon")
END

reverseoff
(* This command turns off reverse video

(*

RUN gfx2("revoff")
END

ScaleOn
(* This command turns on 0S-9's scaling feature

RUN gfx2("scalesw","on")
END

ScaleOff
(* This command turns off 0S-9's scaling feature

RUN gfx2("scalesw","off")
END

Select
(* This command selects the window you redirect this
(* command to

RUN gfx2("select™)
END

FillWithHorizLines
(* This command selects a horizontal line pattern
(* It works only in a 16, type 8, window

RUN gfx2("pattern",b2@5,3)
RUN gfx2("fill1",1,1)

(* Now turn off the pattern

RUN gfx2("pattern",#,@)
END

122

PROCEDURE FillWithSlantedLines

2009 (* This command selects a line pattern slanted right
ga34 (* It works only in a 16, type 8, window
g95¢

g95D RUN gfx2("pattern",b2¢5,6)

9972 RUN gfx2("£fi11",1,1)

gp84

P985 (* Now turn off the pattern

POAP RUN gfx2("pattern",§,?)

Pg@B5 END

poB7
PROCEDURE FillWithVertLines

e]e]ele] (* This command selects a vertical line pattern
@32F (* It works only in a 16, type 8, window
#9517

ga58 RUN gfx2("pattern",b2@5,2)

@g6D RUN gfx2("fili",1,1)

997F

gosg (* Now turn off the pattern

Jg9B RUN gfx2("pattern",f@,¥)

goB@ END

g9B2

PROCEDURE FillWithDots

goog (* This command selects a large dot pattern
g92B (* It works only in a 16, type 8, window
9953

@054 RUN gfx2("pattern",b205,8)

2969 RUN gfx2("fill",1,1)

9978

ga7¢C (* Now turn off the pattern

2997 RUN gfx2("pattern",@,¥)

PPAC END

JIAE

PROCEDURE FillWithCrossHatch

gogg (* This command selects a crosshatch pattern
ggac (* It works only in a 16, type 8, window
9954

@955 RUN gfx2("pattern",285,4)

PPg6A RUN gfx2("£fil11",1,1)

g97¢

ge7D (* Now turn off the pattern

ga98 RUN gfx2("pattern”,@,§)

gPAD END

JIAF

. PROCEDURE KillOverlayWindow

9000 (* This command will remove an overlay window.
@@2E (* You must redirect its output to the

@954 (* window you want to kill.

go6F

9979 RUN gfx2("OWEnd")

123

g97D
PP7F

END

PROCEDURE Underline

po09
9936
ggs1
9952
gg61
9963

(* This command will cause characters typed after you
(* run it to be underlined.

RUN gfx2("undlnon")
END

PROCEDURE NoUnderline

p908
9937
PP6F
299D
g9B2
g9B3
g9c3
ggcs

(* Use this command to turn off the underline function.
(* However, characters sent after you typed "Underline"
(* will continue to be underlined. Characters

(* typed later won't.

RUN gfx2("undlnoff")
END

PROCEDURE Transparent

9009
9939
g961
pe79
g97A
g978
gP8F
g991

(* Makes characters typed appear transparent --
(* You will not see their background. Works only
(* in a graphics window.

RUN gfx2("TCharSw","on")
END

PROCEDURE NoTransparent

2909
gp31
g96A
9968
gp8g
9982

(* Turns off the transparent switch so characters
(* typed appear normal. Only works in a graphics window.

RUN gfx2("TCharSw","off")
END

PROCEDURE NoGraphicsCursor

p999
g@2D
PP2E
gg41
g943

(* This command turns off the Graphics Cursor

RUN gfx2("gcset",¥,#)
END

PROCEDURE Pointer

9909
9938
9939
gg4c
PP4E

(* This command selects the Pointer as a Graphics Cursor

RUN gfx2("gcset",202,1)
END

PROCEDURE Pencil

9909
9937
9938
pg4B

(* This command selects the Pencil as a Graphics Cursor

RUN gfx2("gcset",202,2)
END

124

gg4D
PROCEDURE CrossHair

p009 (* This command selects the small CrossHair as a Graphics
Pa3A (* Cursor

g943

g944 RUN gfx2("gcset",202,7)

@957 END

Using these commands is almost self-explanatory. For
example, to generate a beep tone in the speaker of your CM-8
monitor, you only need to type:

beep

To change the color of the window you are working in, you
could answer an OS-9 command line prompt like this:

windowcyan ; lettersblue ; borderred
We'll let you experiment with the rest!

These BASIC09 procedures define a set of English language
commands you may find easy to remember. If you would rather
have commands with shorter names, rename the procedures
when you type them using BASIC09’'s editor. Just remember, six
months from now it may be hard to remember that wc means
WindowCyan and not Word Count.

GETTING YOUR TOOLS IN GFX2

After you type these procedures, you'll want to pack them and
put them ali in your gfx2 file. When we started that process, our
current data directory was named ~DD~-B0O0K-B@9_SRC. We started
the production process by creating a special directory where we
could store all of our packed i-code modules. We didn’t want to

clutter up our ~de-CMDS directory with another 50 filenames. We /
did this by typing: \
makdir BIN
chx 7dd/book/b@39_src/hin
Immediately after we typed each procedure, we saved it by typing:
save

When we did this, BASIC09 saved the source code of our
procedure in a file with the same name as our procedure. It stored
them in our current data directory, ~DD-BOOK~/B@3.SRC. Imme-
diately after we ran the BASIC09 Save command, we typed:

pack

125

When we typed this command line, BASIC09 created an i-code
module with the same name as the procedure we had just typed.
It stored that module in a file it created in our current execution
directory, ~DD-/B0O0K~B@3_SRC/BIN.

We repeated the steps above for every procedure we created.
Then we merged all of the files in our current execution directory
into several temporary files. Like this:

merge beep blink noblink bold nobold borderblue >templ

merge borderwhite borderblack borderred bordergreen >temp2

merge borderyellow bordercyan cls lettersblue lettersblack >temp3

merge lettersgreen lettersred lettersyellow letterswhite >temp4

merge windowred windowblack windowcyan windowblue >tempS

merge windowwhite cursor nocursor workintop workinfullscreen >tempb

merge workinbottom killwindow maketextwindow makedcolorwindow >temp’/
merge makel6colorwindow lettersbig letterssmall circle nopattern >temp8
merge graphicsfont hourglass pointer pencil crosshair nographicscursor >tempS
merge makeoverlayd4® makeoverlayB® reverseon reverseoff >templ®

merge scaleon scaleoff select fillwithhorizlines fillwithvertlines >templl
merge fillwithdots fillwithcrosshatch killoverlaywindow underline >templZ2
merge nounderline transparent notransparent >templ3

You can type longer command lines and place more i-code
modules in each temporary file if you like. In fact, you may type
up to 198 characters on each line — or just over two and a half
lines before pressing ENTER.

Now, you can merge your temporary files into one large new
gfx2 file and store it in your normal execution directory ~d@-CMDS.
Here's one way to do it:

chx 7d®@/cmds
rename /d@/cmds/gfx2 gfx2_original
chd 7dd/book/b@S_src/bin

merge /dd/cmds/gfx2_original templ temp2 temp3 temp4
tempS temp6 temp? tempB8 temp9 templ® templl templ?
templ3 >/dd/cmds/gfx2

attr 7dd/cmds/gfx2 e pe -w -pw
load gfx2

If you also want SysCall, Inkey and Gfx in the new gfx2 file,
you could merge them into temp14 and include it in the above.

126

Notice: When you use the OS-9 Merge tool, the “execute”
attributes of your new file are not set. You must manually run the
0S-9Attr command to set the execute attributes as we did above.
If you do not do this, you will not be able to ioad or run the modules
stored in a file created with the Merge tool.

Once you have merged your new English language com-
mands into the gfx2 file, you will find they execute quickly. In fact,
you will probably want to load this new gfx2 file from your OS-
9 start-up procedure file. If you do this, your new commands will
be available at the first 0S3 prompt.

MAKING A MINI-DRAWING PROGRAM

Now that your OS-9 toolbox has grown, we'll move on to
creale a short drawing program you can use to have fun with your
Color Computer 3. We'll show you how to set up OS-9 to use the
optional high resolution mouse adapter and how to read that
mouse. Then, we’ll create three BASIC09 procedures that will let
you use the mouse to draw boxes, circles and lines.

You would be surprised how many things you can draw when
you combine these three basic shapes. After you have played with
our LetsDraw program, you'll probably want to use it as the
starting point for your own CoCoDraw. These short procedures are
only the beginning!

THE LISTING: LetsDrauw

PROCEDURE DrawObjects

jrlrindy) DIM button:BYTE

goa7 DIM horiz,vert:INTEGER

9912 DIM choice:STRING[1]

PO1E

GPLF (* First, clear the window

2939 RUN gfx2("clear")

g946

2047 (* And greet them with a boldfaced message
2971 RUN gfx2("boldsw","on")

2984 PRINT "Welcome to CoCo Draw!"

999D

@P9E (* Don't forget to turn bold printing off
gac7 RUN gfx2("boldsw", "off")

pgDB

g9DC (* and prepare 0S-9 for the High Resolution Mouse %)
g119 RUN SetUpMouse

gl14

g115 REPEAT

@117 (* We'll put the window in an

2134 (* overlay window

@145 RUN gfx2("owset",1,5,5,3¢,10,2,4)

127

9167
9168
918¢
9199
9194
91c5
g1D8
g1D9
91EB
9207
9209
g21A
§22E
g249
9242
9255
§256
9258
9259
9278
9285
9295
9296
§2B9
920D
92EB
§2EC
9398
239D
9317
9322
9323
933D
9357
9372
9392
9349
@3AD
03AE
g3Dg
93E6
§3F3
G491
9495
9499
9416
0424
9428
g4a2c
9439
9447

(* We should turn on the text cursor
RUN gfx2("curon")

(* and turn off the graphics cursor for now
RUN gfx2("gcset",d,0)

(* Here's our menu
PRINT "You may draw one object."

PRINT

PRINT " 1. A box"
PRINT " 2. A circle"
PRINT " 3. A line"
PRINT

PRINT " g. To Quit"
PRINT

(* Draw attention to our prompt
RUN gfx2("revon")
PRINT "Which one: ";

(* But after we get their attention
(* we want to return to normal print
RUN gfx2("revoff")

(* Now, wait for their response
REPEAT

RUN inkey(choice)
UNTIL choice<>""

(* When they answer, we'll

(* turn off the cursor and

(* close our window to give

(* them a full screen to draw in
RUN gfx2("curoff")

RUN gfx2("owend")

(* We must run the drawing program
(* they have selected.
IF choice="1" THEN
RUN gfx2("curoff")
RUN drawbox
ELSE
IF choice="2" THEN
RUN gfx2("curoff”)
RUN drawcircle
ELSE
IF choice="3" THEN
RUN gfx2("curoff")
RUN drawline

128

g44B
@44D
Q44T
9451
@45D
@45E
@45F

ENDIF
ENDIF
ENDIF
UNTIL choice="g"

PROCEDURE SetUpMouse

pogg
gg2F
9962
p99
ggD3
919D
g13F
9158
g15¢c
9198
g1CE
g1FA
g1FB
g22F
g23g
9255
9256
§25F
926A
9276
9277
9299
§29A
g245
9281
928D
92C9
9201
9202
92E1
P2E2
P2E4
g2ES
P§2E6

(* This procedure uses the program 'SysCall' to

(* do a set status call which sets up 0S-9 to treat

(* the Color Computer Mouse as a high resolution device

(% using the right joystick port. Because, this change is
(% system wide, another program using the mouse later will
(* also need to know how to use the optional high

(* resolution mouse adapter.

(* Since this set status call can also be used to change the
(* key repeat start constant and delay speed, it tells
(** 0S-9 to leave those parameters unchanged.

(* Notice that all system calls use a similar format
TYPE registers=cc,a,b,dp:BYTE; x,y,u:INTEGER

DIM regs:registers

DIM path,callcode:BYTE

DIM packet(32):BYTE

(* Now set up the mouse parameters

regs.a:=@
regs.b:=§94
regs.x:=$g1¢1
regs.y:=$FFFF
callcode:=$8E

RUN syscall(callcode,regs)

END

PROCEDURE drawbox

9999
gg2c
§p4B
pgac
9966
pp88
9989
go9c

(* Program to draw a box at location pointed
(* to by high resolution mouse.

(* Uses procedure GetMouse
(% Called by procedure DrawObjects

DIM horiz,vert,Horizl,vertl:INTEGER
DIM button:BYTE

129

@PA3

PoAL (** We'll use a pencil for our graphics cursor
PoD1 RUN gfx2("gcset",202,2)

goE4L

@PES (* We must back up and erase our original banner
@115 (* before printing a new one.

@132 RUN gfx2("curup")

@L3F RUN gfx2("erline™)

@14D PRINT "Point to first corner of box and click mouse."
@Ll7E

@17F (* Notice how we pass empty parameters to the
g1AC (* procedure getmouse. GetMouse will place a
21D9 (* value in each of the parameters listed before
P28A (* it exits.

@216 RUN getmouse(horiz,vert,button)

g22A Horizl:=horiz

9232 vertl:=vert

g23A

@238 (* We'll place one corner of the box where
2265 (* they first click the mouse.

@283 RUN gfx2("setdptr",Horizl,vertl)

#29C RUN gfx2("POINT",Horizl,vertl)

@2B3

@2B4 (* Then, we need to tell them what to do next.
@2E2 RUN gfx2("curup”)

@2EF RUN gfx2("erline"™)

P2FD PRINT "Point to location of opposite corner and click again."
P336

2337 (* We then run GetMouse again to let them
2369 (* point to the opposite corner of the box.
@388

g38C RUN getmouse(horiz,vert,button)

g3Ap

23A1 (* Use the second point to draw the box

@3Cc8 RUN gfx2("box",horiz,vert)

23DD

¢3DE (* Then, ring the bell and return.

2409 RUN gfx2("bell™)

B49C END

P4LOE

PLOF

g419

PROCEDURE drawcircle

pope (* Program to draw circle at location pointed
g@2D (* to by high resolution mouse.

gg4c

gg4D (* Uses procedure GetMouse

2067 (** Called by procedure DrawObjects

2989

PI8A (** Notice how drawcircle works in a manner
P0B4 (* identical to drawbox. the same is true of

130

P§gEL (* our last procedure, drawline.

191
ngZ DIM horiz,vert,HorizCen:INTEGER
g111 DIM button:BYTE
g118
g119 RUN gfx2("gcset",202,1)
g12c
g12D RUN gfx2("curup")
g13A RUN gfx2("erline”)
@148
g149 PRINT "Point to where you want a circle and click the mouse button."
P18E
g18F RUN getmouse(horiz,vert,button)
P1A3 HorizCen:=horiz
JLAB RUN gfx2("setdptr",horiz,vert)
g1c4 RUN gfx2("POINT" ,horiz,vert)
#1DB RUN gfx2("curup")
P1E8 RUN gfx2("erline")
P1F6 PRINT "Move horizontally the length of the radius and click again."
9235 RUN getmouse(horiz,vert,button)
9249 RUN gfx2("circle" ,ABS(HorizCen-horiz))
9260 RUN gfx2("bell")
g26C RUN gfx2("gcset",#,d)
g27F END
g281
p282
g283
PROCEDURE drawline
9908 (* Program to draw line at location pointed
g92B (* to by high resolution mouse.
gaaA
P#94B (% Uses procedure GetMouse
gg65 (* Called by procedure DrawObjects
99817
ga88 DIM horiz,vert,horizl,vertl:INTEGER
P98 DIM button:BYTE
ggA2
gPA3 RUN gfx2("gecset",202,1)
poB6
goB7 RUN gfx2("curup")
gaca RUN gfx2("erline")
g@n2 PRINT "Point to first end of line and click mouse."
g101
g192 RUN getmouse(horiz,vert,button)
gL16 horizl:=horiz
@L1E vertl:=vert
@126 RUN gfx2("setdptr",horizl,vertl)
P13F RUN gfx2("POINT" ,horizl,vertl)
gL56 RUN gfx2("curup")
g163 RUN gfx2("erline")
2171 PRINT "Now point to other end of line and click."

131

g19E
91B2
g1c8
g1DB
g1DD
91DE
91DF

RUN getmouse(horiz,vert,button)
RUN gfx2("line" ,horiz,vert)
RUN gfx2("gcset”,d,9)

END

PROCEDURE GetMouse

pppY
GP2E.
p@s2
g953
pp78
pp79

g982
gg8D
9999
PP9A
PAAS
@9PAC
P9AD
GIAF

gaBg -

9¢BB
ppcy
2905
goEQ
PPEL
9PE9
PPEA
gar9
PPFA
9127
g14A
P16D
p181
9195
P19F
g1Ag
gics
P1F2
§21E
§22F
9246
9247
P26F
p27A
927¢

(* Reads the present location of the mouse and
(* returns the status of the button.

TYPE registers=cc,a,b,dp:BYTE; x,y,u:INTEGER

DIM regs:registers

DIM path,callcode:BYTE
DIM packet(32):BYTE

PARAM horiz,vert:INTEGER
PARAM button:BYTE

REPEAT

regs.a:=@¢
regs.b:=889
regs .x:=ADDR(packet)
regs.y:=1

callcode:=$8D
RUN syscall(callcode,regs)

(** We get our location and the the status of
(* the mouse button from the packet

(* returned by the get status call.
horiz:=packet(25)*256+packet(26)
vert:=packet (27)%256+packet(28)
button:=packet(9)

(* We use then print the graphics cursor

(* at the location returned. The graphics
(* cursor tells them where they are pointing
(* on the screen.

RUN gfx2("putgc",horiz,vert)

(* When they click the button, we return
UNTIL button<g
END

These BASIC09 procedures are designed to run in a four-color,

640-by-192 pixel window. Before you run them, you must merge
the information in the files #dd-/sys/stdptrs and -dd/sys~

132

stdpats_4 into a window. You can do this by running the
procedure file Readybraw, which we created in Chapter 7.

You must also merge the information contained in the ~dd~
sys/stdfonts file into a window before you run these procedures.
We did that in our sample start-up file in the last chapter. Finally,
InKey and Syscall, which are supplied with OS-9 Level Il of the
cMDs directory of the BASIC09 disk, need to be in your current
execution directory or in memory.

As you experiment with our LetsDraw program, think about
how you would like your Color Gomputer 3 to respond to the
mouse while you're drawing. Then, modify it to make it run your
way. For example, by changing the control loops in the procedure
GetMouse and the procedures DrawBox, DrawCircle and DrawLine,
you can write a version of LetsDraw that will let you drag the mouse
from one corner of the box to the opposite — or from one end
of a line to the opposite. Enjoy!

SETTING A COCO ALARM!

Analarm clock on your Color Computer could be quite handy.
Who wants to forget and leave their dinner in the microwave? This
alarm clock, written by Brian Lantz, will beep at you several times
when it goes off. Notice the way he uses the program SysCall to
exercise the OS-9 FsAlarm system call. The format is identical to
the one we showed you in the GetMouse procedure. Only the data
in the 6809 registers has been changed to protect the innocent
— or make it work!

THE LISTING: Alarm
PROCEDURE Alarm

9909 DIM choice:STRING[1]

gagc DIM pass:INTEGER

9913 TYPE registers=CC,A,B,DP:BYTE; X,Y,U:INTEGER

g938 DIM regs:registers

2041 DIM callcode:BYTE

2948 DIM packet(6):BYTE

9954 DIM junk:STRING

gp5B

g95C RUN GFX2("OWSET",1,5,4,3¢,10,2,4)

PP7E

g07F callcode:=$1E

pgo87 regs.X:=ADDR(packet)

2095

9996 FOR pass=@ TO 1 STEP @

JUAB PRINT CHR$(12);

g9B1 PRINT " Alarm Update Program"

PPCE PRINT " (c) 1987 Brian A. Lantz"

PPEC PRINT

PPEE PRINT " Time:"; RIGHTS(DATES$,8); " Date:"; LEFT$(DATES,8
)

g19cC PRINT

133

P10E PRINT " @ - End Alarm Program"

129 PRINT " 1 - Set the Alarm"

@149 PRINT " 2 - Turn off the Alarm"

g15c PRINT " 3 - Display the Alarm"

@177 PRINT " "

9182

@183 RUN GFX2("BELL")

P18F RUN GFX2("REVON")

g19c PRINT "Your Choice ";

@1AD RUN GFX2("REVOFF")

P1BB

@1BC INPUT " ",choice

gics

g1ce IF choice="g@" THEN RUN GFX2("OWEND")
@1DF RUN GFX2("CURUP")

P1EC RUN GFX2("ERLINE")

P1FA RUN GFX2("CURUP")

9207 RUN GFX2("ERLINE")

g215 END

9217 ENDIF

9219

g21A IF choice="1" THEN PRINT CHRS$(12);

g22¢ packet (2) :=VAL(MIDS$(DATES,4,2))

g23¢C packet (1) :=VAL(LEFTS$(DATES,2))

P24A packet(3) :=VAL(MIDS(DATES$,7,2))

P25A

@258 INPUT "Set Alarm for other day ? ",choice
g27D IF choice="y" THEN GOTO 4

$28D ENDIF

g28F

2290 IF choice="Y" THEN GOTO 4

@249 ENDIF

P2A2

g2A3 GOTO 5

P2A7

P2A8 4 INPUT "Enter Alarm Month--> " packet(2)
g2CB INPUT "Enter Alarm Day--> ",packet(3)
@2E9 INPUT "Enter Alarm Year--> ",packet(l)
@308

@309 5 INPUT "Enter Alarm Hour--> ",packet(4)
@32B INPUT "Enter Alarm Minute--> " ,packet(5)
@34C

@34D regs.A:=f

@358 regs.B:=1

P363

g364 RUN SysCall(callcode,regs)

@373 PRINT

@375 PRINT "Alarm is Set!!"

@387 GOSUB 1009

?38B GOTO 109

134

§38F ENDIF

9391

g392 IF choice="2" THEN regs.A:={

P#3A9 regs.B:=

@3B4

@#3B5 RUN SysCall(callcode,regs)

@g3c4 PRINT CHRS$(12); "Alarm is now off!"
@#3DD GOSUB 1909

@3E1 GOTO 1¢9

g3E5 ENDIF

P3E7

@3E8 IF choice="3" THEN regs.A:=0

@3FF regs.B:=2

Q40A

@498 RUN SysCall(callcode,regs)

P4alA PRINT CHR$(12); "The Alarm is now set at:"
g43A PRINT

@g43C

g43D IF packet(2)=1 THEN PRINT "January";
@456 ENDIF

g458 IF packet(2)=2 THEN PRINT "February";
@472 ENDIF

gar4 IF packet(2)=3 THEN PRINT "March";
@488 ENDIF

948D IF packet(2)=4 THEN PRINT "April";
gaa4 ENDIF

g4Ab IF packet(2)=5 THEN PRINT "May";

@4BB ENDIF

@4BD IF packet(2)=6 THEN PRINT "June";

g4D3 ENDIF

@4D>5 IF packet(2)=7 THEN PRINT "July";

@4EB ENDIF

@4ED IF packet(2)=8 THEN PRINT "August";
§595 ENDIF

@597 IF packet(2)=9 THEN PRINT "September";
@§522 ENDIF

#524 IF packet(2)=1¢ THEN PRINT "October";
@#53D ENDIF

@53F IF packet(2)=11 THEN PRINT "November";
@559 ENDIF

@#55B IF packet(2)=12 THEN PRINT "December";
@575 ENDIF

@577

§578 PRINT " "; packet(3); ", 19"; packet(l)
#9599 PRINT "at "; packet(4); ":";

@542

@5A3 IF packet(5)<1¢g THEN PRINT "@g";

@5B6 ENDIF

@588

@#5B9 PRINT packet(5); ":gg"

135

@5C6 PRINT

#5C8 PRINT "Alarm is now o";
@5DB

g5DC IF regs.B=1 THEN PRINT "n"
@5EF ELSE

@5F3 PRINT "ff"

@5F9 ENDIF

@5FB

@5FC GOSUB 1g@0

2609 GOTO 1@¢

g6g4 ENDIF

2606

g6g7 PRINT CHRS$(12)

gegc PRINT "Invalid Selection!!"
9623 GOSUB 100g

g627 1¢gg NEXT pass

g635

g636 1P@@ PRINT

g63B RUN GFX2("REVON")

2648 PRINT "Press <ENTER> to Continue";
P666 RUN GFX2("REVOFF")

g674 INPUT " ", junk

g67D RETURN

Notice the similarity between the code Lantz used to display
his menu and the code we used in the procedure Drawlbjects
earlier. There are often many ways to do the same job on a
computer. Also, compare the standard BASIC structure Lantz used
in the decision tree following his menu to the standard BASIC09
structure we used in DrawDbjects. He chose to use the standard
BASIC GOTO command to handle program flow. We opted for
several control structures unique to BASIC09: REPEAT-UNTIL and
WHILE-DO.

The more you use BASIC09 to solve your computing problems,
the more you'll like it. We'll have a lot more BASIC09 programs you
can use as examples in later chapters. For now, we must return
to the OS-9 command line where we can show you a few more
tricks and review basic OS-9 operation.

136

CHAPTER 9

of file trees and other
things 0s-9

(2]
Y/
é!q\) 05
Q

S =k

NS -

If you've been faithful and stuck with us through the first eight
chapters, you have received a practical introduction to most of
the OS-9 tools availabie with Color Computer OS-9 Level II. If
you've typed in and run the many procedure files and BASIC09
procedures, you are nearing the top of the learning curve. Now,
the age-old saying takes charge — practice will make perfect. In
this chapter, we’ll pick up a few stragglers, pass out more
shortcuts and tips, and present a philosophical overview of
0S-9.

One of these days you may purchase a hard disk for your
Color Computer. When you do, your approach to computing will
change radically. Your enjoyment level will soar, too.

You will, however, eventually need to get organized (hard

drive or not). If you don’t, you’'ll find yourself lost in a sea of
directories and subdirectories.

137

GETTING ORGANIZED

Many people have asked us the questions, “How should | set
up my disk directories? Is it best to use a tall, skinny directory
structure or should | spread my directories out in a horizontal
fashion?”

Organizing a disk is a very personal matter, but perhaps we
can help with an overview of the possibilities available to OS-9
users. As we begin, remember that it was a tall, skinny directory
structure you were forced to use if your first operating system was
RS-DOS, CP/M or even one of the earlier versions of MS-DOS.
Remember the long lists you had to search when you needed to
find a stray file? Bet you thought those searches would take
forever! Let's move forward now and show you how you can use
0S-9's hierarchical file system to get organized.

The most basic element in the OS-9 filing system is the
individual file. Files usually contain data you need. OS-9 files can
also contain directories that tell the system how to find other
information and the programs you need to manipulate your
information. As you begin to learn about the OS-9 filing system,
think of each mounted disk as a large filing cabinet. Inside that
filing cabinet you'll find a number of individual directories. These
directories perform the same duty as file drawers in a real filing
cabinet.

Other OS-9 directories stored within the first-level directories
are called subdirectories. They are similar to the file folders you
place in file drawers. The individual OS-9 files that contain your
data can be compared to the individual pieces of paper you store
in the file folders in the real drawers of that filing cabinet in your
den.

The top level of the OS-9 filing system on any particular disk
is the root directory of that disk. The directories stored in the root
directory usually give you access to applications programs and
other system data.

For example, the standard OS-9 Level |l system disk that you
purchase from Tandy contains five files and two individual
directories. Two of the files, 059Boot and Startup, are used when
you boot your Color Computer. Three other files contain OS-9
procedure files that you can run to create several different
windows. The two directories hold programs and other informa-
tion about your computer.

The CMDS directory contains the OS-9 tools you have been
using throughout this book. The SvS directory contains informa-
tion that OS-9 uses occasionally. For example, in one of the files
you'll find a list of English language error messages. You can ask
to see one of them when you receive a numerical error message
you don’t understand. Another file holds help messages that show
you the syntax for each OS-9 tool. Additional files in the SvS

138

directory contain data that defines the standard fonts, graphics
cursors and background patterns available with OS-9 Level |l.

On multiuser OS-9 based computers, the system manager
often sets up a directory for each user. These “user” directories
are almost always placed in the root directory of the disk. It is up
to the individual user to organize the data in his or her own
directory. Since you are the “user,” the system manager’'s move
places the ball squarely in your court. Let’s look at one way to
play the game.

We’'ll start by assuming that you don’t have a hard disk. You
will still want to set up directories on your floppy disks to match
the many jobs you need to do. For example, if you supervise a
large staff, do the billing, keep track of an inventory and oversee
the sales team, you will want to set up at least four directories in
the root directory of your personal disk. The first few levels of your
filing system might look like this:

FEBRUARY

L

MARCH

IINVENTORY

PERSONNEL
AN
SALES

Joe Art Jim

In the directory named BILLING, you could create two
subdirectories, or folders, Sent and Paid.

In INVENTORY you might need to set up folders for Completed
_Widgets and Spare_Parts.

In the PERSONNEL directory you will need at least two folders,
one for Evaluations and another for Payroll.

And finally, in the SALES folder you will need to create 12

folders or subdirectories, one for each month. Each folder will
hold individual files that contain reports from each salesperson

139

s

for the month plus any charts or graphics you need to make a clear
and concise report to your boss.

If you are the only user and are setting up your filing system
on your own floppy disk, the structure of your disk will be similar
to that in the illustration above.

If you are working in an office with two other managers and
using a hard disk for storage, the system manager will probably
create three directories — one for each of you — in the root
directory of the hard disk. If this is the case, you will need to copy
the top directory on your floppy disk and its contents into your
user directory on the hard disk. For example, if your name is Fred
and one of the three user directories set up by the system manager

s named FRED, then the pathlist to your BILL ING folder will be:

/h@/FRED/BILLING
The complete pathlist to Jim’s sales report for January will be:
/h@/FRED/SALES/JanuarysJim

You will find that it is easy to find a particular file after you
have set up a logical filing system similar to the one above. For
example, if you need to check out Sam’s last personnel evaluation,
you need to look in a file with a pathlist like this:

/d@-/FRED/PERSONNEL“Evaluations/February/Sam

Isn’t it easy to find a file when it is stored in a logical place?
Typing a long pathlist like this could get old very fast, but since
you probably do all of your personnel reports at one time, you
can take advantage of another handy OS-9 feature and set your
current data directory to the current month’s evaluations. You can
do that with a command line like this:

chd ~/d@/FRED-/PERSONNELEvaluations-February
Then, all you will need to type is:
edit Sam

The first command line above sets the current data directory
to /D@®/FRED/PERSONNEL/Evaluations/February. You'll find that
0S-9's hierarchical directory structure lets you organize your data
directories the same way you have organized your business.
That's good because you know your business better than anyone
else.

After you organize your data directories in a structure parallel
to your business, you will be able to find your files quickly. Once
you have organized your disk, OS-9's chd command will make it
easy for you to change your current data directory to the particular

140

directory that contains the files needed to accomplish the day’s
work.

0S-9 HELPS ORGANIZE PROGRAMS, TOO

08S-9 files can also contain programs, and its designers
moved one up on UNIX when they added a second working
directory to the file system. This second working directory is
called the current execution directory. It holds files that contain
6809 object code or “intermediate” code that runs with the many
0S-9 programming languages you can use on your Color
Computer.

WHY CURRENT WORKING DIRECTORIES ARE IMPORTANT

When you boot Color Computer OS-9 Level Il on a floppy
disk-based system, a program named cc3go executes automat-
ically. It sets up your current directories for you. After cc3go runs,
your current execution directory will be ~do-CMDS and your
current data directory will be 7da.

If you own a Tandy hard disk and have installed its device
descriptor, #he, and device driver, cc3hdisk, in your 0S9Boot file,
cc3go automatically sets your current execution directory to ~he~
CMDS and your current data directory to #he each time you start
up your Color Computer.

These “current” directories apply only to the disk physically
mounted in drive ~d@ when you boot OS-9. If you remove that disk
and insert another, OS-9’s records will no longer be “current.” You
will need to use the OS-9 chd tool to change your current data
directory to the root directory of the new disk. Likewise, you will
need to use the chx tool to change the current execution directory
to the CMDS directory on the new disk.

If you do not use chd and chx to update OS-9's records, it will
get lost because it will continue to look for your directories on
the new disk at the same physical location it found them on the
old disk. Most of the time it will not find them in the same location,
and it will load something totally inappropriate into memory.
Strange things will happen and you'll wind up reading an obscure
error message.

HOW 0OS-9 FINDS YOUR PROGRAMS

When you decide to run a program, Dir for example, OS-9
looks for Dir and runs it. However, before OS-9 looks on your disk
drives, it checks to find out if the program you want to run is
already in memory. To do this it looks for the name you typed on
the command line in its module directory. If OS-9 finds Dir in its
module directory, it links to it and runs it immediately. No disk
access will be needed.

141

But what if Dir is not in memory? In this case, OS-9 looks
in the current execution directory and tries to find a file named
Dir. If it finds a file with this name in this directory, it assumes
it is executable code, loads it into memory and runs it.

And finally, if OS-9 doesn’t find Dir in the current execution
directory, it makes one more try — this time it looks in the current
data directory. But, if OS-9 finds a file named Dir in the current
data directory, it doesn’t treat it like a program. It treats it like a
data file. More specifically, it assumes this data file contains an
0S-9 procedure file and uses it accordingly.

An OS-9 procedure file is similar to a UNIX script file — it
contains a list of OS-9 commands that are read and executed by
the shell. Each time OS-9 reads a command line from a procedure
file, it executes it, just as if you had typed it. In fact, OS-9 reads
and executes command lines from the procedure file until it
receives an end-of-file signal.

BASIC09 I-CODE IS EXECUTED AUTOMATICALLY

When it runs into “intermediate” code (i-code) from an
0S-9 language like BASIC09, the OS-9 shell runs the language’s
run-time package automatically. For example, packed BASIC09
programs are executed by a run-time interpreter named RunB.

When you type the name of a file stored in your current
execution directory that contains packed BASIC09 code, OS-9
loads this i-code into memory just as if it were 6809 object code.
However, before OS-9 runs the code in any module, it checks the
information in the module header to find out what type of code
is in the module.

When the shell finds out that you have loaded a packed
BASIC09 i-code module, it knows that it needs RunB to run your
program. So, the shell automatically loads RunB and executes it
with the name of your module as a parameter. All of this work is
transparentto you, and all you will see on your screen is the output
of your BASIC09 program.

SUBDIRECTORIES HELP YOU ORGANIZE YOUR TOOLS

IS
When you first purchase OS-9 Level |l for the Color Computer
3, you'll find there are enough tools stored in the /d@-/CMDS
directory on the OS-9 System Master Disk to fill several screen
pages with filenames. After you add a few dozen of your own
/\\/X favorite applications programs and third-party tools, it will

become almost impossible to find a file when you look through
a directory listing on the screen. The problem is further compli-
cated by the fact that the Dir utility command in the 6809 version
of OS-9 does not alphabetize the directory listing for you.

&

P

V

142

If you move up to a hard disk and buy or write hundreds of
new programs, you will need to organize a set of CMDS directories
on your hard disk using a method similar to the one you used to
organize your data directories. For example, if you own more than
one set of advanced utility programs, you’ll find that many of the
vendors give their programs the same name. The standard UNIX
utilities, 1s and mv, are perfect examples. Almost every third-party
utility package contains them.

The names aren’t the only problem. Even though these
utilities have the same name, most require a different syntax on
the command line. Also, OS-9 won't let you store more than one
program with the same filename in the same directory. Besides,
it was six months ago when you moved that utility to your CMDS
directory — which version did you load?

These problems inspired us to get our utility programs
organized. We did this by creating subdirectories in our current
execution directory, ~h@/CMDS. For typing ease we used two- or
three-letter names for the directories we created to store the
various programs and utilities from the various third-party
vendors. Here is a look at the subdirectories in our CMDS directory.

/h@-CMDS
cw dpj fhl mw rs sg

Computerware’s utilities are stored in the directory cw; D.P.
Johnson’s hackers kits live in dpj; OPak, Xlist and other products
from Frank Hogg Laboratory are stored in fh1; Microware’s toolkit
is saved in mw; Tandy products live in rs and, finally, Steve
Goldberg’s Utilipak Too tools are run from a subdirectory named
sg.

Using the standard OS-9 Level Il shell, we type the pathlist
to a tool in one of these directories when we need to run it. That’s
why we used short directory names. For example, if we want to
run Steve Goldberg’s version of 1s, we merely type:

sg/ls

ORGANIZE YOUR TOOLS BY SUBJECT

Ask 100 people how they organize their hard disk and you'll
most likely wind up with 99 different answers. But there are some
basics you should consider. To get in the mood, study these
approaches.

/hB-LANGUAGES/BASIC®3/SOURCE~ INVENTORY/PROGRAMS
/h@-INVENTORY/PROGRAMS~SOURCE/BASICOS

Here’s the issue. What is more important — the job or the
program that wrote the program that does the job? The first

143

USING MODPATCH TO SET DISK DRIVE STEP RATE

Qo

example above emphasizes the computer, instead of the job. The
latter takes the opposite approach.

For most of us, the fact that a fiie is related to inventory is
more important than the fact that it was created by BASIC09.
Another way of saying it is that some nouns are more important
than their adjectives.

And what happens when someone else sits down at your
Color Computer keyboard? Will they be able to find things quickly
if everything is stored by language rather than by subject?
Wouldn'’t they find it a real drag to look through a half-dozen
different language subdirectories to find one inventory program?

It's time for you to meet Modpatch, another OS-9 Level Il tool.
Modpatch will come in handy when you need to patch a module
in memory. For example, if you own disk drives that step at a rate
faster than 30 milliseconds, you will want to patch the device
descriptors.

You can create a new 059Bcot file that contains the double-
sided device descriptor you need to use your double-sided drives
with the OS-9 Configtool. Then, you can use Modpatch to change
the stepping rate in the new device descriptors.

ModPatch reads a file containing the patches you want to make
to a module in memory. Here’s the patch file you need to change
your disk drive’s stepping rate to six milliseconds. Type it into a
file named Patch using the OS-9 Build tool.

L do

C 14 00 @3
Y

L dl

C 14 20 @3
\Y

This script file lets you patch the device descriptors that work
with both #de and ~d1 in one Maodpatch run. Here’s how it works.

In the first line, the script tells Modpatch to link to the device
descriptor module named d@. In the second line, it changes the
byte at an offset of 14 Hex bytes from the beginning of the file
from 00 to 03. This changes the step rate from 30 milliseconds
to six milliseconds. The official OS-9 speak name of that byte in
a device descriptor is 17.5TP.

The third line in the script tells Modpatch to verify the module

do. It updates the CRC of that module so that it may be loaded
into memory and run again. Remember: If you attempt to load a

144

module with a bad CRC, OS-9 will refuse to acceptit. In the fourth
line the process starts over and makes the same changes to the
device descriptor module named d1.

To make the patch, you must have created the file named
Patch in your current data directory. After you have done this,

type:
ModPatch patch

While we're speaking of patches, if you have any device
descriptors you want to upgrade to OS-9 Level Il, you need to
change the byte at an offset of 14 decimal from FF to 07. To do
this, use the OS-9 Build tool to create a ModPatch patch file like
this.

L HO
COE FF @7
v

After you have created this patch file, you must run it with
Modpatch like you did with the step rate change above.

USING MODPATCH TO SET REPEAT KEY SPEED

if your keyboard seems inclined to echo an extra lowercase
letter every time you hold down the SHIFT key to start a new
sentence or capitalize a proper noun, you might want to try this
patch file.

1 cc3io

c /e le 3e
c 86 03 96
v

After you create this patch file, run it with Modpatch. It almost
doubles the delay time OS-9 uses before it starts repeating a key
you hold down. It also increases the delay between repeated
characters if you continue to hold the key down.

Once you have used the OS-9 Modpatch tool to install these
changes, you will want to evaluate them. If you like the new step
rate — or the increased key repeat delay — you can make them
permanent by running the OS-9 Cobkler tool. Type:

cobbler 7/d@

When you run Cobbler, it creates a new OS-9 boot file on the
disk mounted in drive #de. That new 059Boot file contains the
same set of modules it did when you last started your Color
Computer. However, the new 059Boct file contains the patched
versions of d@, d1 and cc310 — or any other module you may have

145

THE MAGIC OF /DD

changed using the Modpatch tool. The next time you start your
Color Computer, those changes will be in effect.

Caution: If you plan on installing these changes in your
0S9Boot file, make sure that you do not forget the v, for verify,
step in your Modpatch script file.

One great new feature of OS-9 Level Il is the device descriptor
~dd. The “dd’” stands for default drive. Microware and Tandy hope
that all software developers will use this device descriptor when
they must “hard code” a pathlist in an OS-9 program.

When you first boot OS-9 Level 11, the device descriptor ~dd
is merely a copy of the standard ~d@ device descriptor installed
in your 0S3Boot file.

Why should you care? Follow this scenario. Immediately after
booting our new OS-9 Level Il system, we created a new boot file
that contained ~d@ and ~d1 device descriptors set at 40 tracks,
double-sided with a step rate of 6 ms. We left ~dd in the boot file.
In fact, we didn’t even notice that it was present.

Later, we encountered a new error number while creating
some new windows. We immediately typed error 132 and waited
for OS-9 to tell us what we had done wrong. No such luck!

“Couldn’'t open path to /dd- sys-errmsg,” the message said.
Why?

The disk that now contained our system and Errmsg was a
double-sided disk. The default drive, ~dd, was still set to look like
the original ~d@, a single-sided, 35-track drive. When the error
utility command tried to read the Errmsq file from the Svs directory
on our double-sided disk, it couldn’t access it. Foiled! But
protected at the same time.

Later, after we installed our hard disk drivers, we made a copy
of the ~h@ device descriptor and patched it to so that the module
it contained was named ~dd. We verified it to update the CRC and
then used 059Gen to generate a new 0S9Boot file with our new dd
module replacing the original.

We had already copied the Errmsg file into the SYS directory
on our hard disk, so the next time we received an error message
we called upon the OS-9 Error tool again. This time the hard disk
started clicking immediately, and, a second later, OS-9 reported
the English language version of the sin we had committed.

If you use a RAM disk instead of a hard disk, you can create

146

a default device descriptor, ~dd, that points to your RAM disk.
Then, if you copy your SYS directory to your RAM disk, the Error
utility command will respond almost instantly. So will the Help
utility command for that matter, if you copy the file Helpmsg to
the svs directory on your RAM disk.

in summary, the default device descriptor #dd is just a copy
of the device descriptor of the drive where you store files that must
always be found quickly.

Using our current Color Computer 3 installation as an
example, #dd is simply a copy of ~he. Both ~dd and ~he are still
in the boot file — and both can be used to access the hard disk
drive. Both device descriptors have the same drive number and
the same address, only the name of the device is different. We can
use either name when we send a file to the drive manually.

If we all get behind this Microware standard, it will one day
be much easier to write programs that can be used easily, no
matter where our current data directory is located. It won't make
any difference if we are using a 40-track, double-sided floppy disk,
a RAM disk, an 80-track, quad-density floppy, or a hard disk drive,
if our programs look in /dd- sys/errmsg for English language
messages they will find them, if we have copied the sys/errmsg
file to that media.

ONLY PATCH WHEN YOU MUST

Earlier in this chapter, we showed you a few tricks you can
pull with the OS-9 Modpatch tool. For the most part, however, the
secret of success with OS-9 is not to patch.

0S-9 Level Il gives you tools to handle most jobs right on the
command line. TMode is a good example. You use this tool to tell
0S-9 what your hardware looks like. For example:

tmode upc -pause

This command line tells OS-9 that you want the terminal on
the standard output path to print only uppercase letters, and you
do not want it to stop and wait for you to give it a go-ahead at
the end of a screen page. The following command does just the
opposite.

tmode -upc pause
After you give this command, OS-9 will pause and let you
catch up on your reading when it fills your screen. It prints
lowercase letters on your screen.

The moral of our story: Don’t use a sledge hammer to kill a
flea. Take the time to study the outstanding manual that comes

147

TMODE VS XMODE

MAKING NEW SYSTEM DISKS

with OS-9 Level Il. A small investment here can save you much
time later.

Here’s another point we often forget. When you first boot
Color Computer OS-9, it gets information about your hardware
from device descriptors. However, it immediately stores this
information in path descriptors.

Processes started later get their information about your
hardware devices from these original path descriptors, not from
the device descriptors.

When you run Tmode, it modifies the most recent path
descriptor, not the device descriptor. If you kill the process that
created the path descriptor modified by Tmode, you also kill the
changes made by Tmode. This means that if you want to make a
“permanent” change, you must run Xmode almost immediately
after you boot OS-9.

Remember, to make temporary changes, use Tmode. To make
permanent changes, use Xmode. After you change system
parameters using the OS-9 Xmode tool, you can run Cobbler to
make those changes permanent in your 0S9Baoot file. After you do
this, your system will be set up the way you want it when you first
start up OS-9.

We’'ll show you several different ways to build new OS-9
system disks. You may find them handy, especially if you are
fortunate enough to be using a Color Computer equipped with
a hard disk. We'll start by taking a look at Config, an excellent
tool for the OS-9 beginner.

Config gives you a menu and lets you select the device
descriptors you want to have available on your new system disk.
The program is stored in a directory named CMDS. The files that
hold the modules containing all the required OS-9 device
descriptors, device drivers, file managers, etc., are stored in a
directory named MODULES.

You start by booting your system using a backup copy of your
08S-9 System Disk. After you see the 059 prompt, you must take
out the System Disk and insert the disk containing Canf ig. Do not
skip the following steps:

chx 7d@/cmds
chd 7d@

Now, type Config and follow the directions on the menu. You

148

move from row to row on the menu using the up and down arrow
keys. You select a device by pressing S. If you want more
information about a device, you can get it by pressing H.

When you have finished selecting device descriptors for all
the devices you will be using, Config creates a new 0S9Boot file
and asks if you would like a disk with no commands, a basic
command set, a full command set, or a set of individually selected
commands.

A note of caution is in order. Make sure you tell Config to
include all of the window device descriptors, including ~w.
0OS-9 uses this descriptor when you ask for the next available
window. Don’t worry about using a lot of memory. Each window
descriptor only uses 66 bytes.

After you have spent what seems like weeks waiting for your
computer to copy all of your files onto a new system disk, you
will come to the realization that you really don’t need to have all
your files on each and every system disk you own. Itis much easier
to boot with one disk that contains only the files you need to start
the system, i.e., 0S9Boot.

As soon as the system is running, you can remove that disk
and insert the disk that contains the files you use all the time. In
fact, you may want to load one disk with the tools you use while
writing and another with the tools you need while programming
with BASICO9.

Remember: If you use these stripped-down system disks to
start OS-9, you must always let OS-9 know you have swapped
disks immediately. Do this by typing:

chx 7d@-/cmds
chd 7do

Once you move up to a hard disk, you won't even need to swap
disks. OS-9 will automatically select ~h@-CMDS as your current
execution directory and ~he as your current data directory when
you start OS-9. You’'ll only need the file named 0S9Boot on the
floppy you use to boot OS-9.

CONFIG A SYSTEM DISK USING A PIPE

Once you know your way around OS-9, you'll discover there
are a lot of ways to skin a cat. For example, using an unformatted
directory list utility like d or 1s from a third-party vendor and a
pipeline to 0S3Gen, you can configure new system disks quickly.

First, format a new disk to hold your module library. Then,

create a directory with a name that describes the configuration
you want on your new system disk.

149

For example, we use directory names like STOCKRS, STOCKHD
and HDONLY. The first directory contains the modules needed to
create a standard Tandy OS-9 system disk. The second contains
the same modules plus a device descriptor and device driver for
our hard disk. The third contains the hard disk drivers, but leaves
out the floppy disk driver and descriptor to save space on an
0S-9 Level | system.

You can use the MakDir utility command to make your new
directories. How do you get the modules into those directories?
We started by merging the standard modules we need in each and
every boot file — regardless of the hardware configuration — in
a file called StdBoot. We used a command line like this.

chd 7dd/modules
merge I0Man RBF .mn SCF .mn Pipeman.mn Piper.dr Pipe.dd
CC3go >StdBoot

If you forget which modules are in a file a few months after
you have created your directory, you can use the OS-9 Ident tool
to find out.

ident -s StdBooct

There are several ways to get the right modules in your
directories. For example, several third-party vendors and the
national OS-9 Users Group sell Modbuster or Splitmod tools you
can use to split a file containing a number of OS-9 modules into
individual files that contain one module each. Here’s how you do
it. Start by making a new directory where you can store your new
files:

makdir /d@/ConfigltMylay
Now, make the new directory your working data directory:
chd 7d@/ConfigltMylay

It’s time to run modbuster:

modbuster 7d1-05SBoot

When Modbuster finishes, you'll find a directory containing
a file for each module in the 0S9Boot file on the disk you had
motnted in drive #d1. You can now use the OS-9 Del tool to delete
the files you do not want in your new System Disk. After you have
finished deleting the unwanted files, use the OS-9 Copy command
to copy any additional module files you may need in your 0S9Boot
file into the directory ConfigltMylay.

You are now ready to perform pipeline magic with OS-9.
Insert a freshly formatted disk in drive ~d1 and type:

chd 7d@-ConfigltMylay
ls ' osSgen ~dl

150

If you don’t believe in magic and want to confirm that the
proper modules are in your 0S9Boot file after the 1s/os9gen team
complete their handiwork, type:

ident -s vdl170sSboot

Once you have created a directory containing the modules
needed in the 0SS9Boot file on your first customized system disk,
you are almost home free. From here on out, you can create new
directories and copy module files back and forth. Each directory
will hold the module files you use with a specific type of hardware
configuration. When you're done, make sure to save the disk with
these directories so you can use it in the future.

BACKING UP A SINGLE-SIDED ORIGINAL DISK ON A
DOUBLE-SIDED DUPLICATE

In the first chapter we showed you how to make a backup of
your System Master Disk using the OS-9 Backup tool. Unfortu- P
nately, however, the Backup tool will not let you back up a disk ga
to a disk of another size or type. You cannot use Backup to move \‘
files from a 35-track disk to a 40-track disk. Nor can you back up y
a single-sided, 40-track disk to a double-sided, 40-track disk.

To back up all the files on a disk of one format onto a disk
formatted differently, you must use the OS-9 DSave utility
command. Here’s one way to do the job with DSave.

dsave 7dl /d@ ! Shell

Notice that this command assumes you have two disk drives
in operation. After you have used OS-9 afew hours, you’ll discover
that two disk drives are indeed a necessity, not a luxury. The
exclamation point in the command line above causes Dsave to
send its output to the OS-9 command line interpreter named
shell.

DSave's output takes the form of a number of individual
0S-9 copy commands. When the shell receives those command
lines through the pipeline above, it executes them. In a few
minutes you will have all of the files from the disk mounted in drive
»d1 saved on the disk mounted in drive ~de. One word of warning:
The DSave command assumes that the Copy command is in your
current execution directory and will try to load it from there. Make
sure DSave will find Copy in your current execution directory.

ABOUT CUSTOMIZING YOUR DISKS

One of the most important advantages of OS-9 is the fact that
it lets you customize your system to your heart’s desire. Unfor-
tunately, this ability also makes a tremendous contribution to the
myth that OS-9 is difficult to use and hard to understand.

Take the pledge right now to stick with the basics until you
are ready to start modifying your system. Practice running the

151

utility commands stored in the #d@-CMDS directory of your working
system disk.

Hopefully, we have given you enough information to get yot
started and pointed out a few of the pitfalls you will want to avoid
Hang in there and practice. Stick with the simple utilities until yot
thoroughly understand what is happening when you run them
After you conquer a command, move on to another. Before long,
you’ll be able to control your Color Computer like you never could
before.

Follow the directions in the OS-9 users manual or The
Complete Rainbow Guide To OS-9 carefully. Once you under-
stand what happens when you run each command, you will gain
confidence and will be able to modify your operating system
safely.

TESTING A PROCEDURE FILE WHILE YOU TYPE IT

Here’s another neat trick for your portfolio. Would you rather
test a procedure file while you're typing? Try this:

ex shell t -p >>NewProcedurefile

This command line creates a shell that echoes your command
lines and doesn’t print any prompts. Since you have redirected
the standard error output path to a file, you will wind up with a
file that runs as a procedure file.

(feach command line you typed ran perfectly when you typed
it live, it will run properly from the script NewProcedurefile. If,
however, you ran into an error with your typing, you will need to
edit NewProcedurefile. Since you actually ran the code you
typed, you’il know which typos need to be fixed. Nifty!

SPLITTING THE SHELL MODULE FROM THE SHELL FILE

If you would like to customize your Shell file and load it with
the OS-9 tools you think you would like to have in memory all the
time, follow these steps.

First, type in and run this BASIC09 procedure file to create a
file that contains only the Shell module.

PROCEDURE StripShell

U130 DIM Char,Inpath,Outpath:BYTE

JOQF DIM Count:INTEGER

9916

@017 OPEN #Inpath,"/dd/cmds/shell" :READ
ga3g CREATE #Outpath,"/dd/cmds/Shell Only"

152

ggac

294D FOR Count=1 TO 1532
@@5E GET #Inpath,Char
g068 PUT #Outpath, Char
ag72 NEXT Count

po7D

BQ7E CLOSE #Inpath

o84 CLOSE #Outpath

Pa8A END

After you have run this short BASIC09 procedure, you will have
a new file named Shell_0Only stored in your CMDS directory. You
can now merge it with the other files you want in memory at all
times. For example, you could type:

chd 7dd/cmds

rename Shell Shell _Original

merge Shell _0Only pxd pwd rename tmode >Shell
attr Shell e pe

The OS-9 tools we merged into the new Shell file above are
only an example. You must decide what you want in memory and
then build your own Shell file containing those modules.

Remember, however, to make sure that the total length of the
modules in the Shell file is less than 7,680 bytes long. If you keep
it shorter than this, OS-9 will be able to load it at the very top of
a 64K workspace.

The top 512 bytes of each 64K workspace is used by the
hardware devices that let your Color Computer communicate with
the outside world. This means you actually have 8,192 bytes minus
512 bytes, or 7,680 bytes you can use if you want the Shell and
other modules in your file to load at the top of a 64K workspace.

NAMING A PROGRAM AUTOEX OR STARTUP

If you want OS-9 to run a particular program, BASIC09 for i
example, when you start your computer, use the OS-9 Rename tool SV OL’SV\;‘\- ol
to name the program you want to run AutoEx. %

rename 7dd/cmds/Basic®9 AutoEx

0S-9 will find AuteEx (which is really BASIC09) and start it for
you automatically.

Caution: If you use this AutoEx technique, make sure you
create at least one window and start an OS-9 shell running in it.
Do this in your StartUp file. It will give you a place to go home
to if you accidentally terminate the program you started as AutoEx.
If it happens, you can get to the safety window by pressing the
CLEAR key until it rests next to the 0S3: prompt.

153

WHEN YOU GET LOST

If you get lost while navigating an OS-9 disk full of subdirec-
tories, don’t forget you can call upon the OS-9 pwd and pxd
commands to find the name of your current data directory and
current execution directory, respectively.

HOW TO TELL A DEVICE FROM A FILE

And finally, if you've wondered how you can tell an OS-9
hardware device from a file, read on. If a pathlist starts with a slash
(/), the first name in that pathlist is a device. For example, the
pathlist ~d@-/CMDS-dir tells us that ~de is a device. CMDS is a
subdirectory stored in the root directory of the device ~de. Dir
is a file stored in the subdirectory named CMDS.

Sometimes, a device doesn’t know about directories. Such is
the case with your printer or an RS-232 communications
cartridge. However, you'll know they are devices because of the
slash in their names — /P and /72.

That’s it for our overview of OS-9, the operating system. From

here on we’ll concentrate on a few fantastic tools you can build
with BASIC09. Enjoy!

I

154

CHAPTER 10

a real basic09 program:

[
W
LT,
—————
i . ——

The BASIC09 program, Hellg, that we wrote in Chapter 6 is
enough of a program to get you used to BASIC09 and to prove that
you can write a program. There is something special about
discovering that you can control your computer. Granted, printing
a phrase on the screen is not the same as writing the great
American program, but it's the first step on that path. Feel proud!

Now we're going to write a program with a little more meat
on its bones. We'll attack it the same way we did Hello: a first try
followed by refinements. This time, however, the first try will be
a flop. If you haven't read it yet, skim the BASIC09 manual before
you move on to this step.

A LITTLE BACKGROUND

Your computer stores characters and small numbers in
chunks of memory called bytes. A byte can have 256 possible
values. The first 128 of them are defined by the ASCII (American
Standard Code for Information Interchange) code. Without ASCI|
or a similar code, bytes would just be little numbers. The code
lets your computer translate bytes into characters — some
printable, others special control codes. Most programmers can't
remember which numbers go with which characters, so some of
them keep tables of all the character values near their computers,
and others write programs that print the tables on the screen any
time they need them.

155

A PROGRAM TO PRINT THE ASCII TABLE

DEALING WITH THE UNPRINTABLE CHARACTERS

Lﬁlg

[¢

9

SC

&

7

"

The CHR$ function in BASIC09 makes it easy to print a crude
ASCII table.

THE LISTING: First_Try

PROCEDURE One_1

2900 DIM i:INTEGER
2007 FOR i:=@ TO 4%
9917 PRINT i,CHR$(1)
9921 NEXT i

Please note, when typing in these BASIC09 programs, we don’t
type in the four numbers at the left of each line. These numbers
are for system use; your Color Computer will put them in the
procedure all by itself.

The program declares one integer variable named i. The FOR
loop runs i through all the values from 0 to 40 while the PRINT
statement prints the numeric value of i and the character that goes
with it.

A generous person might say that the procedure works
(barely), but there are plenty of problems with it. Mainly, it doesn’t
fit enough data on one screen, and it acts very strangely with non-
printable characters (the values between 0 and 32).

There are two ways to deal with the problem of fitting 256 lines
of data on one screen. We can select some smali part of the range
to print or we can use several columns. Both solutions are useful,
so we'll try each of them.

The first 32 characters (numbers 0 through 31) are control
characters. Some of them — like tab, backspace and bell — have
an effect on the screen when you print them, but most of them
are completely unprintable. Fortunately, the control characters
have names. We’ll make the table complete by printing a
character’s name when we can't print the character.

If a procedure is going to print names, we need to somehow
include them in the procedure. The BASIC09 DATA statement is a
clean way to put constant data in a procedure, but it’s only easy
for a program to read names from DATA statements in order. That
doesn’t sound good. We don’t want to restrict ourselves to using
the names in a preset order. We could get them in any order by
fooling around with line numbers and the BASIC09 RESTORE
statement, but it's easier to read the names from the DATA
statements into an array. Whenever we want to print the name of
an unprintable character, we'll pick it out of the array.

156

THE LISTING: Second_Try

PROCEDURE Second Try

paggo
gp22
gP3E
g@4s
9956
9962
6D
goerF
pa1g
gp8c
gpA8
ggcl
@Dy

PoFS
g111

g12c
gl44
g14D
§14E
g16B
p181
§19A
g1Bg
g1B1
g1CF
JLEQ
gLFg
g1F9
g2g4
g2g5
9208
§23F
9259
g25C
g26F
g281
928D
9298
g29¢C
goA5
§2A7
9209
P

(* Print a range of characters and

(* the corresponding numbers
DIM i:INTEGER

DIM LowChars(33):STRING[8]
DIM str:STRING([8]

DIM high,low: INTEGER

BASE ¢

DATA "nul","soh","stx","etx"
DATA Heot" , Henq" s Hack") Hbeln
DATA H‘bs“ R lltab" N " lf" s "-Vt"
DATA "ff") "Cr") "SOH , HSiH
DATA "dle",b"dcl","dc2","dc3"
DATA "dc4","nak","syn","etb"
DATA "can","em","sub","esc"
DATA "fs","gs","rs","us"
DATA "sp"

(* Get limits on the range of
(* characters to print

INPUT "Bottom of range: ",low
INPUT "Top of range: ",high

(* Copy strings from DATA into
(* LowChars array
FOR i=@ TO 32

READ LowChars (i)

NEXT

(7’:

(* Print the decimal, hexadecimal,

i

(% for a range of numbers.

(W%

PRINT " Dec Hex Char"
FOR i=low TO high

IF

i<=32 THEN

str=LowChars (i)

ELSE

str=CHRS (1)

ENDIF
PRINT USING "I&4>,T7,H2",T12,88",i,i,str

NEXT
END

i

and character values

The procedure is divided into five parts. The first part declares
four variables.

® The variable i is going to be the loop index for two different
loops later in the procedure. A tradition dating back to the early

157

FORTRAN days of programming suggests that loop indexes
should be named i, j, k, |, n, o or p. When imagination fails to
invent a better name, programmers fall back on the old standard.
We only need one, so it is named i.

® The variable str will be a general-purpose string variable in this
procedure.

e Names for the unprintable characters will be loaded into
LowChars.

® The variables named high and low will be used as limits on a
loop.

The second part of the procedure is a big block of DATA
statements that hold the names of the unprintable characters. it
doesn’t matter to BASIC09 where in a procedure DATA statements
are (though their order is important). There are three common
rules for placing DATA statements:

® Put them at the beginning.
® Put them at the end.
® Put them near the statements that use them.

For very long procedures, the last option is the best. You
should be able to find the DATA statements that go with a READ
without a major search. The second option is appropriate if you
feel that the DATA statements distract attention from the main point
of the procedure. Since they are the main point of this procedure,
they stand proudly near its beginning.

Since a list of all 256 possible character values would cover
many screens, we're going to ask for a range of values to print.
The person running this program (we’ll call him the “user”) will
probably select a small range of numbers to print, often only one
number. Of course there is nothing preventing him from selecting
the entire range. The two INPUT statements get the limits for the
range we will print, lowand high. These variables will pop up again
in the last part of the procedure.

All the character names in the DATA statements need to be
copied into the LowChars array. The FOR loop in the fourth section
of the procedure reads the names from the DATA statements into
the array.

Notice the BASE statement before the FOR loop. Normally,
BASIC09 arrays have indexes that start at one. This is sensible. We
usually think of the first entry in an array as being in position one.
In this case an array that starts at one is inconvenient. The first
unprintable character is number zero. It would be possible to leave
the first character out of LowChars or shift all the values by one
(so the value for zero would be stored in LowChars(1)), but
everything lines up nicely if the LowChars array starts at zero. The
BASE @ statement tells BASIC09 that we want arrays to start at zero

158

inthis procedure. Warning: the BASE statement appliesto all arrays
in a procedure.

The last section of Second_Try prints the data the user
requested. First it prints a title line. This is where you discover
that we're going to print decimal (ordinary base 10), hexadecimal
(base 16) and character values. The FOR loop in this section drives
i from low to high. Inside the loop, i will run through the range
of values the user selected.

Some values will correspond to unprintable characters; the
program should find names for these in LowChars. The BASIC09
cHR$ function will return the characters corresponding to the
printable values.

After the IF statement, everything is ready for printing. The
name of the character is in str, and PRINT USING knows how to
print the decimal and hexadecimal values. Find PRINT USING in
your BASIC09 manual and see if you can figure out how this
statement works.

We could fit several columns of the output from Second_Try
on a screen. It’'s a good idea because it would let the user see a
wider range of values on one screen. If we could drop the decimal
and hexadecimal values and just print the names of the characters,
the columns would get narrower and even more values could be
squeezed on a screen.

The 256 possible character values fit neatly in a 16-by-16
table. Those dimensions fit with the hexadecimal representation
of the values (like a 10-by-10 table would with decimal). Once you
have found a character in the table, you can find the hexadecimal
number by remembering that the column number is the left digit
and the row number is the right digit. If this is unclear, bear with
us. It will be easier to see when you have a table on your screen.

We're not going to do the entire 16-by-16 table here. It would
be too big to fit comfortably on a 32-column screen. The first eight
columns of the table contain all the standard ASCII characters,
so we'll make an 8-by-16 table.

It is still hard to get the table on a screen. A 16-row by 8-
column table will fit on a 32-by-16 screen without a line to spare.
Unfortunately, the table is a little hard to read without a title row
across the top. If you use a low resolution screen, experiment; you
may like the table better without its title.

The procedure Third_Try makes the ASCII table.

159

ANOTHER APPROACH

v

THE LISTING: Third_Try
PROCEDURE Third Try

P90
9919
9922
gg2D
P93E
goLA
gg4ac
g94D
2969
pg8s
PP9E
pgB6
99D2
gQEE
9199
9121
g12A
g12B
g13B
9144
gL4F
9159
9153
§18B
g18E
g1A7
g1B7
913
91E7
91F7
g20A
g213
9217
g22F
7231
§23¢
923K
§249

(* Print a table of ASCII
(* values

DIM i, j:INTEGER

DIM LowChars(33):STRING[8]
DIM str:STRING[8]

BASE

DATA "nul","soh","stx","etx"
DATA "eot","enq",b"ack","bel"
DATA "bs","tab", "1f",6"vt"
DATA "ff","cr","so","si"
DATA "dle","dcl","dc2","dc3"
DATA "dc4","nak","syn","etb"
DATA "can","em","sub","esc"
DATA "fs","gs","rs", "us"
DATA "sp"

FOR i=@ TO 32
READ LowChars(1i)
NEXT i

(*
(% Print the entire ASCII table as compactly as possible
*
PRINT ") 1 23456 7"
FOR i=@ TO 15
PRINT USING "hl",i;
PRINT USING "' ',83,' ',S3",LowChars(i),LowChars(i+l6);
FOR j=2 TO 7
IF i=15 AND j=7 THEN

PRINT " del";
ELSE
PRINT USING "' ',S1",CHR$(j*16+1);
ENDIF
NEXT j
PRINT
NEXT i

END

The beginning of Third_Try should look familiar by now. It
fills LowChars with the names of the unprintable characters. The
section of code starting at the comment “Print the entire ASCII
table as compactly as possible” does just what the comment says.
The general outline of the code is:

PRINT title

FOR each line
PRINT sidebar and control characters
(the first two columns of the tabie)

160

FOR columns 2 through 7
PRINT the character that belongs here (The bottom-
right side of the table has another control character that
needs special treatment)

Each row of the table has three parts. First is a title that runs
down the side labeling each row. The labels are 0, 1, 2, 3, 4, 5,
6,7,8, 9, A, B, C, D, EandF, the digits in hexadecimal. Since
the label is the same as the row number, printing i in hexadecimal
gives the label. After the label come two names that have to come
out of LowChars table. In the first row, the first column will be
LowChars(@), and the second column will be LowChars(16). The
rule that will work for all the rows is: In Row i, Column 1 should
contain LowChars(i) and Column 2 should contain Low-
Chars(i+16). The other six columns of each row (columns 3
through 8) contain printable characters. We can print them ail with
afOR loop.

There is a problem character at the lower-right side of the
ASCII table. It is another unprintable character named del. We
have to put an IF statement in the FOR loop to handle that one
special case.

We have developed two ways to put the same information on
the screen. They are both useful procedures. What is the best way
to combine their functions? Three choices come to mind:

¢ Don't combine anything. Leave it just the way it is.

® Combine everything. Make one procedure that combines the
two.

® Make a separate procedure out of the DATA statements and the
code that reads them into LowChars.

The first choice is wasteful because the exact same code
appears in two places and error prone because it would be easy
to change a DATA statement in one procedure without making the
same change in the other procedure. The second choice is much
better, but, as a general rule, it is best if a procedure does one
thing. If you don’t see the two different ways of printing ASCII
values as one function, the third option is the best one.

One option puts too much into one procedure and another
divides a single function between two procedures. Since the
choice may not be obvious, let’s try both and see what they look
like.

First we'll combine Second_Try and Third_Try into one
procedure.

161

PUTTING IT TOGETHER

THE LISTING: DisplayCharacters

PROCEDURE DisplayCharacters

2099 (* Display characters and their numeric

2927 (* values. If terse is true, display all the
9@54 (* ASCII characters in a table. If terse is
g08g (* false, display a subrange of the ASCII characters
P@B4 (* in a list.

ggcl PARAM low,high:INTEGER

ggcc PARAM Terse:BOOLEAN

9903

ggD4 DIM i, j:INTEGER

@ODF DIM LowChars(33):STRING[8]

PoFrg DIM str:STRING[8]

ggEC

@@FD DATA "nul","soh","stx",6"etx"

9119 DATA "eot","enq","ack","bel"

@135 DATA "bs","tab","1lf","vt"

@14E DATA "ff", 6 "cr","so","si"

7166 DATA "dle","dcl","dc2","dc3"

2182 DATA "dc4",'"nak","syn","etb"

@19E DATA "can","em","sub","esc"

@1B9 DATA "fs","gs","rs", "us"

g1D1 DATA "sp"

21DA

g1DB BASE ¢

@1DD

@1DE FOR i=g TO 32

@1EE READ LowChars(i)

@1F7 NEXT i

9202

9203 IF Terse THEN

g2gc (o

@2pF (* Print the entire ASCII table as compactly as possible
g247 (>

g24A PRINT " 9 1 23456 7"

9263 FOR i=@ TO 15

9273 PRINT USING "hl",i;

P27F PRINT USING "' ',S3,' ',83",LowChars(i),LowChars(i+l6);
P2A3 FOR j=2 TO 7

@2B3 IF i=15 AND j=7 THEN

g2ce PRINT " del”;

@2CF ELSE

92D3 PRINT USING "' ',S1",CHRS$(j*16+1i);
P2EB ENDIF

P2ED NEXT j

@2F8 PRINT

@2FA NEXT i

2395 ELSE

2399

g30A

162

g3gB

page O
g30F (* Print the decimal, hexadecimal, and character values
@346 (% for a range of numbers.

9369 (e

g363 PRINT " Dec Hex Char"

9376 FOR i=low TO high

p388 IF i<=32 THEN

§394 str=LowChars (i)

g39F ELSE

@3A3 str=CHRS$ (i)

#3AC ENDIF

@3AE PRINT USING "I4>,T7,H2A,T12,88",i,i,str

@30y NEXT i

@§3DB ENDIF

g3DD END

Almost everything in the DisplayCharacters procedure
should look familiar. The main change is a new IF statement that
makes the procedure act like Third_Try if the variable terse is
true and Second_Try if terse is false. You can see that the code
between the IF terse THEN and the corresponding ELSE is straight
out of Third_Try, and the code after the ELSE is from Second_Try.

DisplayCharacters doesn’t take any input. It gets everything
it needs as a parameter. You can run it from BASIC09 command
mode:

run DisplayCharacters(20,30,false)
run DisplayCharacters(1,1, true)

or from another BASIC09 procedure.
A procedure to run DisplayCharacters might look like:

THE LISTING: Prompter
PROCEDURE prompter

9009 DIM terse:BOOLEAN

p9g7 DIM high,low:INTEGER

9912 INPUT "Terse (t,f)? ", terse

0927 IF NOT(terse) THEN

g@31 INPUT "Lowbound: ", low

0943 INPUT "Highbound: " ,high

9956 ENDIF

9058 RUN DisplayCharacters(low,high, terse)
ggec END

Prompter contains the input statements we removed from
Second_Try and Third_Try when we combined them into Dis-
playCharacters. It collects the values DisplayCharacters will
need, then runs DisplayCharacters with those values as parame-
ters.

163

BASIC09 doesn’t permit procedures to have a variable number
of parameters. Thisisalittle bitinconvenient because, when terse
is true, the other two parameters are not used. We can live with
that if we must, but let's see what we get when we keep the
functions of Second_Try and Third_Try Separate.

THE LISTING: ASCII Table

PROCEDURE ASCII Table

g999
9908
g91c
gp28
g924
9928
9947
pp66
9979
9971
P74
99AC
PPAF
ggcs
9908
JPEL
g198
g118
9128
p134
9138
g159
9152
g15D
g15F
PL6A

DIM 1i,j:INTEGER

DIM LowChars(33) :STRING[8]
DIM str:STRING[8]

BASE ¢

(* Get the strings that name
(* the non-printable characters
RUN Control Names(LowChars)

(¥
(* Print the entire ASCII table as compactly as possible
(¥
PRINT " g 1 23456 7"
FOR i=@ TO 15
PRINT USING "hl",i;
PRINT USING "' ',S3,' ',S3" LowChars(i),LowChars(i+16);
FOR j=2 TO 7
IF i=15 AND j=7 THEN
PRINT " del";
ELSE
PRINT USING "' ',S1",CHR$(j*16+1i);
ENDIF
NEXT j
PRINT
NEXT i
END

THE LISTING: ASCII_List
PROCEDURE ASCII List

pop9
ppac
P44
PP4F
9956
9967
9973
9975
9976
g9a2
JPAF
P9BY

(* Print a range of ASCII characters and the
(¢ corresponding numbers

PARAM low,high:INTEGER

DIM 1i:INTEGER

DIM LowChars(33):STRING[8]

DIM str:STRING[8]

BASE ¢

(* Get the strings that name the unprintable

(% characters
RUN Control Names(LowChars)

164

J9BA (%

@@BD (* Print the decimal, hexadecimal, and character wvalues
gaF4L (* for a range of numbers.

g19E (>

g111 PRINT " Dec Hex Char"

g124 FOR i=low TO high

@136 IF i<=32 THEN \REM A non-printable wvalue
@15A str=LowChars (i)

gLes ELSE \REM a printable value

g17D str=CHR$ (1)

g186 ENDIF

g188 PRINT USING "I4>,T7,H2",T12,88",i,i,str
g1AA NEXT i

THE LISTING: Control_Names

PROCEDURE Control Names

0000 (** Return a list of the names of
gp29 (** the non-printable (control) characters
9949

PoLA PARAM LowChars(33):STRING[8]
gg5B

#95C DIM i:INTEGER

963 DIM str:STRING([8]

gger BASE ¢

p971

72 DATA "nul","soh","stx","etx"
P@8E DATA "eot","enq","ack","bel"
@PAA DATA "bs","tab","1f","vt"
ggc3 DATA "ff","cr","so",6"si"
#0DB DATA "dle","dcl","dc2","dc3"
PeF7 DATA "dc4","nak","syn","etb"
@113 DATA "can","em","sub",6 "esc"
g12E DATA "fs","gs","rs","us"
g146 DATA "sp"

PL4F

g159

9151 FOR i=@ TO 32

glel READ LowChars(i)

g16A NEXT i

gL75 END

THE LISTING: Prompter?
PROCEDURE prompter?

o900 DIM terse:BOOLEAN

097 DIM high,low:INTEGER

g@12

g913 INPUT "Terse (t,f)? ",terse
9928

9029 IF NOT(terse) THEN

165

9933
2845
g958
9967
PP6B
@@6F
2971

INPUT "Lowbound: ",low
INPUT "Highbound: ",high
RUN ASCII List(low,high)
ELSE
RUN ASCII Table
ENDIF
END

This time we've got four procedures instead of two:

® ASCII_Table prints the ASCII table.

® ASCII_List prints a range of characters with values.
® Control_Names fills a table of character names.

® Prompter2 requests values from the user.

Each procedure does one thing, they are all short, and there

are never useless parameters. This is definitely better.

The last procedure in this chapter is a little mysterious. It
wraps Prompter2 up in a loop and adds a menu. The menu only
gives the user a choice of getting ASCII values or quitting, and
the loop only keeps swapping between the menu display and an
ASCII display until it quits. Let’s leave it mysterious for a moment

and look at the code.

THE LISTING: Menu
PROCEDURE Menul

p999
paLg
9918
p@22
#9923
p@25
9932
9947
pP64
pP72
$98B
P94
gPA9
111313
gpca
PPCE
PPDF
gpF1
9109
g1p4
g108
g1pA
9113
g115
g129

DIM InputChr,WaitChr:STRING[1]
DIM low,high:INTEGER
DIM Terse:BOOLEAN

REPEAT
RUN gfx2("clear")
PRINT " Menu "
PRINT " a: Display ASCII Table"
PRINT " q: Quit"
PRINT " Selection:";
GET #@,InputChr

IF InputChr="a" OR InputChr="A" THEN

RUN gfx2("clear")

INPUT "Terse?",Terse

IF NOT(Terse) THEN
INPUT "Lowbound:",low
INPUT "Highbound:",high
RUN ASCII List(low,high)

ELSE
RUN ASCII Table
ENDIF
GET #@,WaitChr
ENDIF

UNTIL InputChr="q" OR InputChr="Q"
RUN gfx2("clear")

166

There are a couple of interesting tricks in Menu. The first GET
te is for the menu selection. The program waits at that GET until
the user makes a selection, then it passes the character to the
subsequent comparisons. The other GET #9 in the loop appears
to be useless. You won’t find another reference to WaitChr in the
procedure. So why do we make the user enter it?

If you remove the second GET #@ from the menu procedure,
you will find that the menu continues to work well as a selector,
but you never get a chance to look at the output from the
procedures it calls. You make a selection, the information flashes
by on the screen, then the screen clears and the menu comes up
again. We needed to slow the procedure down between the time
it runs a report and the time it displays a new menu. Using GET
0 to wait for the user to press a key — any key — is a good way
to make the procedure wait.

BASIC09 offers a programmer many ways to build loops.
There's the FOR statement, the WHILE statement, the REPEAT/UNTIL,
and the LOOP. There’s also GOTO of course — the ultimate, powerful
and dangerous statement. In this case we chose REPEAT/UNTIL.
You'll want to use REPEAT-/UNTIL when you build a loop that will
always execute at least once. For this procedure we know that
we’ll display the menu at least once so REPEAT/UNTIL is our choice.

We created the Menu procedure because these procedures are

the first parts of a system. Compare this menu to the final product
in Chapter 17.

WHAT HAVE WE LEARNED?

In this chapter we built several programs that display the
names for values defined in the ASCII character set. We started
with a very simple program. The program was fine if you only
cared about printable characters and didn’t mind several screens
of output. We tried two other ways to print ASCII values and 3
decided that we wanted to keep them both.

It didn't make sense to have identical code for finding the
names of unprintable characters in two different procedures. We
tried two ways of eliminating the duplicate code. First we
combined the two procedures into one, then we separated the
duplicated code into its own procedure and let the other
procedures run it. The second solution seemed simpler.

It's a good idea to think of procedures as input procedures,
output procedures, or compute procedures. Those classes help
keep procedures short and simple.

A procedure that is about one screen of code is probably not
too long. That doesn’t mean longer procedures are always too

167

long, only that you should look for clean ways to divide them into
several smaller procedures.

The REPERT/UNTIL loop construct should be used for loops
that will always execute at least once.

It is useful to write a simple program before you dive into
something complicated. The simple program might be just what
you need, and you will save yourself lots of work. If it's not just
what you need, it might be close enough that you can make simple
modifications to get to what you want. Even if it is nothing like
what you want, it might uncover some issues you hadn’t consid-
ered.

POSSIBLE ENHANCEMENTS

If you use 80-column windows, consider adding the values
between 128 and 255 to the ASCII tabie. They aren’t ASCII values,
but many of them are defined on the Color Computer.

Try using two menu selections to determine whether to use
ASCII_List OrASCII_Table. It will probably work better than what
we did.

If you use OS-9 windows, you can try beautifying the displays
with fonts and graphics. Try putting boxes around things. Use
bold print for ASCII values and proportional spacing for titles.
Consider the use of color.

The functions of the procedures can be defined in another
way that may be better than the division we chose. Control_Names
would be more useful if it were Character_Name. It could have two
parameters. We could pass it a number in one parameter and it
would return the name of the corresponding ASCII character in
the other. ASCII_List and ASCII_Table would become consider-
ably shorter, and Character_Name would be at most a little longer
than Control_Names. Warning: This is a fairly difficult change to
make.

168

CHAPTER 11

selecting colors: the

It's a bit of a puzzle. Your Color Computer is able to display
64 different colors. It says so right in the manual. Another place
in the manual says that you can display two colors, four colors,
or 16 colors. What happened to the 64 colors?

If you are serious about painting, the word palette might be
all you need to hear. Ask a painter how many colors they can use
and you might hear, “Here’s my box of paints. It has about 50 tubes
of paint in it, mostly different colors.” Another painter might
understand the question differently and tell you, “l can use any
color | can imagine. See, | take a little paint from each of these
tubes and mix them on my palette. | can mix colors until | have
exactly the color | want.”

The palette is the key. You almost never see a painter using
paint straight from the tube. It goes on the palette for mixing
before it is used. A Color Computer is not as versatile as a painter.
It can only keep two, four, or 16 different mixed colors on its
palette. It only has three colors, and it is seriously limited in how
it can mix the colors.

169

palette

COLOR IDENTIFIERS

The 64 colors that the Color Computer can display are the
different mixtures that you can put on the computer’s palette. You
have red, green, and blue at your disposal, and you can use 0,
1, 2, or 3 dabs of each color. So how do four possible amounts
of each of three colors add up to 64 colors?

Imagine that the color mixture either had each color or not.
How many mixtures does that give you?

R G B
1 — — —
2 — — X
3 — X —
4 — X X
5 X — —
6 X — X
7 X X —
8 X X X

Three colors and two amounts (yes or no) for each color gives
eight mixtures. If there were three possible amounts for each color
in the mixture — none, a tad, or a big glob — we’d have 27 possible
mixtures. With four possible amounts of each color, we get 64
mixtures. If you like math, it works like this. With n different colors
in x different amounts, we get x” mixtures.

The type of window on the screen affects the way OS-9 uses
the palette. There are always 16 colors in the palette, and you can
always choose them from the 64 color mixtures. If the window on
the screen is a two-color window, OS-9 will ignore all but the first
two colors on the palette. If the window is in four-color mode, OS-
9 will ignore all but the first four colors on the palette. Only the
16-color mode uses the entire palette.

A two-color window ignores most of the palette, but it
conserves memory. A pixel (that's a single dot) in a two-color
window can be stored as one bit. It only needs two possible values:
black or white, green or yellow, or whatever pair of colors you
choose as the first two colors in your palette.

A four-color window needs two bits for each pixel. That
means a four-color window uses twice as much memory as a two-
color window. A 16-color window uses four bits for each pixel;
that’s twice as much memory as a four-color window, or half a
byte for each pixel! The following table gives the binary codes that
0OS-9 uses for colors.

170

TABLE 11-A: Binary Codes for Colors

Color Two Color Four Color Sixteen Color ,
0 0 00 0000 [ﬁL
1 1 01 0001

2 NA 10 0010

3 NA 11 0011

4 NA NA 0100

5 NA NA 0101

6 NA NA 0110

7 NA NA 0111

8 NA NA 1000

9 NA NA 1001
10 NA NA 1010
11 NA NA 1011
12 NA NA 1100
13 NA NA 1101
14 NA NA 1110
15 NA NA 1111

TEXT WINDCWS ARE DIFFERENT

Graphics windows (window types 5, 6 and 7) choose fore-
ground and background colors out of the same range of selections
from the palette. Text windows (window types 1 and 2) use the
first eight colors in the palette for background colors and the
second eight colors for foreground. This is an interesting twist.

If the palette contains two copies of the same colors, you
won’t be able to tell that foreground Color 1 is not the same as
background Color 1. This is the default color scheme:

Palette

8

9
10
11
12
13
14
15

~NOORRWN—2O

TABLE 11-B: Default Color Scheme

Color

white
blue
black
green
red

yellow
magenta

cyan

If you ask for Color 2 as a foreground color, you will get Color
10. Both Color 2 and Color 10 are black, so you don’t care, but
what if you alter the colors in the palette? The command:

display lb 31 @R 26

will turn the foreground a greenish red. If you didn’t know about

171

MIXING COLORS FOR THE PALETTE

magic going on under the hood, you’d wonder why changing the
10th color in the palette affected the second color. You might be
even more surprised if you set the border to Color 2 and found
the foreground version of Color 2 was greenish red and the border
version of the same color was black. It's done with mirrors, but
so long as you remember that foreground Color x shows up at
position x+8 in the palette, it all makes sense.

Note that letters on a text screen show up in the foreground
color. Background, border and the cursor show up in background
colors.

Let's mix some colors. This involves some serious fussing
with bits, so brace yourself. Each color mixture in the palette is
stored as a byte, but only six bits in the byte are used. The six
bits allow two bits for each of the three colors. The bits each mean
something. If we call the least significant bit (the one farthest to
the right) Bit O, then:

Bit Means

faint blue
faint green
faint red
blue

green

red

O WN=2O

They might be easier to understand this way:
00RGBrgb

We should be able to get three different shades of pure blue
— four shades if you count black as a shade of blue. The palette
codes for those blues are: 00001001, 00001000, 00000001 and
00000000. The first code is an intense blue; after that, each code
gives a dimmer blue until the last one is black.

We could add a little red to the blue like this: 00001101. That
adds a faint helping of red to the brightest blue.

The tables above let you find the codes for any of the 64
colors, but the code will be in binary. You will have to convert it
to hexadecimal before you can use it with Display or BASIC09. The
following table will help you with the conversion.

172

TABLE 11-C: Binary to Hexadecimal Conversion Chart

B G GB R RB RG RGB
| 000 001 010 011 100 101 110 111

000 | $00 $08 $10 $18 $20 $28 $30 $38
b 001 $01 $09 $11 $19 $21 $29 $31 $39
g 010 | $02 $0A $12 $1A $22 $2A $32 $3A
b 011 $03 $0B $13 $1B $23 $2B $33 $3B
r 100 | $04 $0C $14 $1C $24 $2C $34 $3C

rb 101 $05 $0D $15 $1D $25 $2D $35 $3D

rg 110 | $06 $0E $16 $1E $26 $2E $36 $3E
rgb 111 $07 $OF $17 $1F $27 $2F $37 $3F

g9

If you want the code for the color RG__b, look for the column
with the R and G bits on. That’s the seventh column. Look for the
row with only the b bit on. That’'s the second row. The second row
and the seventh column cross at $31, so that’s the code for the
color RG__b.

The color codes in the palette are stored in what the Color
Computer calls palette registers. There are 16 palette registers
numbered O through 15.

EXPERIMENTING WITH THE PALETTE

We're going to want the full 16 colors in the palette, so if you
don’t have a Type 08 window around, set one up. Reminder: Set
the window up with the following commands (except that you may
want to change ~w6 to some other device):

‘\

iniz 7wb

merge /d@-/sys-/stdfonts >/w6 ¥
display 1b 2008000028181 02 >-/uwb

shell i=-w6

Use CLEAR to get to window six. Now, let’s paint some colors on
the screen:

display @c

display 1b 4@ @1 E@ ¢g 91
display 1b 32 @3

display 1b 4b @@ @a @¢ be
display 1b 41 @@ Qgc g0 99
display 1b 32 @4

display 1b 4b @@ @a @g be
display 1b 41 @@ @c g9 9@
display 1b 32 @5

display 1b 4b @@ ga @gg be
display 1b 41 @@ fgc gg 99
display 1b 32 @6

display 1lb 4b @@ @a @@ be
display 1b 41 @@ @c 9@ @0
display 1b 32 @7

173

display 1b 4b @@ fa @@ be
display 1b 41 @@ @c g9 90
display 1b 32 @8
display 1b 4b @@ @a @@ be
display 1b 41 @@ @c 9@ 99
display 1b 32 @9
display 1b 4b @@ fa @@ be
display 1b 41 0@ @c 99 @9
display 1b 32 QA
display 1b 4b @@ fa @@ be
display 1b 41 9@ @c @@ 09
display 1b 32 @B
display 1b 4b @@ @a @@ be
display 1b 41 @@ @c @9 0P
display 1b 32 gC
display 1b 4b @@ @a @@ be
display 1b 41 @@ @c @@ 99
display 1b 32 @D
display 1b 4b @@ @a @@ be
display 1b 41 @@ @c @@ 99
display 1b 32 @E
display 1b 4b @@ @a @@ be
display 1b 41 @@ @c @@ 99
display 1b 32 @F
display 1b 4b @@ @a @@ be
display 1b 41 @@ @c 9@ 99
display 1b 32 g1

If you build a shell script with all those display commands in
it and run it from a Type 08 graphics window, you will see all 16
colors in the palette. Color 0 is your background color; Color 1
is the color the OS-9 prompt and your typing appear in, and Color
3 is the border color. All the other colors in the palette are in bars
on the right side of the screen.
Now that we can see all the colors, let's change one. Try:
display 1b 31 0e 24
The column second from the right will turn red. Try:
display 1lb 31 9e 3c
The column will change to tan. Use CONTROL-A and try all the
different colors you like. If you want to change the color of another
column, change the ot to some other code between @@ and oF.
For example:
display 1b 31 05 @8

will turn the third column from the left to light blue.

174

CONTROLLING THE PALETTE FROM BASIC09

Generating the color bars from a shell script took a lot of
typing. It is easier from BASIC09. This time we’ll put up bars for
all 16 colors instead of just the 13 colors that aren’t already on
the screen.

THE LISTING: Bars

PROCEDURE Bars

i) DIM color:INTEGER

eea7 RUN gfx2("clear")

go14 FOR color:=@ TO 15

pp24 RUN gfx2("color",color)

#936 RUN gfx2("bar",48@+(color-3)*$PA, 1,490+ (color-3)*$gA,190)
#0365 NEXT color

go70 RUN gfx2("color",bl)

Now that we've got the entire palette displayed on the screen,
let's run one of the colors in the palette through all 64 possible
colors. We'll play with palette register number eight.

THE LISTING: Palette

PROCEDURE Palette

0999 DIM color:INTEGER

goa7 DIM delay:REAL

POPE DIM Decode:STRING[6]

FO1A DIM c:STRING[1]

p926 DIM work:INTEGER

@92D DIM i:INTEGER

9934 RUN gfx2("color",8)

goLsL RUN gfx2("bar",240,1,30¢,194)

gg5C FOR color:=@ TO 63

ggec RUN gfx2("palette",8,color)

g@83 Decode:=""

JO8A work:=color

g@92 RESTORE

9994 FOR i:=1 TO 6

PPAL READ c¢

PPA9 IF LAND(work,1)=1 THEN

ggB8 Decode:=c+Decode ’
g9ch ELSE ¢ g %
gacs Decode:=" "+Decode ZL 3 r7
gPD4 ENDIF YL,
g@D6 work:=work/2 9

gOEL NEXT i

PPEC RUN gfx2("curxy",@,1@)

J@FF RUN gfx2("coloxr",1l)

175

@19F PRINT Decode;

g115 FOR delay:=@ TO 15@0

7128 NEXT delay

9133 NEXT color

PL3E RUN gfx2("color",1)

@L4E END

g150 DATA "b","g", "r" "B", "G", "R"

Since colors on the screen stay attached to their palette
register, we have been able to experiment with colors on the
screen by changing the palette register without redrawing the
screen. We can also get some nice special effects by playing with
the palette registers.

The next program displays a moving picture of beads rolling
down a slope.

THE LISTING: Marbles

PROCEDURE marbles

2000 DIM color(8):INTEGER

ggog@c DIM x,fcolor:INTEGER

G917 DIM time,i:INTEGER

gp22 BASE ¢

9924 FOR i:=@g TO 7

P334 READ color (i)

293D RUN gfx2("palette", 4+1i,color(i))
gg5B NEXT i

2066 RUN gfx2("clear")

9973 RUN gfx2("color",2)

2083 RUN gfx2("line",43,25,383,155)
g99cC RUN gfx2("color",1)

@PAC FOR x:=25 TO 155 STEP 4

ggcl RUN gfx2("setdptr", 2%x,x)

20DC fcolor:=MOD(x/4,8)+4

PPED RUN gfx2("circle", 4)

JOFE RUN gfx2("color",fcolor)

9119 RUN gfx2("fill")

g11c NEXT x

@127 FOR time:=1 TO 2¢@

g137 FOR i:=@ TO 7

2147 RUN gfx2("palette" ,MOD(time+i,8)+4,color(i))
g16C NEXT i

gL177 NEXT time

9182 DATA $3F,$24,$36,$09,513,5826,812,51B

A less obvious use of the palette is to make things appear and
disappear. If an object is painted in a color that is the same as
the background, you can't see it. Normally it would take a while
to paint it with a different color, but if it's already painted with a
different palette register that happens to hold the same color

176

mixture as the background, you can change the color of the object
by changing a palette register, bringing the object out of the
background instantly.

THE LISTING: Bounce

PROCEDURE Bounce

[eJefed) DIM i:INTEGER

2097 DIM time:INTEGER

PPPE DIM x,y:INTEGER

9919 RUN gfx2("clear")

9926 RUN gfx2("color",1,9,9)
P93¢ FOR i:=1 TO 15

gg4sc READ x,y

@955 RUN gfx2("setdptr",x,y)
PP6E RUN gfx2("circle”, 1@)
@@TF RUN gfx2("color",i)
gp91 RUN gfx2("fill")

g@9D NEXT i

PIA8 FOR i:=@ TO 15

gPB8 RUN gfx2("palette",i,@)
JGCF NEXT i

ggDA FOR time:=1 TO 6@%

J@EB RUN gfx2("palette" ,MOD(time,15)+1,8$24)
7198 RUN gfx2("palette" ,MOD(time-1,15)+1,¢)
9127 FOR i:=1 TO 1¢¢

9137 NEXT i

@142 NEXT time

@14D RUN gfx2("defcol")

@15B RUN gfx2("color",1,#,2)
9171 END

9173 DATA 20,29

@17D DATA 5¢,25

g187 DATA 8,35

9191 DATA 11¢,58

#19B DATA 148,79

PL1AS DATA 178,95

J1AF DATA 20@,125

@1B9 DATA 230,160

g1cs3 DATA 260,125

@1CE DATA 298,95

g1D9 DATA 319,7¢

@1E4 DATA 34@,50

PLEF DATA 37@,35

F1FA DATA 40¢,25

22095 DATA 43@,29

The animation can be so fast that the motion blurs. We put
a delay loop in the program to slow it down to where the motion
is visible.

177

Colors are not placed directly on the screen. First, colors are
chosen and placed on the palette. The colors on the palette can
be used on the screen. The palette lets OS-9 offer you a wide
choice of colors without using an impossible amount of memory
to store a screen. Don’t look at the palette as a trick that restricts
you to 16 colors. Look at it as a trick that lets you have more than
16 colors to choose from. It also invites you to do some interesting
animation tricks.

§Q

178

CHAPTER 12

getting serious: a screen-
oriented text editor

So far our programs have been simple enough that we could
almost have replaced their code with a bunch of PRINT statements.
Now we are ready to tackle a program that has much less
predictabie behavior.

A serious, full-featured, text editor is a big project, but it is
surprisingly easy to write a simple screen-oriented editor.

A text editor is used to enter and modify text. A screen-
oriented text editor gives you a screen of text and lets you modify
itonthe screen. If you wantto change aword, you move the cursor
tothe word and type its replacement. Creating new text is a special
case; you are replacing empty space with new text.

A good editor uses the screen as a window on the file. When
you try to move the cursor off an edge of the screen, it moves the
window. This feature lets editors handle more text than can fit on
one screen. For example, moving the cursor down from the last
line on the screen moves the cursor onto a line that used to be
right below the screen. It also changes the screen so the new line
is displayed.

179

OUR FIRST SCREEN EDITOR

We want to start with the simplest screen editor we can

o imagine and see where it takes us. The simplest possible screen

&£ editor limits itself to one screen. The data is stored in a 24-by-

80 array that is painted directly onto the screen. The coordinates

of the cursor on the screen are the same as the coordinates of
the current location in the array.

We aren’t going to give this editor any way to get at disk files.
It simplifies the program, but it makes it almost useless as a text
editor. It's as if BASIC09 didn’t have a load or save command. This
is such an important omission that it isn’t fair to call the program
a text editor; we'll call it a “scratchpad” program.

So far we've only been listing things our program won't do.
What do we hope to achieve with this Scratchpad? The answer
is, as little as possible. We need to display a screen full of blanks,
allow characters to be entered anywhere on the screen, and make
the cursor keys work. We also need a way to stop the program.

We are going to assume that you are using a 24-line by 80-
column window. If you choose to use a smaller window, you will
need to go through the procedures that make up ScratchPad,
changing numbers like 80, 79, 24 and 23 to the smaller numbers
that give the dimensions of the window you are using.

THE SCREEN DATA STRUCTURE

The matrix that holds a screen of data will either look like this:
DIM Screen(24,8@) : BYTE
this:
DIM Screen(24,80) : STRING[1]
or this:
DIM Screen(24) : STRING[89]
Making the right choice may be important. The wrong data
structure could make the program needlessly complicated or
slow. There is only one way to find the right option. We will

experiment.

Let’s start by filling the screen data structure with blanks and
displaying it. First with an array of bytes.

180

THE LISTING: Paint_1
PROCEDURE Paint 1

goag DIM Screen(24,8@):BYTE
pp1p DIM x,y:INTEGER

gg1B BASE ¢

991D FOR y:=§ TO 23

992D FOR x:=@ TO 79

@a3D Screen(y,x)=ASC(" ")
ggap NEXT x

g@58 NEXT y

pp63

gg64 FOR y:=@§ TO 23

9974 RUN gfx2("curxy",#,y)
7989 FOR x:=@ TO 79

2999 PRINT CHR$(Screen(y,x));
PPA6 NEXT x

P@B1 NEXT y

The procedure doesn’t look bad, but it's intolerably slow. It
takes about 15 seconds to display the screen! Usually we ignore
speed at this stage because speed is the last thing a programmer
should worry about. It’s not that speed isn’'t important, just that
it only makes sense to try to improve a correct program. It makes
no sense to worry about the speed of a program that may not even
work.

We are dealing with an exception to the rule. This procedure
is correct, but so slow that it can be thought of as broken unless
we can make it faster. :

The procedure had to convert bytes to characters with the
CHR$ functionin the loop that printed the screen. We can eliminate
that conversion; the BASIC09 PUT statement will print a byte as a
character without conversion. Let’s see if it works any better:

THE LISTING: Paint_15
PROCEDURE Paint 15

29099 DIM Screen(24,8%):BYTE
gg1g DIM x,y:INTEGER

pg1B BASE ¢

gg1D FOR y:=@ TO 23

@92D FOR x:=@ TO 79

g@3D Screen(y,x)=ASC(" ")
gg4D NEXT x

g958 NEXT y

9963

gp64L FOR y:=@ TO 23

@974 RUN gfx2("curxy",d,y)
gg89 FOR x:=@ TO 79

@999 PUT #1,Screen(y,x)
PPA9 NEXT x

gIB4L NEXT y

181

Using PUT instead of PRINT and getting rid of the CHR$
conversion might have added a whisker of speed, but not enougt
to matter. Maybe it will be faster with no conversions at all. Let’s
try the 24-by-80 array of strings.

THE LISTING: Paint_2

PROCEDURE Paint 2

2000 DIM Screen(24,88):STRING[1]
gg15 DIM x,y:INTEGER

9820 BASE @

9922 FOR y:=@ TO 23

gp32 FOR x:=@ TO 79

gp42 Screen(y,x):=" "
g@51 NEXT x

g@5¢c NEXT y

ga67 FOR y:=@ TO 23

gg77 RUN gfx2("curxy",d,y)
g@8c FOR x:=@ TO 79

299cC PRINT Screen(y,x);
gons NEXT x

ggB3 NEXT y

It takes almost exactly as long as our first experiment. Let’s
see if treating lines as long strings works better:

THE LISTING: Paint_3

PROCEDURE Paint 3

9089 DIM Screen(24):STRING[8¢]
g911 DIM x,y:INTEGER

gg1c BASE @

Po1E FOR y:=@ TO 23

@@2E Screen(y):=""

2239 FOR x:=@ TO 79

2949 Screen(y) :=Screen(y)+" "
#@5C NEXT x

9967 NEXT y

gg72 FOR y:=@ TO 23

gg82 RUN gfx2("curxy",@d,y)
P@97 PRINT Screen(y);

POAQ NEXT y

This test procedure seems a little simpler than the others. It
also runs a bit faster. It actually displays the data quite a bit faster,
but it takes longer to initialize the array than the other experimen-
tal procedures did.

We can live with slow initialization if we must. We’ll be
displaying the screen more often than we’ll be initializing it
However, we are probably on the wrong track. The screen display
is the fastest we have managed yet, but it’s still too slow. We need
to find a different approach.

182

It would be easier to tolerate the time we spend displaying
data if interesting things were appearing on the screen, but all we
have seen is a wonderfully slow way to clear the screen. Maybe
we should just clear the screen with the gfx2 CLEAR function. We
know it is fast and correct.

We have found a way to display an empty screen fast, but we
still need to choose the data type for the screen array. Our first
set of experiments told us:

® Bytes aren’t the natural data type for printable data.

® The ASC and CHR$ conversions reminded us that BASIC09 likes
to keep characters in strings.

® An array of STRING[1] behaves like an array of bytes except that
no conversions are needed.

® An array of STRING[8@] is easier to display than the other data
structures.

Keeping the screen in an array of bytes didn’t seem to offer
any advantages so we can tentatively eliminate bytes from
consideration. Now we have only two structures to decide
between.

An experiment that requires us to change the data in the
screen data structure and display the resuit might help us decide.
Let's try to draw a diagonal line down each screen and display
the result.

THE LISTING: Exp_1
PROCEDURE Exp 1

2900 DIM Screen(24,8@):STRING[1]
@15 DIM x,y,i:INTEGER

g9@24 BASE ¢

9926 FOR y:=@ TO 23

ga36 FOR x:=@ TO 79

2946 Screen(y,x):=" "

@355 NEXT x

goeg NEXT y

PP6B FOR y:=@ TO 23

gg7B Screen(y,y) :="#"

go8A NEXT y

2995 RUN gfx2("clear™)

PIA2 FOR y:=@ TO 23

ggB2 FOR i:=@ TO 79

g@c2 EXITIF Screen(y,i)<>" " THEN
ggD5 RUN gfx2("curxy",¥,y)
JPEA FOR x:=¢ TO 79

PAFA PRINT Screen(y,x);
91906 NEXT x

g111 ENDEXIT

g115 NEXT i

g129 NEXT y

183

It works, but doesn’t look elegant. It isn’'t very fast either.
Using one string per line looks like this:

THE LISTING: Exp_2

PROCEDURE Exp 2

g009
go1l
goLc
PP1E
PP2E
g939
p949
ggsc
9967
p972
pp82
gIAA
goBS
ggc2
9902
PPE2
PoF8
gigp
g116
P11A
p125

DIM Screen(24):STRING[8¢]
DIM x,y:INTEGER
BASE ¢
FOR y:=@¢ TO 23
Screen(y):=""
FOR x:=§ TO 79
Screen(y) :=Screen(y)+" "
NEXT x
NEXT y
FOR y:=@ TO 23
Screen(y) :=LEFT$(Screen(y),y)+"#"+RIGHT$ (Screen(y),8%-(y+ 1))
NEXT y
RUN gfx2("clear")
FOR y:=¢ TO 23
FOR x:=1 TO 8¢
EXITIF MID$(Screen(y),x,l)<>" " THEN
RUN gfx2("curxy",?,y)
PRINT Screen(y);
ENDEXIT
NEXT x
NEXT y

We can make itlook a little better by defining a constant string
of 80 blanks.

THE LISTING: £xp_3

PROCEDURE Exp 3

pegg
gg11
g91D
9924
9926
g@2B
g@3B
pp47
p@52
9962
go8A
$@95
9PA2
#@B2
ggc2

DIM Screen(24):STRING([8@]
DIM Blanks:STRING[8@]
DIM y:INTEGER
BASE @
READ Blanks
FOR y:=@ TO 23
Screen(y) :=Blanks
NEXT y
FOR y:=@ TO 23
Screen(y) :=LEFT$(Screen(y),y)+"#"+RIGHTS$ (Screen(y),80-(y+ 1))
NEXT y
RUN gfx2("clear")
FOR y:=@ TO 23
IF Screen(y)<>Blanks THEN
RUN gfx2(“curxy",{#,y)

184

g@D7 PRINT Screen(y);

goED ENDIF
ggE2 NEXT y

gPED DATA "
1"

That's probably about as good as we're going to get. We
should worry about the messy equation we had to use to replace
blanks with #'s, but, if we find out later that representing lines as
strings is the wrong choice, we can change our minds.

CONTROLLING THE SCREEN

Now that we have a data structure for the screen and we know
how to initialize it and display it, we are ready to decide how to
change it.

We'll choose the F1 key as the quit button. Now, we need to
watch for an F1 (1o end the ScratchPad program), but we can
ignore all other non-printable characters.

The outline of this superbly stupid ScratchPad program is:

Initialize ScreenData
Clear the screen
Get an input character
While the input isn’t an F1
Print the character on the screen
Store the character in the right place in ScreenData

We can steal the code for the first two steps from our last
experimental procedure. The rest of the outline looks reasonable
except the last line. That will probably be very ugly. Let's plan to
hide it in a special procedure where we won’t have to look at it.
While we're at it, we’ll shove several other problems into
procedures.

Delegating work to other procedures sounds like cheating,
but it is a highly respected technique. Difficult problems just melt
away when you keep dividing them into a few sub-problems and
handing them to other procedures.

The first version of ScratchPad looks like:

THE LISTING: Scratchpad_1

PROCEDURE ScratchPad 1

o999 DIM ScreenData(24):STRING[8(]
9911 DIM Blanks:STRING[8(]

gg1D DIM InChr:STRING[1]

3929 DIM x,y:INTEGER

@g34 BASE ¢

185

P@36

9937 READ Blanks

g@3cC FOR y:=@ TO 23

ggac ScreenData(y) :=Blanks

gg58 NEXT y

gg63 SHELL "tmode -pause -echo -1f"
207D RUN gfx2("clear")

F@8A x:=@

pp91 y:=p

gg98

9999 GET #@,InChr

PPA2 WHILE InChr<>CHR$($Bl) DO
ggBY IF InChr>=" " THEN

@@BD RUN UpdScreenData(ScreenData(y),x,y, InChr)
@9D9 PRINT InChr;

P@DF X:=x+1

JQEA ELSE

JOEE RUN ApplyArrow(InChr,x,y)
#1092 ENDIF

9104 RUN WrapXY(x,80,y,24)

7119 RUN gfx2("curxy",x,y)

9139 GET #¢,InChr

9139 ENDWHILE

913D

@13E SHELL "tmode pause echo 1f"
g155 END

g157 DATA "

"

We need to write three procedures to handle the work that
ScratchPad delegates:

THE LISTING: UpdScreenData
PROCEDURE UpdScreenData

goog PARAM Line:STRING[8§]

gagc PARAM x,y:INTEGER

2917 PARAM InChr:STRING[1]

gg23 Line :=LEFT$(Line,x)+InChr+RIGHTS$ (Line,8@- (x+1))

THE LISTING: ApplyRrrow_1

PROCEDURE ApplyArrow

g909
9936
gp48
9949
PQTE
PPIF
PPAB
P9B6

(* Change x and y coordinates in response to keys that
(* move the cursor

(* So far we ignore all the cursor control characters
(* so this procedure does nothing

PARAM InChr:STRING[1]

PARAM x,y:INTEGER

END

186

THE LISTING: WrapXy_1

PROCEDURE WrapXY

_

000 PARAM x,xlimit,y,ylimit:INTEGER
g@13 IF x>=xlimit THEN
gg29 x:=f

9927 y:=y+l

#9932 ELSE IF x<@ THEN
9941 x:=xlimit-1
994G y:=y-1

@957 ENDIF

#9959 ENDIF

@@5B IF y>=ylimit THEN
g968 y:=g

PI6F ELSE IF y<¢ THEN
@@7E y:i=ylimit-1
9989 ENDIF

P98B ENDIF

Finally we have a working screen editor. It is even fast. Now
we can add some brains.

The ApplyArrow procedure is empty. Eventually we’ll deal
with all the cursor movement keys there, but let’s start by dealing
with the ENTER key.

We need to make the ApplyArrow procedure change X and
Y when it is passed the ENTER (carriage return) character in InChr.
ENTER usually moves the curscr to the beginning of the next line.
Rephrasing that in terms of X and Y: The effect of the ENTER key
is to set X to zero and add one to Y.

The enhanced ApplyArrow function is:

THE LISTING: ApplyArrow_2
PROCEDURE ApplyArrow

9009 (* Change x and y coordinates in response to keys that
gg36 (* move the cursor

gp4s8

2949 (* So far we ignore all the cursor control characters
@@7E (* so this procedure does nothing

GI9F PARAM InChr:STRING[1]

PPAB PARAM x,y:INTEGER

g@B6 IF InChr=CHR$($@D) THEN

gacs x:=0

@@cB y:=y+1

gogD6 ENDIF

ggD8 END

That wasn’t hard at all! ScratchPad is getting noticeably
smarter, but unless your typing is better than ours, you have

187

0

noticed a serious need for a working backspace key. While we're
in there, we'll install code for all four arrow keys.

We need to refer to Appendix C in the 0S-9 Commands
reference section of your manual for the codes that the arrow keys
send. We find that each arrow key can send three different codes
by using the SHIFT and CONTROL keys. All the arrow keys together
can generate 12 different codes. We could use 12 BASIC09 IF - THEN
statements to handle the codes, but that seems clumsy. We will
look for a better solution.

THE LISTING: ApplyArrow_3
PROCEDURE ApplyArrow

po0g (* Change x and y coordinates in response to keys that

2236 (* move the cursor

gpas

2049 (** So far we ignore all the cursor control characters

PP7E (* so this procedure does nothing

gP9F PARAM InChr:STRING[1]

F9AB PARAM x,y:INTEGER

g@B6 IF InChr>=CHR$(8) AND InChr<=CHR$($1C) THEN

ggcce ON ASC(InChr)-7 GOSUB 1¢,28,39,200,409,5¢,200,299,698,79,89
,99,200,200,200,200,119,129,130,200,149

g12B ENDIF

g12D END

g12F 1¢ REM Backspace

@13E x:=x-1

g149 RETURN

PL4B 20 REM Forward arrow

@15E x:=x+1

#169 RETURN

@16B 3¢ REM Down

#175 yi=y+l

9189 RETURN

@182 49 REM Up

g18A y:=y-1

g195 RETURN

@197 5¢ REM Enter

@1A2 x:=0

P1A9 GOSUB 3¢

P#LAD RETURN

@1AF 68 REM cntl backspace
g1Cc3 7¢ REM cntl forward arrow
g1DB 8¢ REM cntl Down

P1EA 99 REM cntl Up

@1F7 119 REM shift backspace
@20C 12¢ REM shift forward arrow
#225 139 REM shift Down

@235 140 REM shift Up

9243 299 REM Undefined

§252 RETURN

9254 END

188

The ON-G0SUB statement is useful in situations like this. When
you have many numbered options to choose between, ON-GOSUB
gives you a compact way to write it down. The statement got a
bit long. It's hard to type it correctly, and painful to fix errors, but
it saved us at least 24 lines of boring code.

We now have full support for typing and moving the cursor
around on the screen. This is enough power to uncover an
unfixable bug. See if you can find it.

Run ScratchPad and move the cursor to the lower-right
corner of the screen. Try to type a letter there. It is impossible.
Every time you type a letter in that position, the screen scrolls up
a line. We did everything we could to prevent this problem, but
it's still there. We have to work around it by taking a little bite out
of the lower-right corner of the screen. There is no way to get the
program to put a character in that corner, but there is a way to
prevent a user from trying to type there and making the screen
scroll. We have to modify the WrapXy procedure so it will refuse
to let the cursor move to the impossible position. The updated
procedure looks like:

THE LISTING: WrapXY
PROCEDURE WrapXY

gago PARAM x,xlimit,y,ylimit:INTEGER
gg13 (* Make the lower right corner of the screen
P@50 IF x=xlimit-1 AND y=ylimit-1 THEN
gg6B x:=x+1

2976 ENDIF

pg78 IF x>=xlimit THEN

gp85 x:=0

ggsc y:=y+l

p@97 ELSE IF x<@ THEN

[N x:=x1limit-1

4981 yi=y-1

g@BC ENDIF

J9BE ENDIF

ggcg IF y>=ylimit THEN

99cD y:=@

A9D4 ELSE IF y<@ THEN

PPE3 y:=ylimit-1

PPEE ENDIF

POFQ ENDIF

We didn’t need to do much. We just bumped the cursor over
the spot at the beginning of WrapXyY and let the rest of the
procedure move it to the upper-left corner of the screen.

We've created a ScratchPad program that doesn’t do much,

but does that very nicely. You could run it in an extra window and
keep notesin it. They would last aslong as you left the ScratchPad

189

"out of bounds."

program running, and you could refer to them by bringing up the
ScratchPad window with the CLEAR key.

We demonstrated two principles in this chapter: experimen-
tation and decomposition. They are both important techniques
when you tangle with a big problem.

When you don’t immediately see the right way to approach
a problem, don’t give up. Don’t just close your eyes and pick a
direction either. Play around. The procedures that you throw out
aren’t mistakes, they're experiments.

Decomposition is the art of breaking a large problem into a
collection of smaller problems. If a problem looks messy, or even
impossible, break it into pieces. The pieces may be easier to solve
than the big problem. If the pieces still look difficult, break up the
pieces.

Each of the procedures we used to build the ScratchPad
problem is reasonably simple. The program would have worked
as nicely if the entire thing was wedged into one procedure, but
it would have been harder to design and much harder to
understand.

)
% \

Y,

A}

190

CHAPTER 13

souping up scratchpad

In the last chapter we built a primitive screen editor. In this
chapter we’ll try to give it enough power to be useful. This chapter
will be a little different from the previous chapters about
programming. We’re not going to create a new program. Instead,
we’ll enhance an old one.

Building from a working base program is a reliable way to
build elaborate programs, but there is a special art to it. When you
add features to a program, you want to do it with the least possible
disturbance. Sneak your change into the program. Imagine that
someone is guarding the code, and you want to make changes
so subtle they won't be noticed. This isn’t always possible. Some
changes will require major surgery, and sometimes you will find
irresistible ways to improve the base program.

While we're modifying Scratchpad, we will have several
opportunities to design window support into the program. We will
take the opportunities. Support for windows is one of the nice
things about OS-9 on the Color Computer. If you've got it, flaunt
it!

191

GOALS

GOING BEYOND ONE SCREEN

We have two goals for the enhanced ScratchPad:

® |t should be able to load and save files.
e |t should handle more than one screen full of text.

The most important feature missing from last chapter’s
ScratchPad program was support for files. You couldn’t load a file
for editing or save the result. We would like to fix that deficiency
if we can.

Once we can edit files, we will feel tempted to work with files
that are more than 24 lines long. Even a short letter is likely to
use more than 24 lines of text. If we want the program to deserve
the name ScratchPad, we should give it something like the
usefuiness of a scratchpad. It should either support something
like sheets that can be torn off and saved or a longer page.

The biggest window we can fit on a Color Computer’'s screen
is 24 lines by 80 columns. In the last chapter we pictured an array
of strings glued to the window. The location of the cursor in the
window was exactly the same as current location in the array. This
picture only works if all the text can fit in one window. if we want
to edit more text than can fit in a window, we will need to invent
a different way of looking at the window.

In order to let a user see more than a 24-by-80 block of text,
the window must be able to move over the text. We will design
our editor so when the cursor moves to a line that isn't visible
through the window, the window will move to keep the cursor
visible.

The moving window idea can handle unlimited amounts of
text. Lines can be any width, and there can be any number of them.
The idea can handle unlimited text, but the Color Computer can’t.
The limitation is memory. Even if we limit the lines to 80 columns,
100 lines of text need 8,000 bytes of memory.

We might be able to find enough memory for 400 lines if we
limit them to 80 characters, or about 300 if we let the lines go to
100 characters. The way BASIC09 stores strings makes the
maximum length important even when the string is empty. A
variable declared as STRING[B8@] can hold strings with lengths
ranging from zero to 80 characters, but it always uses 80 bytes
of memory.

We could get tricky and pack many lines into one string, but

we won't. We will plan (o edit up to 100 lines of text, and we will
storethe textinasimple array of strings. Naturally, we will suggest

192

that you look for a better way to store the lines as a possible
enhancement.

The editor operates on an array of lines in memory. We want
to be able to read data into that array from a disk file or write the
array out to a disk file. The basic idea is easy; (while there is more
data in the file and more room in the array) to read a file into the
array, we need to:

® Read a line or 80 characters (whichever comes first)
® Pad the line out to 80 characters

Notice the details. Details are the crucially important drudge-
work of programming.

® We stop reading when there is nothing left to read or when the
array is full.

® A line in the array is a line from the file but no more than 80
characters.

® We always make sure that the strings in the array are filled.

The last detail is the trickiest. The rule that ail lines must be
exactly 80 characters long is descended from last chapter’s
version of ScratchPad. We didn't make a fuss about the rule
(though we were careful about it), but we did build it into the code.
Look at UpdScreenData. The statement there wouldn’t work if lines
could be anything other than 80 characters long.

Files aren’t as fussy as ScratchPad’'s data array. We can store
many lines on a disk, and they can be any length. We could write
the entire array with one PUT statement, but the file would appear
to be a single tremendous line. The ScratchPad program could
use it, but other programs would not be amused.

We don’t need to be careful about writing files, but it makes
sense not to be wasteful. There may be a number of empty lines
at the end of the array. We can save disk space by writing
everything up to the last line with data in it, then stopping. We
can save more disk space by trimming the blanks off each line
before we write it.

A user may want to load and save files at any time. We will
let him do that by pressing a key and naming an operation. This
is why we've been saving the F2 key. The user will press the F2
key and a menu will appear in an overlay window. There’ll be a
pointer in the menu that indicates the operation ScratchpPad is
ready to perform. The user can move the pointer through the menu

193

SUPPORTING FILES

A WINDOW WITH TRIMMING

AND NOW THE PROGRAM

like a finicky eater choosing a meal. Pressing the F2 key again
orders a service from the menu. Pressing F1 leaves the menu
without making a selection.

The OS-9 window support makes it easy to build this type of
menu into a program. The general idea is to use the owset function
to open an overlay window, display the menu in the overlay
window, put a graphics cursor in the window, and let the user
move the graphics cursor until we read a function key, then
perform the requested operation.

The actual procedure that will handle the menu is almost as
simple as the outline. The tricky part of designing the procedure
is remembering details like turning the text cursor off before
turning the graphics cursor on. Two cursors in one window would
be confusing.

The main procedure for the ScratchPad program has the
same outline it had in the last chapter, but there are important
additions. We added the concept of a home line (also a variable
named Homel. ine). The x and y variables are still the location of
the cursor on the screen. HomelL ine is the line number of the first
line on the screen. Initially, x, y and HomelL ine are all zero. That
means that the cursor is in the upper-left corner of the screen and
that the top line on the screen is the first line in the ScreenData
array. HomelL ine keeps track of the window’s position in the
ScreenData array as the window moves up and down through the
array.

THE LISTING: ScratchPad

PROCEDURE ScratchPad

gp99
9933
PP6A
PPIF
ggce
g9D7
POE3
gIF2
PoF9
gPFB
ggFC
g1Lpe
§137
g16c
p19D
g102
§1DF

(* The top level routine of a simple editor program

(* The constant, 1@@, is the number of lines the editor
(* can handle. It appears throughout this program as
(* 180 or 99 (the last entry in BASE {)

DIM ScreenData(1@@):STRING[8(]

DIM InChr:STRING[1]

DIM x,y,HomeLine:INTEGER

DIM Scroll:BOOLEAN

BASE ¢

RUN ClearBuf(ScreenData)

(* Modify the terminal mode to suit this program.

(** We want to echo characters from the program, so we
(* tell 0S-9 not to echo. We also don't want 0S-9

(* pausing the display when it thinks a page has been
(* displayed.

SHELL "tmode -pause -echo "

194

g1F6 RUN gfx2("clear")

2293 x:=@ \y:=@ \HomeLine:=f¢

9218

$219 (* The Main loop. It reads data and commands and
g24A (* sends them to other procedures for handling.
9279 GET #@,InChr

g282 WHILE InChr<>CHR$($Bl) DO

9299 IF InChr>=" " AND InChr<CHR$($8¢) THEN

@2A6 RUN UpdScreenData(ScreenData(y+HomeLine),x,y,InChr)
g2ce PRINT InChr;

ga2cce x:=x+1

§2D7 ELSE

g2DB RUN ApplyArrow(InChr,x,y)

@2EF ENDIF

@2F1 RUN ScrollXY¥(x,79,y,23,HomeLine,99,Scroll)
g313 IF Scroll THEN

@g31c RUN ScrollScreen(ScreenData,y,23,HomeLine)
#333 ENDIF

9335 RUN gfx2("curxy",x,y)

@34C IF InChr=CHR$($B2) THEN \REM F2

@35F RUN FileMenu(ScreenData,x,y,HomeLine)

9378 ENDIF

@37A GET #@,InChr

@383 ENDWHILE

@387 RUN QuitMenu(ScreenData,x,y,HomeLine)

P3AP SHELL "tmode pause echo "

Moving the cursor around can now include scrolling the
display to bring new lines into the window. This is similar to what
WrapXY¥ used to do, but different enough that we designed a new
procedure named Scrollxy to handle it. ScrollXxyY needs more
information than WrapX¥: x, maximum x, y, maximum y, Homel ine
and number of lines in ScreenData. It sets a boolean variable,
Scroll, to tell ScratchPad whether the cursor has gone off the
screen.

If Scroll is true, ScratchPad knows that HomelLine and the
screen display need to be updated. The problem sounds hard, so
it gets shoved off to another procedure, ScrollScreen.

ScratchPad watches for the F2 key. If it reads the F2 code, it
calls a procedure that deals with files. ScratchPad also calls a
limited version of the file-handling procedure when the user asks
the program to quit. This gives the user a last chance to save the
file he’'s been working on before ScratchPad ends and the data
disappears.

The ScrollXy procedure is a modified version of Wrapxy. It
handles values of x just as WrapXy did, but it has to think harder

195

WATCHING FOR SCROLLING

about y. If y tries to run below 0 or above 23, Scrol1XY looks for
a chance to scroll.

When HomeLine is 0 and y goes negative, the user is trying
to move the cursor into the void before the beginning of
ScreenData. We can’t let that happen, so we use the WrapXY trick;
we drop the cursor to the bottom of the screen. When Scrol IXY
detects that the last line in ScreenData is on the screen (Homel ine
is 76), it won't permit the cursor to move beyond the end of the
screen. Again it uses the trick from Wrapxy.

THE LISTING: ScrollXxy

PROCEDURE ScrollXY

9909
g913
g91A
g921
9928
9965
9974
9985
g987
9988
9995
g99¢
gpA7
g9oB6
PPBE
g9c9
g@cB
goCD
@YCE
PICF
#9oD5
@PEE
PPF4
PPFF
gLaa
glag
p126
g131
g13c
P13E
g1Lag
§14D
P154
p163
g16B
g16D

PARAM

x,xlimit,y,ylimit: INTEGER

PARAM Home : INTEGER
PARAM MaxLines:INTEGER
PARAM Scroll:BOOLEAN
(¢ Make the lower right corner of the screen "out of bounds."
IF x=xlimit AND y=ylimit THEN
x:=x+1

ENDIF

IF x>x1limit THEN
1=
yi=y+l
ELSE IF x<@ THEN

b4
y

r=xlimit
r=y-1

ENDIF

ENDIF

Scroll:=FALSE
IF y>ylimit AND Home<MaxLines-ylimit THEN
Scroll:=TRUE
Home :=Home+1
yi=y-1
ELSE IF y<@ AND Home>@ THEN
Scroll :=TRUE
Home :=Home -1

y

t=y+1

ENDIF

ENDIF

IF y>ylimit THEN

yi=g
ELSE IF y<@ THEN

y

r=ylimit

ENDIF

ENDIF

196

When ScrollXy calls for scrolling, ScratchPad runs Scroll-
Screen.

THE LISTING: ScrollScreen

PROCEDURE ScrollScreen

pa3 PARAM Lines(99):STRING[8#]

#9911 PARAM y,ScreenSize:INTEGER

gg1c PARAM HomeLine:INTEGER

gg23 BASE ¢

g925 IF y=@ THEN \REM Scroll Top

@@3E RUN ScrollTop(Lines(HomeLine))

9948 ELSE

J@4F RUN ScrollBottom(Lines(HomeLine+ScreenSize),Lines(HomeLine

+(ScreenSize-1)))
gP6F ENDIF
9871 END

ScrollScreen decides which direction to scroll by seeing
whether the cursor is at the top of the screen or the bottom. It
runs other procedures to do the scrolling. The procedure called
ScrollBottom takes two parameters: the line to scroll onto the
bottom of the screen and the line that's currently at the bottom
of the screen. Why? Let’s look at ScrollBottom.

THE LISTING: ScrollBottom

PROCEDURE ScrollBottom

009 PARAM Line:STRING[8¢]

gggc PARAM OneUp:STRING([80]

9918 RUN gfx2("curxy",79,23)

928 PRINT RIGHT$(OneUp,1); LEFT$(Line,79);
gg3B END

Another detail: Remember the trick we played with the lower-
right corner of the screen? We couldn’t print a character there
without causing unwanted scrolling, so we didn't try. Now we’re
about to move the bottom line on the screen up one line. The
bottom line is missing its last character, the one that fell in the
lower-right corner of the screen. We have to stick the character
back on the line when we move it from Line 23 to Line 22. That's
why we need two lines in Scrol1Bottom.

ScrollTop has a small trick too. It has to scroll backward —
adding new lines at the top of the screen. It uses the gfx2 INSLIN
function to insert a blank line at the top of the screen, then it filis
the line in. It is fortunate that OS-9 gives us INSLIN. If we didn’t
have this function, we would have to redisplay the whole screen
every time a line scrolled in from the top. It would have been
impressively slow.

197

THE LISTING: ScrollTop

PROCEDURE ScrollTop

g0 PARAM Line:STRING[8(]
ggg@c RUN gfx2("curxy",@,9)
@O1F RUN gfx2("inslin™)
g@2D PRINT Line;

@33 END

When ScratchPad reads the F2 character, $82, it calls
FileMenu. We discussed the operation of FileMenu earlier. It puts
up an overlay window and lets the user move a graphics pointer
around in it, then it performs the selected operation. Here's how
it goes:

THE LISTING: FileMenu

PROCEDURE FileMenu

2000 PARAM ScreenData(1@g):STRING[8(]
P11 PARAM x,y,HomeLine:INTEGER

ga29 DIM c:BYTE

@927 DIM i,selection:INTEGER

g@32 DIM filename,Blanks:STRING[8@]
2942 DIM s:STRING([1¢]

@PLE BASE ¢

2950 Blanks:="

goAT7 RUN gfx2("owset",1,0,%,10,6,0,1)
gace RUN gfx2("curoff")

g7 FOR i:=1 TO 5

POET READ s

PPEC PRINT s

goF1 NEXT i

@PFC DATA "File Menu","Load","Save","Clear","Exit"
9129 RUN gfx2("gcset",202,1)

g13C selection:=@

@143 REPEAT

g145 RUN gfx2("putge",5@,1@+selection¥8)
@15F GET #f@,c

9168 IF c=$¢A THEN \REM down arrow
9182 selection:=MOD(selection+l,k4)
219g ENDIF

9192 UNTIL c=$Bl OR c=$B2

g1A6 RUN gfx2("owend")

#1B3 IF c=$B2 THEN \REM f2 Expand
g21¢D ON selection+l GOSUB 1¢,20,30,40
@1E7 ENDIF

P1E9 END

@1EB 1¢ REM Load a file

g1FC RUN GetFName(filename)

g206 RUN ReadFile(filename,ScreenData)

198

g215 HomeLine:=@ \x:=0@ \y:=§

g22A RUN PaintScreen(ScreenData)
P234 RETURN

@236 29 REM Save a file

2247 RUN GetFName(filename)

@251 RUN WritFile(filename,ScreenData)
@269 RETURN

@262 3¢ REM Clear workspace

@277 RUN ClearBuf(ScreenData)
@281 HomeLine:=@ \x:=@ \y:=0
2296 RUN PaintScreen(ScreenData)
g2ag RETURN

@2A2 49 REM exit

P2AC RETURN

The FOR loop that reads menu items and prints them in the
menu is interesting. This loop is an attractive way to display a
constant menu, but it either tries to print everything on one line
or puts a carriage return after each line. We chose to put a return
after each line. A carriage return after the last line will make the
text in the overlay window scroll up unless there is an extra line
in the window. We put an extra line in the window. It's ugly, but
it works.

The GCSET function selects a graphics cursor. The numbers
in the call select a diagonal arrow. Since we are using a graphics
cursor, you will have to merge the StdPtr file with a window. If
you don’t, GCSET will fail when it can’t find the cursor description.

Errors at this point are nasty. You are in a tiny window and
echo is turned off. If by some chance you getan errorinFileMenu,
you will want to return the screen to normal. At the D: prompt
(which may be hard to find in the mess on the screen) type:

$display 1b 23
$tmode echo

The first command will close the overlay window and drop
you back into the big window. The second command will turn
echo back on so you can see what you are typing.

The REPEAT loop in FileMenu ignores all input except down
arrows, F1and F2. The down arrow moves the pointer. The function
keys leave the loop.

The file menu can select one of four options: Load a file, Save
a file, Clear the workspace, or Exit. Exit is a second escape from
the menu. A user can select no operation from the file menu by
pressing the Ft1 key or selecting Exit. The other functions are all
performed by other procedures.

199

THE LISTING: GetFName
PROCEDURE GetFName

099 PARAM filename:STRING[8J]

gggc RUN gfx2("owset",1,0,%,80,2,3,2)
@@2E RUN gfx2("curon")

g93B SHELL "tmode echo"

2049 PRINT "Name of file?"

@P5A INPUT filename

@O5F SHELL "tmode -echo"

PP6E RUN gfx2("owend")

gP7B END

THE LISTING: ReadfFile

PROCEDURE ReadFile

g909 PARAM filename:STRING[80]

ggac PARAM ScreenData(1@@):STRING[8§]

991D DIM LineNo:INTEGER

9024 DIM Path:BYTE

gP2B DIM Blanks:STRING[80]

2937 DIM c:STRING[1]

g@43 BASE ¢

gaas Blanks:="

2@9C RUN ClearBuf(ScreenData)

JPAG OPEN #Path,filename:READ

g@B2 LineNo:=¢

@089 ScreenData(g) :=""

29C3 WHILE NOT(EOF(#Path)) AND LineNo<1@@ DO

@9D5 GET #Path,c

J@DF IF LEN(ScreenData(LineNo))>=8¢ OR c=CHR$($@D) THEN

QPF8 ScreenData(LineNo) :=ScreenData(LineNo)+LEFT$(Blanks, 8§-
LEN(ScreenData(LineNo)))

g116 LineNo:=LineNo+1l

@121 ScreenData(LineNo) :=""

@12¢ ELSE

9139 ScreenData(LineNo) :=ScreenData(LineNo)+c

2143 ENDIF

@145 ENDWHILE

9149 CLOSE #Path

@14F END

THE LISTING: WritFile
PROCEDURE WritFile

gopg PARAM filename:STRING[8f]

29@c PARAM ScreenData(l@@) :STRING[8¢]
g91D DIM Path:BYTE

go24 DIM LineNo,i:INTEGER

Qa2F DIM Blanks:STRING[8¢]

P93B BASE ¢

200

#@3D Blanks:="

9094 CREATE #Path,filename:WRITE

GoAp FOR LineNo:=99 TO § STEP -1

g9B6 EXITIF ScreenData(LineNo)<>Blanks THEN
ggce ENDEXIT

J@CA NEXT LineNo

ggD5 FOR i:=@ TO LineNo

JPE6 PRINT #Path,TRIMS$(ScreenData(i))
GOF4L NEXT i

JPFF CLOSE #Path

9195 END

We haven’t made ScratchPad into a competitor for the world’s
best editor, but it's useful. You might find it better than the line
editor that came with OS-9.

This chapter was largely code. Don't let the bulk of it
discourage you. If you look at it procedure by procedure, it will
be more manageable. We recommend that you read the program
“top down” or “botiom up.” We discussed the program top down
starting with the ScratchPad procedure and working our way out
to the procedures it called and so forth.

If you don’t like following a program top down, try bottom up.
You start by finding procedures that don’t call any other
procedures. Since they don't call other procedures, they are said
to be at the bottom. When you understand the procedures at the
bottom, you can look at the procedures that call them. Eventually
you'll find yourself at ScratchPad.

If you can guess what procedures do from their place in the
procedure that calls them and their name, reading top down works
best. You start with the broad picture and work your way down
to details. If you have trouble taking procedures that you haven’t
read on faith, you are forced to work bottom up.

® Build complicated programs from simpler ones.

® When you are enhancing a program, make the smallest changes
that do the job. Every change carries a possible error, so keep
them to a minimum.

e [f a procedure gets unwieldy when you add to it, try to split some
of the work off into another procedure.

® Pay attention to the details. This is always important when you
are programming, but it is most important when the program
gets big.

201

PRINCIPLES

RECAP

We skipped over uninteresting parts of the ScratchPad
program. Here’s the entire program in order:

THE LISTING: ScratchPad

PROCEDURE ScratchPad

9999
9933
PP6A
PP9F
gpce
geD7
JP9E3
goF2
ggF9
PPFB
PIFC
9196
9137
g16C
919D
9102
g1DF
P1F6
9293
9218
9219
g24A
9279
9282
9299
P26
92c6
p2cc
9207
@2DB
Q2EF
§2F1
9313
931c
9333
9335
§34¢
@35F
9378
937A
9383
9387

g3Aap

(* The top level routine of a simple editor program

(* The constant, 1@@, is the number of lines the editor
(* can handle. It appears throughout this program as
(% 190 or 99 (the last entry in BASE @)

DIM ScreenData(1l@@):STRING[8F]

DIM InChr:STRING[1]

DIM x,y,HomeLine:INTEGER

DIM Scroll:BOOLEAN

BASE ¢

RUN ClearBuf(ScreenData)

(* Modify the terminal mode to suit this program.

(* We want to echo characters from the program, so we
(* tell 0S-9 not to echo. We also don't want 0S-9

(** pausing the display when it thinks a page has been
(* displayed.

SHELL "tmode -pause -echo "

RUN gfx2("clear")

x:=@ \y:=@ \HomeLine:=§

(** The Main loop. It reads data and commands and
(* sends them to other procedures for handling.
GET #@,InChr
WHILE InChr<>CHRS$(S$B1l) DO
IF InChr>=" " AND InChr<CHR$($8¢) THEN
RUN UpdScreenData(ScreenData(y+HomeLine) ,x,y,InChr)
PRINT InChr;
x:=x+1
ELSE
RUN ApplyArrow(InChr,x,y)
ENDIF
RUN ScrollXY(x,79,y,23,HomeLine,%99,Scroll)
IF Scroll THEN
RUN ScrollScreen(ScreenData,y,23,HomeLine)
ENDIF
RUN gfx2("curxy",x,y)
IF InChr=CHR$($B2) THEN \REM F2
RUN FileMenu(ScreenData,x,y,HomeLine)
ENDIF
GET #@,InChr
ENDWHILE
RUN QuitMenu(ScreenData,x,y,HomeLine)
SHELL "tmode pause echo "

202

PROCEDURE ClearBuf

[rJ0fr)] PARAM Buf (190):STRING[8¢]

9911 DIM i:INTEGER

pg18 DIM Blanks:STRING[8{]

g924 BASE ¢

2026 Blanks:="

#@7D FOR i:=@ TO 99

298D Buf (i) :=Blanks

9999 NEXT i

goAL END
PROCEDURE UpdScreenData

P009 PARAM Line:STRING[8¢]

ggac PARAM x,y:INTEGER

2917 PARAM InChr:STRING[1]

9923 Line:=LEFT$(Line,x)+InChr+RIGHTS$ (Line, 8@- (x+1))
PROCEDURE ApplyArrow

9000 (* Change x and y coordinates in response to keys that
P936 (* move the cursor

g948

2349 (* So far we ignore all the cursor control characters
P@7E (* so this procedure does nothing

PoI9F PARAM InChr:STRING[1]

PPAB PARAM x,y:INTEGER

PgB6 IF InChr>=CHR$(8) AND InChr<=CHR$($1C) THEN
ggcc ON ASC(InChr)-7 GOSUB 1¢,28,38,200,40,50,209,200,69,79,8¢

,99,200,209,209,299,110,120,13¢,209, 149

g12B ENDIF

g12D END

@12F 19 REM Backspace

@g13E x:=x-1

g149 RETURN

@14B 290 REM Forward arrow

@15E x:=x+1

g169 RETURN

@16B 3¢ REM Down p
@175 yi=y+1

g18g RETURN

g182 49 REM Up

g18a y:=y-1

g195 RETURN

@197 5¢ REM Enter

g1Aa2 x:=0

g1A9 GOSUB 3@

F1AD RETURN

@1AF 6§ REM cntl backspace
g1c3 79 REM cntl forward arrow
@1DB 8§ REM cntl Down

PlEA 99 REM cntl Up

@1F7 119 REM shift backspace

203

g2@9C 1290 REM shift forward arrow
#225 139 REM shift Down

$235 149 REM shift Up

9243 2¢9@ REM Undefined

@252 RETURN

@254 END

PROCEDURE ScrollXY

9000 PARAM x,xlimit,y,ylimit:INTEGER
go13 PARAM Home:INTEGER

PP1A PARAM MaxLines:INTEGER

9921 PARAM Scroll:BOOLEAN

9928 (* Make the lower right corner of the screen "out of bounds."
9965 IF x=xlimit AND y=ylimit THEN
Po7A x:=x+1

2985 ENDIF

pg87

pp8s IF x>xlimit THEN

2995 x:=0

ga9c yi=y+l

QoAT7 ELSE IF x<@ THEN

PPB6 x:=xlimit

9@BE yi=y-1

gac9 ENDIF

g@CB ENDIF

gaco

$9CE

P@CF Scroll:=FALSE

gens IF y>ylimit AND Home<MaxLines-ylimit THEN
@PEE Scroll:=TRUE

PPF4 Home : =Home+1

P9FF y:=y-1

g1pA ELSE IF y<@ AND Home>@ THEN
@129 Scroll:=TRUE

@126 Home : =Home - 1

g131 y:=y+l

g13c ENDIF

g13E ENDIF

P149 IF y>ylimit THEN

#14D y:=@

$154 ELSE IF y<@ THEN

7163 y:=ylimit

g16B ENDIF

g16D ENDIF

PROCEDURE ScrollScreen

9909 PARAM Lines(99):STRING[80]
9011 PARAM y,ScreenSize:INTEGER
gg1c PARAM HomeLine:INTEGER

p@23 BASE ¢

gg2s IF y=@ THEN \REM Scroll Top
P@3E RUN ScrollTop(Lines(HomeLine))
Pg4B ELSE

204

PP4LF RUN ScrollBottom(Lines(HomeLine+ScreenSize),Lines(HomeLine

+(ScreenSize-1)))

g@6F ENDIF
9071 END
PROCEDURE ScrollTop
p0900 PARAM Line:STRING[8f]
gggc RUN gfx2("curxy",¥,9)
PILF RUN gfx2("inslin")
282D PRINT Line;
2933 END
PROCEDURE ScrollBottom
2990 PARAM Line:STRING[8¢]
gogc PARAM OneUp:STRING[8¢]
go18 RUN gfx2("curxy",79,23)
g92B PRINT RIGHT$(OneUp,l); LEFT$(Line,79);
293B END
PROCEDURE FileMenu
Jefefedr] PARAM ScreenData(1@@) :STRING[8F]
gg11 PARAM x,y,HomeLine:INTEGER
gg2g DIM c:BYTE
9927 DIM i,selection:INTEGER
9932 DIM filename,Blanks:STRING[8f]
9942 DIM s:STRING[1@]
PO4LE BASE @
9959 Blanks:="
gaAT RUN gfx2("owset",1,0,0,10,6,¢4,1)
g9c9 RUN gfx2("curoff")
ggD7 FOR i:=1 TO 5
ggET7 READ s
@9EC PRINT s
goF1 NEXT i
gaFcC DATA "File Menu",'"Load","Save","Clear",6 "Exit"
9129 RUN gfx2("gcset",202,1)
@g13cC selection:=y¢
@143 REPEAT
@145 RUN gfx2("putge",5¢,1@8+selection*8)
@g15F GET #@,c
9168 IF c=$JA THEN \REM down arrow
9182 selection:=MOD(selection+l,4)
g19¢g ENDIF
g192 UNTIL c=$Bl OR c=$B2
g1A6 RUN gfx2("owend")
@1B3 IF ¢c=$B2 THEN \REM f2 Expand
g1cDh ON selection+l GOSUB 1§,20,30,40
PLlE7 ENDIF
P1E9 END
P1EB 1¢ REM Load a file
@g1FC RUN GetFName(filename)
@206 RUN ReadFile(filename,ScreenData)

205

@215 HomeLine:=@ \x:=0@ \y:=§@

@22A RUN PaintScreen(ScreenData)

g234 RETURN

g236 29 REM Save a file

g247 RUN GetFName(filename)

g251 RUN WritFile(filename, ScreenData)
g260 RETURN

g262 39 REM Clear workspace

$277 RUN ClearBuf(ScreenData)

g281 HomeLine:=@ \x:=@ \y:=0

7296 RUN PaintScreen(ScreenData)

P2A0 RETURN

@2A2 4@ REM exit

F2AC RETURN
PROCEDURE GetFName

2099 PARAM filename:STRING[8@]

g9gc RUN gfx2("owset",1,0,0,80,2,3,2)
P@2E RUN gfx2("curon")

P@3B SHELL "tmode echo"

2049 PRINT "Name of file?"

go5A INPUT filename

P@5F SHELL "tmode -echo"

PE6E RUN gfx2("owend")

@978 END
PROCEDURE ReadFile

2000 PARAM filename:STRING[8f]

gggc PARAM ScreenData(1@@):STRING[8F]
991D DIM LineNo:INTEGER

ga24 DIM Path:BYTE

g@2B DIM Blanks:STRING[8(]

9937 DIM c:STRING[1]

go43 BASE ¢

2345 Blanks:="

gg9c RUN ClearBuf(ScreenData)

goAb OPEN #Path,filename:READ

P9B2 LineNo:=§

P9B9 ScreenData (@) :=""

pggcs WHILE NOT(EOF(#Path)) AND LineNo<1@g@ DO
29D5 GET #Path,c

@gDF IF LEN(ScreenData(LineNo))>=8¢ OR c=CHR$($@D) THEN
JoF8 ScreenData(LineNo) :=ScreenData(LineNo)+LEFTS$(Blanks, 80-

LEN(ScreenData(LineNo)))

g116 LineNo:=LineNo+1l

g121 ScreenData(LineNo) :=""

glLac ELSE

g139 ScreenData(LineNo) :=ScreenData(LineNo)+c
143 ENDIF

2145 ENDWHILE

7149 CLOSE #Path

JL4F END

206

PROCEDURE PaintScreen

9990
g911
gg1D
g@24
g@25
9927
PQTE
9988
PPIB
ggBS
ggcA
pgD7
9909
PPE4
ggF7
g192
g111

PARAM Screen(1g@):STRING[87]
DIM Blanks:STRING[8¢]
DIM y:INTEGER

BASE @
Blanks:="

RUN gfx2("clear")
FOR y=@g TO 22
IF Screen(y)<>"" AND Screen(y)<>Blanks THEN
RUN gfx2("curxy",?,y)
PUT #1,Screen(y)
ENDIF
NEXT y
RUN gfx2("curxy",#,23)
PRINT LEFT$(Screen(23),79);
RUN gfx2("curhome™)
END

PROCEDURE WritFile

2909
299G
g91D
pp24
§92F
g93B
g93D
9994
gpAP
gPBE
gace
ggca
pgDs
poES
goFs4
JPFF
g1gs

PARAM filename:STRING[80]

PARAM ScreenData(1¢@):STRING[87]
DIM Path:BYTE

DIM LineNo, i:INTEGER

DIM Blanks:STRING[8(]

BASE @

Blanks:="

CREATE #Path,filename:WRITE
FOR LineNo:=99 TO ¢ STEP -1
EXITIF ScreenData(LineNo)<>Blanks THEN
ENDEXIT
NEXT LineNo
FOR i:=@ TO LineNo
PRINT #Path,TRIM$(ScreenData(i))
NEXT 1
CLOSE #Path
END

PROCEDURE QuitMenu

pp9p
po11
po18
PPLF
pg2B
p@37
9939
p@5B
pg69
gp7B
9989
pp85

PARAM ScreenData(1@@):STRING[80]
DIM c:BYTE
DIM selection:INTEGER
DIM filename:STRING[8¢]
DIM s:STRING[1f]
BASE @
RUN gfx2("owset",1,$,0,10,6,9,1)
RUN gfx2("curoff")
FOR i:=1 TO 3
READ s
PRINT s
NEXT 1

207

2999 DATA "Quit Menu"," Save as"," Quit"

@gB3 RUN gfx2("gcset",2¢2,1)

agce selection:=@

g@gcD REPEAT

J@CF RUN gfx2("putge",79,1@+selection*8)
@PgE9 GET #@,c

goF2 IF c=$¢gA THEN \REM down arrow
g1@c selection:=MOD(selection+l,2)
g11A ENDIF

g11¢C UNTIL c=$Bl OR c=$B2

@139 RUN gfx2("owend")

@13D IF selection=@ THEN

9149 RUN GetFName(filename)

@153 RUN WritFile(filename,ScreenData)
#9162 ENDIF

9164 END

POSSIBLE ENHANCEMENTS

The possible enhancements for ScratchPad are almost
endless. Many important parts of a real editor are in place. With
some work you can add your favorite features and have as much
editor-power as you want.

If you want to do serious work with ScratchPad, you shouid
work on error protection. Users (even when the user is yourself)
shouldn’t find themselves in the debugger when they press the
wrong key. There are two places in ScratchPad where you should
worry about errors.

If the user accidentally presses the BREAK or ESCAPE keys,
ScratchPad will end with an error code. It won't give the user a
chance to save the file in ScreenData, and it won’t fix the terminal
mode or screen parameters.

BASIC09 doesn’t give you a way to catch the “signal” that the
BREAK key sends or ignore the end of file that the ESCAPE key will
send. You can avoid the problem by disabling the troublesome
keys. Use Tmode to set the quit key, the interrupt key and the end
of file key to zero when you turn off Pause and Echo. Be sure to
restore the original values when at the end of ScratchPad. You
can find the original values by running Tmode.

Whenever BASIC09 is handling files, itis likely to detect errors.
If you try to open afile that isn’t there or create afile that is already
there, you will get errors. File protection can cause other errors.
It is a good idea to protect file operations with ON ERRCOR GOTO
statements.

Installing good error protection in ScratchPad is important,
but not exciting. Adding features to the program is more exciting.

208

We haven’t assigned functions to the shifted and controlied
arrow keys. They should do something. There is also a keyboard
full of ALT keys. You'll probably run out of ideas for functions
before you run out of keys. Some possible functions are:

® Change to insertion mode. This would involve a change to
UpdScreenData Or an alternate procedure.

® Delete character.

® Delete line.

® Search for a string.

® Search and replace.

® Move the cursor a page at a time.

® Move the cursor to a specified line number.

You don’t need to control all of ScratchPad’s functions with
keys. Menus are nice t0o. Maybe functions like searching and
search-and-replace should be run from a menu.

ScratchPad could handle many more lines if it didn’t have to
use 80 bytes for each line regardless of its length. If you feel
ambitious, you might look for a more efficient way to store the
lines. This is a hard problem.

We used a trick we called “ugly” when we displayed the menu
in FileMenu. There’s an easy fix that involves one extra line of
code. Hint: It's a PRINT statement.

[——

209

CHAPTER 14

using library code

iitalalE
L

%ﬂ]ﬂl_

3=

We want to print a calendar. We’ll be happy with one month
onthe screen at a time, but we want to be able to select that month.
The current month, and the months before and after it, are the
most important, but we'd like to be able to see calendars for a wide
range of dates.

If we knew where to put the dates, printing the calendar
wouldn’t be much harder than printing an ASCII table. Knowing
where to put the dates is hard. Discovering, for instance, what day
of the week April Fools’ day fell on in the year 719 is a tricky
business.

One of the most important rules for productive programming
is “never reinvent the wheel.” This means that you should not
spend much time solving a problem that someone else has solved.
Note carefully that this is a rule for productive programming. It
doesn’'t always apply to things you may want to do.

it's fun to rework classic problems. You can look at it as a
pointless but fun exercise like solving crossword puzzles. You can
also try competitive wheel reinvention. Great fame (and much
money) awaits anyone who can beat the world’s best sort program
(though to make your fortune, you’ll have to adapt the program
to mainframe computers).

211

Occasionally you’'ll be forced to re-solve a problem. You may
be unable to afford the solution or unable to wait for it to arrive.
That's life. Sometimes reality gets in the way of productive
programming.

Programmers usually deal with three types of solutions:
programs, subroutines and documents. A program is a complete,
packaged solution and the clear productivity winner. The fastest
way to produce a program is to pull out a disk with the finished
product. A subroutine is a procedure that can’t stand by itself. A
programmer will have to invest at least a little work in building
a program to run subroutines, but they are flexible tools. The least
convenient medium for solutions is paper. You will find numerous
good ideas in books and magazines.

In this chapter we’'ll use a subroutine to solve a problem. The
subroutine is a procedure that will calculate a date from a year,
month, week and weekday. It's a complicated procedure (actually
a whole collection of procedures) that encapsulates knowiedge
about the calendar back to the year zero. Don’t expect to
understand the subroutine (though you might want to try. The
calendar has gone through some interesting changes).

We will use a subroutine called CalcDate, which calculates
the date of any reasonable day. You will find it at the end of this
chapter. It should be called with a RUN statement like:

RUN CalcDate(date, year, month, week, day)
All the parameters are integers. The last four parameters choose
a day between the first day in the year zero and the last day in
the year 32767.

e Day is in the range O (for Sunday) through 6 (for Saturday)

® Week isintherange0to 5

& Monthisinthe range 1 (for January) through 12 (for December)
® Year is in the range 0 to 32766

® Date is returned from CalcDate

The CalcDate procedure will calculate the date (that is, the
day in the month) of the day indicated by the other four
parameters.

If CalcDate is given an impossible day, it will return a date
less than one. Some impossible days are obvious: a month greater
than 12 or less than 1, or a day greater than 6. Other impossible
days are hard to avoid. How can we tell what day of the week a
given month starts on? Is day 2 of week 0 of January 1989 possible,
or does that year start on a Thursday?

OUTSIDE-IN DEVELOPMENT

Up to now we've been designing programs top down; that is,
we've been starting with a main procedure, then writing the

212

procedures it calls, then the procedures they call, and so forth.
Now we are in an odd position. We’'d like to design the program
top down, but we already know one of the procedures that will
be at the bottom.

We would probably have decided to print a calendar by going
through the month from the first to the 31st discovering the day
of the week that each date falls on. CalcDate doesn't fit into that
design. It won’t return a value for day of the week given a date.
The limits of CalcDate push us strongly toward a design where
we run through the month week by week and, within that, day by
day.

GOALS

The calendar program should always start by printing the
current calendar. If the user wants a calendar for some other
month, the program should let him page though until the right
month appears. The arrow keys seem the logical way to move
through the calendar. We'll let the right and left arrows move
forward and backward a single month. The up and down arrows
will move forward and backward a year.

Reaching a calendar for some remote time will be difficult.
A monthin 1776 is over 200 key presses away. Keep that problem
in mind. Later we will be looking for a good way to find calendars
for distant times.

DESIGN

The calendar program will start by displaying this month’s
calendar, then let the user move to other months. We’ll start the
design by sketching the top level of a program with that function:

Get today’s date into Year and Month
Until the user is done

Print a calendar for Year and Month
Let the user pick another Year and Month

In BASICO09 it doesn’t look much different:
THE LISTING: Calendar

PROCEDURE Calender

2009 DIM year,month:INTEGER

g99B DIM Date string:STRING[17]

g917 DIM c:BYTE

@91E

gg1F Date string=DATES$

gg25 year=VAL(LEFT$ (Date string,2))
@932 year=year+190¢g

@93E month=VAL(MID$ (Date string,4,2))

213

$24D

PP4LE REPEAT

2959 RUN PrintMonth(year,month)
@@5F RUN gfx2("curhome")

PP6E GET #f,c

Q@77 RUN NewMonth(c,year,month)
gg8B UNTIL c=$B1

Calendar calls two procedures, PrintMonth and NewMonth,
PrintMonth prints a month’s calendar. NewMonth changes the
values of month and year when the user presses an arrow key.
PrintMonth deserves extra attention because it’s influenced by
outside-in design, so we'll save it for later.

THE LISTING: Arrous

PROCEDURE Arrows

9909 PARAM c:BYTE

pop7 PARAM Month: INTEGER

P@PE IF c=$@8 THEN \REM left arrow

9928 Month:=Month-1

g@33 ELSE IF c¢=$P9 THEN \REM right arrow
g@52 Month:=Month+1l

@95D ELSE IF c=$gA THEN \REM down arrow
gg7A Month:=Month-12

g@85 ELSE IF c=$gC THEN \REM up arrow
gPAR Month:=Month+12

JgAB ENDIF

PIAD ENDIF

@PAF ENDIF

g9B1 ENDIF

P9B3 END

Arrows has about the same job that ARpplyArrow did in the
ScratchPad program. |t interprets arrow keys into motions. The
job can be divided into two parts: understanding the arrow keys
and finding the month we end up in.

It is good to limit a procedure’s parameters as much as
possible. We follow that principie carefully with the procedures
Arrows and Correct.

The actions of the arrow keys can be stated in terms of months
(a year is 12 months), so we will only pass the character from the
keyboard, C, and the month to Arrows.

The Correct procedure expects dates that have impossible

months. It adjusts the year and month to correct values reflecting
the same month. For example, the month 20 in the year 1970 would

214

turn out to be the month 8 in the year 1971, and the month -4 in
the year 1982 would be the month 8 in the year 1981.

Arrows is a straightforward procedure (just lots of nested IF
statements), but the arithmetic in Correct is tricky. The basic idea
behind Correct is that it divides the Month variable by 12 to get
a correction to the years’ variable. Since there are 12 months in
a year, Month divided by 12 is the number of years. Month 13 is
one year and one extra month; month 3 is no years and three
months. Those examples look good, but what about month 12?
Our calculation would show that as one year and zero months.
How about month -1?

The Month variable and the constant 12 are integers, so
BASIC09 truncates the result of Month divided by 12. Truncation
makes the fractions 0/12 through 11/12 come out to 0, so we can
get the calculation of years to work weli for all positive numbers
of months by using Month - 1 instead of Month. Unfortunately,
truncation rounds up (toward zero) for negative numbers. We will
have to use Month - 12 in the calculation of years if Month is a
negative number. Putting all this confusion into a procedure, we
get:

THE LISTING: Correct

PROCEDURE Correct

9000 PARAM Year,Month:INTEGER
9998 DIM Shift:INTEGER

9912 IF Month<l THEN

@@1E Shift:=Month-12

9929 ELSE

P@2D Shift:=Month-1

9938 ENDIF

P23A Shift:=Shift/12 \REM years of offset
2957 Year:=Year+Shift

gg63 Month:=Month-12*Shift
9972 END

WORKING TOWARD CALCDATE

In the Calendar procedure we called PrintMonth to print the
calendar for a selected month. It is passed the year and month
and should useCalcDate to generate the calendar. CalcDate takes
year, month, week and day of week as parameters and returns a
date. Year and month are fixed values from PrintMonth’s point of
view; it changes the values of week and day of week. Eventually
we will have to print a matrix of dates that will be seven days wide
and might be as much as six weeks deep.

Nested FOR loops are the usual way of filling a matrix, and

215

there is no reason not to use them here. We can nest the loops
in either order:

FOR week:=0 to 5
FORday :=@ to 6

or

FORday := @ to 6
FOR weelkk :=0@ to 5

Printing the calendar week by week seems more natural, so we
chose that way.

It turns out that the “natural way” was a good choice.
CalcDate has strange rules about week 0 that make it possible for
week O to have no days init. If we had decided to print the calendar
a column at a time, we might find the top row of the calendar
empty. Since we are printing it a week at a time, we just keep track
of whether there were any days in the week just printed and keep

printing weeks on the same line until we find a week with days
in it.

Printing a week might be a little complicated, so we use the
usual trick and push the work off to another procedure.

THE LISTING: PrintMonth

PROCEDURE PrintMonth

9999
g998
gg1A
p@26
992D
@P2E
gg3B
pg4A
gp69
PPTF
pgpsg
pp87
pg97
P9BB
pgcs
pgcc
PYCE
P@DF
PPE3
PPEE

PARAM year,month:INTEGER

DIM week,day,y offset:INTEGER
DIM Month Name:STRING[9]

DIM Anything:BOOLEAN

RUN gfx2("clear")

RUN Get Month Name(Month Name,month)

PRINT USING "S27"",Month Name+" "+STR$(year)
PRINT "Sun Mon Tue Wed Thu Fri Sat"”

y offset:=2

FOR week=@ TO 5
RUN PrintWeek(year,month,week,f,y offset+week,Anything)
IF NOT(Anything) THEN

y offset:=1
ENDIF
EXITIF NOT(Anything) AND weelk>@ THEN
ENDEXIT
NEXT week
END

216

THE LISTING: Get_Month_Name

PROCEDURE Get Month Name

9990 PARAM Name:STRING[9]
g9gc PARAM Month:INTEGER
2913 ON Month GOSUB 1,2,3,4,5,6,7,8,9,1¢,11,12
Pa4A READ Name

@@4LF END

gg51 1 RESTORE 21

2959 RETURN

@@5B 2 RESTORE 22

9063 RETURN

gg65 3 RESTORE 23

#g6D RETURN

@@6F 4 RESTORE 24

g977 RETURN

#4879 5 RESTORE 25

go8l RETURN

gg83 6 RESTORE 26

9388 RETURN

298D 7 RESTORE 27

@995 RETURN

9997 8 RESTORE 28

@@9F RETURN

PgAL 9 RESTORE 29

g0A9 RETURN

9PAB 19 RESTORE 3¢

@gB3 RETURN

@gB5 11 RESTORE 31

@@BD RETURN

@@BF 12 RESTORE 32

gaci RETURN

ggco 21 DATA "January"
@@DA 22 DATA "February"
@PEC 23 DATA "March"
@9FB 24 DATA "April"
g1ga 25 DATA "May"

g117 26 DATA "June"
g125 27 DATA "July"

@133 28 DATA "August"
9143 29 DATA "September"
§156 39 DATA "October"
#9167 31 DATA "November"
@179 32 DATA "December"

Printikeek is passed the year, month and week that it should
print. Italso gets the xand y coordinates at which to print. It should
set Anything to true if there are any days in the week, and false
otherwise.

PrintWleek uses a FOR loop to count through the days in the

217

week. This is where we will finally call CalcDate. Since we know
the year, month, week and day of week, the call to CalcDate is
simple. The procedure looks like this:

THE LISTING: Printleek

PROCEDURE PrintWeek

909 PARAM year ,month,week,x,y:INTEGER
geL7 PARAM AnyThing:BOOLEAN

go1E DIM day,date:INTEGER

2029 AnyThing:=FALSE

ga2F FOR day:=@g TO 6

g@3F RUN CalcDate(date,year,month,week, day)
g@5sD IF date>@ THEN

2069 RUN gfx2("curxy",x,y)

298¢ PRINT USING "i3>",6date;

298D AnyThing:=TRUE

9993 ENDIF

2995 x:=X+4

doAQ NEXT day

J@AB END

There is one small trick in PrintlWeelc. Remember that the first
week in a month can start with days that were in the previous
month. These days should show as blanks in the calendar.
PrintWeek doesn't print blanks for empty spaces; it just keeps
track of the right place to put each date and puts the cursor there
before it prints.

THE LISTING: CalcDate

PROCEDURE CalcDate

gpop REM given year, montht, week, and weekday return the day of the
P@3E REM month falling on the specified day.

po64 PARAM Date,Year ,Month,Week,Weekday: INTEGER

g@7B TYPE dateinfo=feb,sept,days_in month,First of Month:INTEGER
2992 DIM info:dateinfo

g@9B DIM DaysInMonth(12):INTEGER

gaa7 RUN DaysInMonths(DaysInMonth)

@@B1 RUN SetDateInfo(info,Year,Month,DaysInMonth)

ggca RUN WeekDayToDate(Date,Week,Weekday, info)

FPE3 END

THE LISTING: Jan1

PROCEDURE Janl

g0 REM Given a year return the day of the week of new years
9937 REM day

@g3D PARAM year:INTEGER

go44 PARAM day:INTEGER

218

@048 day=year+4+(year+3)/4 \REM Julian calender

9972 IF year>18@g@ THEN \REM a recent year
@a8F REM make the Clavian correction
@PAD day=day- (year-17¢1) /109

gacg REM and the Gregorian correction
@@DF day=day+(year-1601) /400

J9F3 ENDIF

@PF5 IF year>1752 THEN \REM Adjust for the Gregorian calendar
9126 day=day+3

#131 ENDIF

@133 day=MOD(day,7)

@13E END

THE LISTING: DaysInMonths

PRCCEDURE DaysInMonths

g0 PARAM DaysInMonth(12):INTEGER
gggc DIM i

gg11 DATA 31,28,31,30

9921 DATA 31,3¢,31,31

g931 DATA 34,31,3¢,31

g4l FOR i=1 TO 12

#9953 READ DaysInMonth(i)

995D NEXT i

ppes END

THE LISTING: SetDatelnfo

PROCEDURE SetDatelInfo

2000 REM This function updates info to reflect the given year and month.
g942 TYPE DateInfo=days_in month,First of Month:INTEGER
g051 PARAM info:DatelInfo

J@5A PARAM Year,Month:INTEGER

9965 PARAM DaysInMonth(1l2):INTEGER

29971 DIM leap,work,i:INTEGER

gp8g REM check the parameters

#9997 IF Month<l OR Month>12 THEN

POAA info.days in month=@ \REM error flag

ggc2 ELSE

ggce RUN Janl(Year,info.First of Month)

ggD8 RUN Janl(Year+l,work)

PPE9 leap=MOD(work+7-info.First of Month,7)

PPIFE IF leap=2 THEN

g1pgA DaysInMonth(2)=29

@114 ELSE IF leap<>1 THEN \REM Adjustment

9139 DaysInMonth(9)=19

P13A ENDIF

@g13cC ENDIF

@13E info.days_in_month=DaysInMonth(Month)

914D REM Now add up the days in all the months up to the current month
@18D FOR i=1 TO Month-1

219

1Al info.First of Month=info.First of Month+DaysInMonth(i
OL _Ot__ y

#1B7 NEXT i
g1c2 info.First_of Month=MOD(info.First_of Month,7)
#1D4 ENDIF

THE LISTING: WeekDayToDate

PROCEDURE WeekDayToDate

2000 PARAM Date,Week,Weekday:INTEGER

PIPF TYPE dateinfo=days in _month,First of Month:INTEGER
PO1E PARAM info:dateinfo

@927 Date=Week*7+Weekday-info.First of Month+l

gg4g IF Date<=f@ OR Date>info.days in month THEN
pa57 Date=§

§a5E ELSE IF info.days in month=19 AND Date>=3 THEN
@977 REM The super-leap month

PO8E Date=Date+l1l

9999 ENDIF

g@9B ENDIF

gg9D END

THE LISTING: WeekInYear

PROCEDURE WeekInYear

2000 PARAM Veek,Year,Month,Date: INTEGER
P13 DIM DaysInMonth(12):INTEGER

Po1F DIM i,Dayl,NextDayl:INTEGER

@92E DIM Day:INTEGER

9935

p936 RUN DaysInMonths(DaysInMonth)

go4Lg IF Month<l OR Month>12 THEN

9953 PRINT "Impossible month "; Month; " in WeekInYear"
ga7D ERROR 1

g8l ENDIF

9983 RUN Janl(Year,Dayl)

2292 RUN Janl(Year+1l,NextDayl)

PPA3 IF MOD(NextDayl+7-Dayl,7)<>1 THEN \REM a leap year
pac? DaysInMonth(2)=29

ggD1 ENDIF

g9D3 Day=Dayl

goDB FOR i=1 TO Month-1

PPEF Day=Day+DaysInMonth(i)

PPFE NEXT 1

@199 Day=Day+Date

2115 Week=Day/7

#9129 PRINT Week

g125 END

220

THE LISTING: NewMonth

PROCEDURE NewMonth

g900 PARAM c:BYTE

g0p7 PARAM Year,Month:INTEGER
92912 RUN Arrows(c,Month)

gg21 RUN Correct(Year,Month)
g93p END

We have created a program that will print the calendar for
almost any imaginable month. A subroutine from our libraries
calculates the date of any day once given the day of the week,
the week, the month and the year. That subroutine did most of
the work in making the calendar. We just built enough of a
program to call the subroutine and print the results.

Building a calendar program from scratch would have been
a big job. The research alone might have taken hours (check into
the history of the calendar), and writing the code would have been
plenty more work. Our goal was to print a calendar, not puzzle
out a nice way to calculate dates, so it was fortunate that we had
CalcDate in our library.

Programmers should be lazy, and one of the most productive
ways to be lazy is to collect libraries of programs and fragments
that you can hook together. You can build your own library by
collecting fragments of code that look generally useful, buying
subroutine libraries that look interesting, and looking for public
domain code to add to your collection.

221

PRINCIPLES

&

Think of the trouble writing CalcDate would have been, and
start building your library.

There is another important principle that is closely related to
“don’t reinvent the wheel.” It is “let the language work for you.”
You should let BASIC09 do as much work as possible. In general,
this principle will reduce the number of statements in your
programs, so you can tell which of several approaches is best by
counting the statements in each.

POSSIBLE ENHANCEMENTS

This program badly needs a fast way to select a given month
and year. The best method is to have a key bring up a window
with prompts for the year and month. The user can select a month
quickly and cleanly. Defining the shifted and controlled arrow
keys to change the date by decades and centuries would be easy,
but not as good as prompting for the date.

Even shuffling through a few months can be frustrating. You
can press the arrow key much faster than the program can display
months, and you may not be interested in seeing the months you
are passing over. If you could read arrow keys until the user stops
entering them, then make one big shift in the date, you could avoid
the intermediate displays. You can do this with the InKey
procedure. Before you call PrintMonth, call InKey a few hundred
times to make sure that the user isn’t about to type another key.

The display of the current month would be more useful if the
current date were highlighted.

222

CHAPTER 15

living dangerously

Someday you may need to write a program without making
a single error. Slow progress will be acceptable, but not errors.
In this chapter we’ll show you some tricks that will help.

The program for this chapter is intentionally difficult to
debug. Our goal is to convince you that sometimes avoiding, or
at least pinpointing, bugs is worth a heroic effort.

As you get more ambitious, you will want to open device
windows from Basicos. A program that modifies the attributes of
a window has some trouble knowing what values will restore the
window to its original state. Opening a new device window avoids
this problem. The program simply DWENDs and closes the window
when it is done. The use of device windows is also the only way
to get OS-9 to put two or more active windows on a screen. This
won't work with overlay windows. You can put any reasonable
number of overlay windows on the screen, but only the top overlay
in any device window will be active.

Device windows are useful, and they're easy to use from
BAsIico9. That is, they are easy to use, provided you never make
an error. One serious error in a program with an extra device
window selected and you've had it. The extra window will freeze
up and you won’t be able to get back to the Basicos window.

223

Let’s see how this happens. OS-9 has a rule that says, “Every
process will have one device window selected, and only selected
windows can be reached with the CLEAR key.”

When your BAsicog program selects a window, that window
replaces the window BAsiCo9 is talking to. A program error that
throws you into the debugger or drops you out of your program
without selecting the standard window will ieave Basicos waiting
for input from its window while you look at the selected window.
If you could get to the other window, you could fix things up, but
the select key won'’t take you there and you can't get the program
to select the window until you unfreeze it. In short, you are stuck.

There are several ways to deal with the problem of frozen
device windows. The obvious approach is to write correct
programs. In the middle 1970s, top-down structured program-
ming was an exciting idea. Some people thought that pro-
grammers trained in those methods would be able to remember
every programming error they ever made. The idea was not that
structured programming would lead to memorably hair-raising
errors. Rather, they believed that programmers trained in
structured programming would make only a few dozen errors in
their careers. It hasn’'t worked out that way.

Testing programs carefully before enhancing them with new
device windows is a good way to avoid problems. Adding support
for special device windows when the rest of the program is
working may introduce errors, but they should at least be easy
to find.

Gritting your teeth and living with frozen windows is crude,
but not foolish. You're almost certainly going to get caught with
some frozen windows. Why not plan on it? Just make sure that
you save everything in your Basicos workspace after every change.
If you freeze that window, everything in the workspace will be
unreachable, and you’ll have to fail back on your latest save files.

We recommend a combination of all three approaches.
Program carefully, leave device window support out as long as
possible, and save often.

Inthis chapter we will develop a simple database program that
runs in two device windows on one screen. We're going to start
using windows quite early and try to build the program without
errors that will drop us into the debugger.

SETTING OUT OUR GOALS

The model is simple. We want to build a program that will act
something like a deck of index cards or a Rolodex. The user
should be abie to

® Add new cards
® Flip through the cards

224

® Search the cards
® Modify cards

We'll put a display of several cards at the top of the screen.
The bottom of the screen will hold a command window. Com-
mands from the bottom window will change the display in the top
window.

We’'ll have the database run in text windows. They are not as
powerful as graphics windows, but they respond faster than
graphics windows and deserve at least one full-sized program.

The top level of the database program is clear enough that
we'll just write it down in BASIC09. Our procedure is called
Rolladex.

THE LISTING: Rol ladex

PROCEDURE rolladex

THE TOP LEVEL

Jolofodr] DIM DBPath:INTEGER

2997 DIM DBWinl,DBWinZ2:INTEGER

9012 TYPE record=start:INTEGER; key:STRING[32]; text(5):STRING[69
]

7938 DIM subset(l@):record

gg4e

2947 ON ERROR GOTO 1¢¢

@a4D RUN DBOpen(DBPath)

gas7 RUN DBStart(DBPath, subset)

go66 RUN DBWindow(DBWinl,DBWin2)

@975 RUN DBDisplay(subset,DBWinl)

gg84 RUN DBInteract(DBPath,DBWinl,DBWin2, subset)

909D 1@9@ REM in case of errors

#@B4 ON ERROR

JaB7 RUN DBClose(DBPath,DBWinl,DBWinZ2)

ggcB END

What does this mean? We want the program to open the
database file, select a handful of cards from it (called a subset),
open two windows and display the cards in the top window,
process commands (interact), and close the database file when
it is done. If there are any errors, we'd like the program to close
everything and stop.

The data structures at the top of the Rolladex procedure are
part of the top-level design. There will be 10 cards in the subset,
and each card will have the following fieids:

Start: The location of the card in the database file.

Key: A special field that we’ll use when we search
the database.

Text: Five lines of data.

225

STUBS

7

The Rol ladex procedure calls six other procedures. We have
checked Rolladex carefully and believe that it will run without
errors, but those other procedures are a problem. When we are
testing a procedure, we don’t want to worry about the procedures
that it calls.

We will write the simplest procedures that Rol ladex can call
without failing. These substitute procedures are called stubs.
Writing stubs to test Rolladex is easy; it doesn’t depend on the
behavior of the procedures it calls, so entirely empty procedures
will suffice for all the stubs.

Empty procedures are enough to let us test the Rolladex
procedure, but slightly more elaborate stubs make debugging
easier. All the Rol ladex procedure does is call a list of procedures
in order. We can quickly verify that it is working if we make the
stubs like:

PROCEDURE DBOpen
PRINT “In DBOpen”
END

Stubs aren’t always this simple. Let's look at what happens
when we go to the next level.

DBOpen is fairly simple. If it successfully opens the database
file, it immediately returns. If there is no database file, it should
create a new file. This is a bit more complicated, but not
outrageous, and we don’t have to worry about device windows
because they haven't been opened yet. Here's the DBOpen
procedure:

THE LISTING: DBOpen
PROCEDURE DBOpen

popg PARAM DBPath:INTEGER

9097 DIM errno:INTEGER

PIQE DIM filesize:INTEGER

pp15

ggLle ON ERROR GOTO 1¢¢

gg1c OPEN #DBPath,"DBFile":READ

292D END

ga2F

9330 199 REM deal with open errors

P@4B errno=ERR

g951 ON ERROR

2954 IF errno=216 THEN \REM No db file yet
2971 CREATE #DBPath,"DBFile":WRITE
2082 filesize:=SIZE(filesize)

p@8c PUT #DBPath,filesize

2996 CLOSE #DBPath

gg9c OPEN #DBPath,"DBFile":READ

226

P9AD ELSE
g99B1 ERROR errno \REM We can't handle the error. Pass it on
J@DE ENDIF

We can test DBOpen without changing any other procedures.
We call it from Rol ladex, which has been tested with six stubs.
The only change we made was to replace the DBOpen stub with
a real program, so any problems are almost certainly caused by
DBOpen.

The next step is not so easy. We can’t test DBStart until we
have a procedure that prints the subset. DBWindow is going to open
device windows (which sounds dangerous). DBDisplay needs
subset from DBStart. DBInteract needs everything. Even DBClose
can’t be tested without open windows.

Just opening device windows isn’t dangerous. It's selecting
windows that can make debugging difficult. We can make the
DBWindow Stub open and initialize windows for DBWinl and DBWin2
without any risk. This enhanced stub lets us test DBClose.

THE LISTING: DBWinStub

PROCEDURE DBWindow

0999 PARAM DBWinl,DBWin2:INTEGER

g99B

pggc OPEN #DBWinl,"/w":UPDATE

9919 OPEN #DBWin2,"/w" :UPDATE

0926 RUN gfx2(DBWinl,"dwset",2,%,%,80,18,1,2,3)
P95 RUN gfx2(DBWin2,"dwset",®,9,18,80,6,1,4)
9977 END

pp79

DBClose comes out looking like:

THE LISTING: DBClose
PROCEDURE DBClose

[rfedr)ol PARAM DBPath,DBWinl,DBWin2:INTEGER
g99F

9919 RUN gfx2 (DBWinl, "dwend")

9922 RUN gfx2(DBWin2,"dwend")

@934 RUN gfx2("select™)

@942 CLOSE #DBWinl, #DBWin2

g@4D CLOSE #DBPath

g@53 END

The stub for DBWindow is getting close to the real thing, but
we don't know if it is working correctly, only that it isn’t failing
in a way that stops the program. We can’t see the windows it is
creating until we select them, which we are not doing yet!

If we write a stub for DBDisplay that ignores the window path
that is passed to it and just dumps the contents of subset on the

227

screen, we can useittotestDBStart. The stub forDBDisplaylooks
like this:

THE LISTING: DBDisplay.stub

PROCEDURE DBDisplay

9929

gp26
2034
#93B
293C
ga43
P@4L
ga5A
2067
9972

TYPE record=start:INTEGER; key:STRING[32]}; text(5):STRING[69

]
PARAM subset(1§):record
PARAM DBWinl:INTEGER

DIM i:INTEGER

FOR i:=1¢ TO 1 STEP -1
RUN DBDispRec(subset(i))

NEXT i

END

In the spirit of keeping procedures so short that we can feel
sure they will work, we made the stub for DBDisplay call another
procedure:

THE LISTING: DBDispRec.stub

PROCEDURE DBDispRec

9999

P26
g@2F
#9939
g@37
9938
gp48
g¥5A
gp66
g1
g97¢

TYPE record=start:INTEGER; key:STRING[32]; text(5):STRING[69

]
PARAM subset:record

DIM i:INTEGER

PRINT "<"; subset.key; '">"
FOR j:=1 TO 4

PRINT subset.text(])
NEXT j
PRINT subset.text(5);
END

Now we can replace the stub for DBStart with a real proce-
dure:

THE LISTING: DBStart

PROCEDURE DBStart

pogg

9926
ga2p
gg3B
ga3cC
ga4B

TYPE record=start:INTEGER; key:STRING[32]; text(5):STRING[69

]
PARAM DBPath:INTEGER

PARAM subset(1¢):record

DIM i,j,errno:INTEGER
DIM filesize:INTEGER

228

g@52 GET #DBPath,filesize

g@5C RUN FillSet(DBPath, subset,1{)
PP6E SEEK #DBPath,{
2077 END

The main job of DBStart is to fill the subset array. The Seek
statement at the end of the procedure ensures that every
procedure that reads DBPath after DBStart will be able to assume
that DBPath is rewound. It probably won’t be important, but it is
best to keep as many things known as possible.

Without FillSet, DBStart only reads filesize. YOu might
wonder why it even does that. Reading filesize doesn’t have
anything to do with the operation of the program — it could be
replaced with a Seel statement — but it helps with debugging. It's
nice to know the value of filesize, and this Get is done before
the device windows are opened so the value can be inspected with
the debugger.

FillSet isn't the end of the line. Its job is to fill Subset with
records from the database file. If there are fewer than 10 records
in the file, Fil1Set should make up enough empty-looking values
to fill the array.

THE LISTING: FillSet
PROCEDURE FillSet

o000 TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69
1

g926 PARAM Path:INTEGER

292D PARAM subset(1l@):record

g93B PARAM Num:INTEGER

9942

g943 DIM i,Mark:INTEGER

GP4E

QQ4LF IF Num=1§@ THEN

@@5B Mark:=1

0962 ELSE

@66 Mark:=subset(1@-Num).Start+1

GGTA ENDIF

gaic FOR i:=11-Num TO 1¢

2099 RUN DBGetRec(Path,Mark,subset(i))

gaA7 Mark:=Mark+l

ggB2 NEXT i

@@BD END

We suspected that other procedures would want to use
FillSet, so we gave it some extra power. It need not always read
10 records into Subset. The Num parameter tells it how many
records to read. This makes things a little complicated.

If Subset is partly full when FillSet is called, FillSet will be
able to find a starting place in the file from the start values in

229

FillSet. When FillSet is called from DBStart, there is nothing
in Subset, SO FillSet has to assume that it should start from the
beginning of the file. Fi11Set calis the DBGetRec procedure, which
does a random read in the database file.

THE LISTING: DBGetRec

PROCEDURE DBGetRec
TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69

9999

2926
@92D
gg34
$@3D
@@a3E
go4s
2946
gg4C
265
@o6F
9978
Pa7A
P97B
PP8F
@992
PPA2
FIAE
PYBE
ggcc
ggD7
goEP

199

]

PARAM Path:INTEGER
PARAM RecNo:INTEGER
PARAM rec:record

DIM

i:INTEGER

ON ERROR GOTO 1¢¢

SEEK #Path,SIZE(RecNo)+(RecNo-1)*SIZE(rec)
GET #Path,rec

SEEK #Path,@

END

REM No such record
ON ERROR
rec.key:=" "
rec.Start:=RecNo
FOR i:=1 TO 5
rec.text (i) :=""
NEXT i
SEEK #Path,@

END

Careful programming would require that we write DBStart,
FillSet and DBGetRec one at a time, using stubs for the proce-
dures that aren't yet finished. We haven’t selected any windows
yet so we are not on dangerous ground. Why don’t you try writing
the stubs?

We still have three stubs attached to Rolladex. Since
DBDisplay and DBInteract both rely on windows, we will finish
DBWindow. We need to have it select the window on the bottom
of the screen. We also want it to change the color palette on the
screen. The finished procedure looks like this:

THE LISTING: DBWindow

PROCEDURE DBWindow

099 PARAM DBWinl,DBWin2:INTEGER

9908 DIM i,color:INTEGER

9916

@917 OPEN #DBWinl,"/w'":UPDATE

@924 OPEN #DBWin2,"/w" :UPDATE

ga31 RUN gfx2(DBWinl, "dwset",2,0,0,89,18,1,2,3)

230

@@5B RUN gfx2(DBWinl, "select")

Pg6E

gaer FOR i:=@ TO 15

ga7F READ color

9984 RUN gfx2(DBWinl,"palette",i,color)
ggA2 NEXT i

PgAD

PPAE RUN gfx2(DBWin2,"dwset",9,9,18,80,6,1,4)
gap5 RUN gfx2(DBWin2,"select")

PIES END

PIEA

PEER REM Colors for the palette registers in the new windows
g121 DATA $05,0,$87,801,502,504,593,506

g144 DATA @,$3F,$09,8$12,$24,$1B,$36,82D

The stubs for DBDisplay and DBDispRec are already almost
real procedures. We want each card to show up in an overlay
window with different colors to set them apart, so we add overlays
to DBDisplay. That, and directing the output to a device window,
complete DBDisplay and DBDispRec.

THE LISTING: DBDisplay

PROCEDURE DBDisplay

jejelrir) TYPE record=start:INTEGER; key:STRING[32]; text(5):STRING[69
|

9926 PARAM subset(1@):record

9934 PARAM DBWinl:INTEGER

9938

gg3c DIM i:INTEGER

9943

o1 T FOR i:=1¢ TO 1 STEP -1

@a5SA RUN gfx2(DBWinl, "owset",1,10-1,109-i,69,6,MOD(i,7)+1,MOD(i
,8))

2994 RUN DBDispRec(subset(i),DBWinl)

PIA6 NEXT 1

ggB1 END

THE LISTING: DBDispRec

PROCEDURE DBDispRec

jejetel) TYPE record=start:INTEGER; key:STRING[32]; text(5):STRING[69
]

2926 PARAM subset:record

gg2F PARAM DBWinl:INTEGER

g936

g@37 DIM i:INTEGER

#93E

@@3F RUN gfx2(DBWinl, "clear")

#9511 PRINT #DBWinl,"<"; subset.key; ">"

231

0066 FOR j:=1 TO 4

2078 PRINT #DBWinl, subset.text(j)
9989 NEXT j

@094 PRINT #DBWinl, subset.text(5);
PPAL END

Now, of all the procedures called from the top level, only
DBInteract is still a stub. We are ready to attack it. We know that
the values it will be passed are good, and we have a working
procedure that prints cards from the database.

The‘DBInteract procedure is just a big switch. It puts up a
prompt in the command window and selects actions based on
input from the user.

THE LISTING: DBInteract

PROCEDURE DBInteract

992

ga26
9835
@943
g@4r
PP5B
pP62
9963
2976
9978
ga8A

ppc2
ggce
@@DE
P1g4
g1gF
9111
g112
9127
9129
9136
g142
9151
gleg
9162
p179
g17D
p18C
P19B
919D
F1A9

199
200

399

499

TYPE record=start:INTEGER; key:STRING[32]; text(5):STRING[69

]
PARAM DBPath,DBWinl,DBWin2:INTEGER
PARAM subset(1l@) :record
DIM c:STRING[1]
DIM cmds:STRING[12]
DIM CmdNum:INTEGER

cmds:="FfBbSsUuAaQq"
REPEAT
RUN gfx2(DBWin2,"clear")
PRINT #DBWin2,"Enter a command (Fwd,Back,Srch,Upd,Add,Quit): "

GET #DBWin2,c

CmdNum:=(SUBSTR(c,cmds)+1) /2

ON CmdNum+l GOSUB 100,200,300 ,499,500,600,700
UNTIL CmdNum=6
END

REM No such command

RETURN

REM Forward

PRINT #DBWin2,"wd";

RUN DBFwd(DBPath,subset)
RUN DBReDisp(subset,DBWinl)
RETURN

REM Backward

PRINT #DBWin2,"ack";

RUN DBBack(DBPath, subset)
RUN DBReDisp(subset,DBWinl)
RETURN

REM Search

PRINT #DBWin2,"rch";

232

@1B6 RUN DBSrch(DBPath,DBWin2,subset)

g1cA RUN DBReDisp(subset,DBWinl)
@¢1D9 RETURN

@1DB 5@@ REM Update

g1E7 PRINT #DBWin2, "pd";

@1F3 RUN DBUpd(DBWin2,subset)

9292 RUN DBDispRec(subset(1l),DBWinl)
9213 RETURN

@215 69¢ REM Add

@21E PRINT #DBWin2,"dd";

g224A RUN DBAdd(DBPath,DBWin2, subset)
@23E RUN DBReDisp(subset,DBWinl)
@24D RETURN

P24F 79¢ REM Quit

9259 PRINT #DBWin2,"uit";

9266 RETURN

Study the trick in the line that has the SuBsTR function. This
isagoodtechnique to use when you have to select an action based
on a character. The most general form of the trick uses a string
and an array of integers. The code for this would go something
like this:

x = SUBSTR(c,CMDS)
selection :=array(x)

From Line 100down, DBInteract is mostly calls to procedures
we haven’t written yet. We need to go through the same process
with these that we did with the procedures called from Rolladex.

The DBReDisp procedure gets heavy use. It is the procedure
that will update the top window, and it seems pretty easy. Maybe
we can use a call to the DBDisplay procedure we have already
written and tested.

It turns out that DBDisplay won't work. Simply rerunning
DBDisplay puts a new batch of overiay windows on top of the old
ones, and it turns out that OS-9 doesn't take kindly to this. It
freezes the window so we can’t even tell for sure what went wrong.
Perhaps we ran out of memory for the overlays? In any case it's
a good thing we were saving procedures after each change.

Maybe we can add a little code to DBDisplay that will OWend
the overlay windows before it starts new ones. The problem here
is that when DBDisplay is called from Rolladex, there are no
overiay windows to Okend. Maybe we can try OWend anyway.
Closing a window that isn’t there might just return an error.

We don’t suggest that you try it. It didn’t just freeze our
window; it crashed OS-9 so badly that we had to go back to RS-
DOS before we could get OS-9 started again.

We know that when DBReDisp is called, there are 10 overiay

233

windows active. Trying to make DBDisplay serve two purposes
turned out to be a bad idea. We’ll have DBReDisp OWend the overlay
windows and then call DBDisplay.

THE LISTING: DBReDisp

PROCEDURE DBReDisp

go0g TYPE record=key:STRING[32]; text(5):STRING[69])
9929 PARAM subset(1f§):record
PP2E PARAM DBWin:INTEGER

9935

ga36 DIM i:INTEGER

993D

@@3E FOR i:=1 TO 1§

PI4LE RUN gfx2(DBWin, "owend")
g969 NEXT i

P06B RUN DBDisplay(subset,DBWin)
go7A END

Except that we haven’t yet seen the data it displays change,
DBReDisp seems to work fine.

Since we have an empty database, the DBAdd procedure would
be a good place to start. it may be the most difficult procedure
we could pick, but we need it now.

Four steps are required to add a record to the database file.

® Get the new record from the user

® Change filesize to reflect an additional record
® Append a new record to the file

® Update subset (if necessary)

They should probably be done in four separate procedures,
but we’re going to squash three of them together. The completed
procedure looks like this:

THE LISTING: DBAdd

PROCEDURE DBAdd

gppg

ga26
292D
#9234
2942
9943
goLa
9953
gg5A
g6l
#9962
ge71

]

TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69

PARAM Path:INTEGER
PARAM Win:INTEGER
PARAM subset(1@) :record

DIM
DIM
DIM
DIM

RUN
GET

i:INTEGER
rec:record
Path2:INTEGER
filesize:INTEGER

DBEditRec(Win,rec)
#Path,filesize

234

9g7B SEEK #Path,g

2084 OPEN #Path2,"DBFile" :WRITE

20995 filesize:=filesize+SIZE(rec)

gPgA3 rec.Start:=(filesize-SIZE(filesize))/SIZE(rec)
J@BB PUT #Path2,filesize

ggcs

pgace SEEK #Path2,filesize-SIZE(rec)

g9D6 PUT #Path2,rec

gpEQ FOR i:=1 TO 1§

POFg EXITIF subset(i).Start=rec.Start THEN
#1906 subset (i) :=rec

#112 ENDEXIT

g116 NEXT i

g121 CLOSE #Path2

g127 END

You can see that acquiring the new record is the responsibility
of DBEditRec. The rest of the work is all lined up after the call to
DBEditRec. There’s too much to do at once, but it can be divided
into steps even though it is in one procedure.

Writing a new file size without adding data to the database
file will corrupt the database, but that’s fine. There’s nothing in
the database yet anyway. We can stub out DBEdJi tRec and discard
everything after

PUT #Path2,filesize
The test procedure is as follows:

Run Rol ladex.

Select a for add a record.

Select g for quit.

Put a pause in DBStart.

Run Rolladex

When it pauses, step along until we can inspect Filesize
(remember that DBStart reads Filesize).

Continue with Rolladex (CONT).

Select a for add a record.

We continue until we are satisfied that the file size is being updated
correctly. Now erase the database file before the incorrect value
of Filesize causes trouble.

We can test the next part of DBAdd without corrupting the
database. After we add the next two lines of code and make sure
that the stub for DBEdi tRec is putting something recognizable into
the records, we run Rol ladex. Records won’t show on the screen
when we add them, so we have to quit Rol ladex and start it again.
The new records will be picked up by DBStart and appear on the
screen.

We have to write the rest of the program in similar tiny steps.
There are many more procedures, but the construction tricks are

235

PRINCIPLES

slight variations on the ones we have used already. See the end
of the chapter for the result.

Selecting a device window from a BAsico9 program makes
nearly error-free programming important enough to justify all
possible care in program construction. Errors will freeze the
window, leaving you with one piece of information: something’s
wrong. In the face of this problem, we built a database system that
is about as useful as a Rolodex.

POSSIBLE ENHANCEMENTS

——y

When the debugging situation is bad, the best policy is to use
tiny procedures and make small changes between tests. Stubs are
an important tool for this approach.

Stubs are simple replacements for lower-level procedures.
They are important in top-down programming, but useless in
bottom-up programming. The analogous tool for a bottom-up
programmer is the driver program. A driver program is a program
that is designed to exercise the procedure that it calls. A careful
bottom-up programmer writes a driver to test each significant
procedure before he trusts it in combination with other real
procedures.

The Rolladex database is limited to a maximum of about 80
records by file size. The maximum value for an integer is 32,767,
and each record is about 400 bytes long. The limit could be greatly
increased by changing Filesize to a real number. Do this
carefully. When a procedure doesn’t use Filesize, we often used
Size(1) orany other integer variable to find the size of Filesize.
Since real values are larger than integers, this calls for care.

The editor always requires complete replacement of a record.
Can you adapt the ScratchPad editor to solve this problem?

A program that prints a formatted copy of the database, or
a selection from it, would be useful.

The DBRdd procedure is a little ungainly. Can you divide it into
one procedure for each of its parts?

Here is a complete set of the listings:

PROCEDURE rolladex

pog9
9097
gp12

2038
gg46

DIM DBPath:INTEGER
DIM DBWinl,DBWinZ2:INTEGER
TYPE record=start:INTEGER; key:STRING[32]; text(5):STRING[69

I
DIM subset(l@):record

236

9947 ON ERROR GOTO 19¢

@FP4LD RUN DBOpen(DBPath)

@957 RUN DBStart(DBPath, subset)

266 RUN DBWindow(DBWinl,DBWin2)

2075 RUN DBDisplay(subset,DBWinl)

2084 RUN DBInteract(DBPath,DBWinl,DBWin2, subset)
@@9D 1@ REM in case of errors

g9B4 ON ERROR

goB7 RUN DBClose(DBPath,DBWinl,DBWin2)
@@CB END
PROCEDURE DBOpen

G099 PARAM DBPath:INTEGER

9097 DIM errno:INTEGER

GPPE DIM filesize:INTEGER

gaL5

9916 ON ERROR GOTO 1¢@

ggic OPEN #DBPath,"DBFile":READ

992D END

gg2F

@@3g 192 REM deal with open errors

g94B errno=ERR

@951 ON ERROR

9954 IF errno=216 THEN \REM No db file yet
2971 CREATE #DBPath,"DBFile":WRITE
9982 filesize:=SIZE(filesize)

g@8cC PUT #DBPath,filesize

2096 CLOSE #DBPath

gg9c OPEN #DBPath,"DBFile" :READ
GPAD ELSE

g9B1 ERROR errno \REM We can't handle the error. Pass it on
@PDE ENDIF
PROCEDURE DBStart

2009 TYPE record=start:INTEGER; key:STRING[32]; text(5):STRING[69

]

2926 PARAM DBPath:INTEGER

g92D PARAM subset (1) :record

p93B

@g@3C DIM i, j,errno:INTEGER

g@4B DIM filesize:INTEGER

9952 GET #DBPath,filesize

@g5C RUN FillSet(DBPath, subset,1@)
PP6E SEEK #DBPath, @

2077 END
PROCEDURE DBWindow

o999 PARAM DBWinl,DBWin2:INTEGER

Po@B DIM i,color:INTEGER

9916

g917 OPEN #DBWinl,"/w":UPDATE

g924 OPEN #DBWin2,"/w" :UPDATE

P31 RUN gfx2(DBWinl, "dwset",2,9,%,80,18,1,2,3)
g95B RUN gfx2(DBWinl,"select")

@P6E

Pgg6F FOR i:=@ TO 15

237

PPTF
9984
PPA2
@@AD
PPAE
g9D5
JPES
PPEA

9QEB
g121

o144

READ color
RUN gfx2(DBWinl,"palette",i,color)
NEXT i

RUN gfx2(DBWin2,"dwset",@,0,18,80,6,1,4)
RUN gfx2(DBWin2,"select")
END

REM Colors for the palette registers in the new windows
DATA $05,0,$07,$01,802,804,893,$96
DATA @,$3F,$89,$12,524,81B,$36,$2D

PROCEDURE DBInteract

p999

ga26
g@35
g@43
gR4F
g@g5B
9962
#9963
2976
99278
g98A

ggcz
ggcc
ggDE
9194
g19F
g111
g112
9127
9129
g136
9142
g151
g1eg
9162
gL7g
917D
g18¢C
919B
919D
91A9
g1B6
glcA
g1D9
g1DB
g1E7
g1F3
9292
9213

199
209

399

499

599

TYPE record=start:INTEGER; key:STRING[32]; text(5):STRING[69
|

PARAM DBPath,DBWinl,DBWin2:INTEGER

PARAM subset(1@) :record

DIM c:STRING[1]

DIM cmds:STRING[12]

DIM CmdNum:INTEGER

cmds :="FfBbSsUuAaQq"
REPEAT
RUN gfx2(DBWin2,"clear")
PRINT #DBWin2,"Enter a command (Fwd,Back,Srch,Upd,Add,Quit): "

GET #DBWin2,c

CmdNum:=(SUBSTR(c,cmds)+1) /2

ON CmdNum+l GOSUB 1¢@,200,300,400,500,600,700
UNTIL CmdNum=6
END

REM No such command

RETURN

REM Forward

PRINT #DBWin2, "wd";

RUN DBFwd(DBPath, subset)

RUN DBReDisp(subset,DBWinl)

RETURN

REM Backward

PRINT #DBWin2, "ack";

RUN DBBack(DBPath, subset) '
RUN DBReDisp(subset,DBWinl) N
RETURN

REM Search

PRINT #DBWin2,"rch";

RUN DBSrch(DBPath,DBWin2, subset)
RUN DBReDisp(subset,DBWinl)
RETURN

REM Update

PRINT #DBWin2, "pd";

RUN DBUpd(DBWin2, subset)

RUN DBDispRec(subset(l),DBWinl)
RETURN

238

0215 6Q¢ REM Add

@g21E PRINT #DBWin2,"dd";
@22A RUN DBAdd(DBPath,DBWin2, subset)
@23E RUN DBReDisp(subset,DBWinl)
g24D RETURN
@24F 799 REM Quit
@259 PRINT #DBWin2, "uit";
@266 RETURN
PROCEDURE DBClose
o000 PARAM DBPath,DBWinl,DBWin2:INTEGER
999F
g@1g RUN gfx2(DBWinl, "dwend")
@922 RUN gfx2(DBWin2,"dwend")
#2834 RUN gfx2("select")
9942 CLOSE #DBWinl,#DBWin2
@a4D CLOSE #DBPath
@53 END
PROCEDURE DBDispRec
[r3035] TYPE record=start:INTEGER; key:STRING[32]; text(5):STRING[69
]
226 PARAM subset:record
ga2F PARAM DBWinl:INTEGER
99236
9037 DIM i:INTEGER
993E
@@3F RUN gfx2(DBWinl,"clear")
gg51 PRINT #DBWinl,"<"; subset.key; '">"
gg66 FOR j:=1 TO 4
9978 PRINT #DBWinl,subset.text(j)
2989 NEXT j
9994 PRINT #DBWinl, subset.text(5);
goAL END
PROCEDURE DBDisplay
2909 TYPE record=start:INTEGER; key:STRING[32]; text(5):STRING[69
]
9926 PARAM subset(1l@):record
9934 PARAM DBWinl:INTEGER
g93B
gasc DIM i:INTEGER
gg43
gaas FOR 1:=19 TO 1 STEP -1
@@5A RUN gfx2(DBWinl,"owset™,1,1¢-1,10-1,69,6,MOD(i,7)+1,MOD(1i
,8))
@094 RUN DBDispRec(subset(i),DBWinl)
oAb NEXT i
ggB1 END
PROCEDURE DBBack
g999 TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69
]
2026 PARAM Path:INTEGER
ga2D PARAM subset (1) :record
P@3B
gg3c DIM i,errno:INTEGER

239

ga47

2948 IF subset(l).Start>1 THEN

2959 FOR i:=1¢ TO 2 STEP -1

P@6F subset (i) :=subset(i-1)

2981 NEXT i

298¢ RUN DBGetRec(Path,subset(l).Start-1,subset(1l))
GPA9 ENDIF

POAB END
PROCEDURE DBSrch

2909 TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69

]

gg26 PARAM Path:INTEGER

§32D PARAM Win:INTEGER

P@34 PARAM subset(1¢):record

gp42

g@43 DIM SKey:STRING[32]

PP4F DIM keyloc:INTEGER

gg56 DIM c¢:STRING[1]

gae2

gp63 PRINT #Win

2969 INPUT #Win,"Search key: ",6SKey

2982 RUN DBSrchSet(subset,SKey,keyloc)

3996 IF keyloc<>@ THEN

goAz RUN LShiftSet(subset,keyloc-1)

g9B3 RUN FillSet(Path,subset,keyloc-1)

ggco ELSE

ggch RUN DBSrchFile(Path,SKey,keyloc)

9gE1 IF keyloc<>@ THEN

JPED RUN DBGetRec(Path,keyloc,subset(l))
9193 RUN FillSet(Path, subset,9)

g115 ELSE

g119 PRINT #Win, "Key not found"

g12F PRINT #Win,"Press any key to continue"
@151 GET #Win,c

g15B ENDIF

#15D ENDIF

g15F END

PROCEDURE DBUpd

gg0g TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69

]

ga26 PARAM Win:INTEGER

@920 PARAM subset(1@):record

g93B

ga3c DIM Path2:INTEGER

9943

PP44 RUN DBEditRec(Win,subset(l))

@355 OPEN #Path2,"DBFile":WRITE

ggee SEEK #Path2,SIZE(Win)+SIZE(subset(l))*(subset(l).Start-1)
286 PUT #Path2,subset(l)

8993 CLOSE #Path2

gg99 END

PROCEDURE DBFwd

2900 TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69

240

]
g@26 PARAM Path:INTEGER

902D PARAM subset(1lf):record

9938

ga3c RUN LShiftSet(subset,1l)

2949 RUN DBGetRec(Path,subset(1lg).Start+1l,subset(1§))
gg66 END
PROCEDURE DBReDisp

go0g TYPE record=key:STRING[32]; text(5):STRING[69]
9029 PARAM subset(1@):record

PP2E PARAM DBWin:INTEGER

$235

936 DIM i:INTEGER

93D

PP3E FOR i:=1 TO 1¢

PP4E RUN gfx2(DBWin, "owend")

goeg NEXT i

gg6B RUN DBDisplay(subset,DBWin)

g97A END

PROCEDURE DBAdd

g00g TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69

]

@926 PARAM Path:INTEGER

292D PARAM Win:INTEGER

9934 PARAM subset(1lf¢):record

2942

2943 DIM 1i:INTEGER

Ga4A DIM rec:record

7953 DIM Path2:INTEGER

PP5A DIM filesize:INTEGER

gae6l

9962 RUN DBEditRec(Win,rec)

p@71 GET #Path,filesize

9978 SEEK #Path, @

2084 OPEN #Path2,"DBFile":WRITE

g@95 filesize:=filesize+SIZE(rec)

PPA3 rec.Start:=(filesize-SIZE(filesize))/SIZE(rec)
P@BB PUT #Path2,filesize

pgcs

ggace SEEK #Path2,filesize-SIZE(rec)

g9D6 PUT #Path2,rec

POEQ FOR 1:=1 TO 1¢

QPFQ EXITIF subset(i).Start=rec.Start THEN
g1g6 subset (i) :=rec

g112 ENDEXIT

g116 NEXT i

g121 CLOSE #Path2

9127 END

PROCEDURE LShiftSet

g0 TYPE record=Start:INTEGER; key:STRING[32]); text(5):STRING[69

]

pgo26 PARAM subset (1) :record

2934 PARAM Shift:INTEGER

993B

241

9g3c DIM i:INTEGER

9943
2944 FOR 1i:=1 TO 1@-Shift
g@gs8 subset (i) :=subset(i+Shift)
gg6B NEXT 1
9976 END
PROCEDURE FillSet
2909 TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69
]
gg26 PARAM Path:INTEGER
#a2D PARAM subset(1l@):record
g93B PARAM Num:INTEGER
g942
9043 DIM i,Mark:INTEGER
PP4E
IP4F IF Num=1@ THEN
@@5B Mark:=1
70862 ELSE
gg66 Mark:=subset (1@-Num).Start+1l
gg7A ENDIF
ggic FOR 1i:=11-Num TO 1¢
g9 RUN DBGetRec(Path,Mark,subset(i))
PPAT Mark:=Mark+l
g@B2 NEXT i
@9BD END
PROCEDURE DBSrchSet
2009 TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69
]
9026 PARAM subset(1f):record
2034 PARAM SKey:STRING[32]
gpag PARAM keyloc:INTEGER
gg4a7
go48 DIM i:INTEGER
PP4LF
2958 FOR 1i:=1 TO 19
go6g keyloc:=SUBSTR(SKey, subset (i) .key)
gg72 EXITIF keyloc<>@ THEN
Pa7E keyloc:=1
9086 ENDEXIT
Jg8A NEXT 1
#9995 END
PROCEDURE DBSrchFile
jefefile] TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69
]
gp26 PARAM Path:INTEGER
292D PARAM SKey:STRING[32]
P339 PARAM KeyLoc:INTEGER
g949
g4l DIM rec:record
PgLA
gg4B KeyLoc:=0
2952 SEEK #Path,SIZE(KeyLoc)
@O5E ON ERROR GOTO 10¢

242

g@64 GET #Path,rec

PPI6E WHILE NOT(EOF(#Path)) DO

29879 EXITIF SUBSTR(SKey,rec.key)<>@ THEN
998C KeyLoc:=rec.Start

9997 ENDEXIT

gad9B GET #Path,rec

g@AS ENDWHILE

PgA9 198 SEEK #Path,g

g@B5 END
PROCEDURE DBGetRec

pogg TYPE record=Start:INTEGER; key:STRING[32]; text(5):STRING[69

]

8926 PARAM Path:INTEGER

992D PARAM RecNo:INTEGER

2834 PARAM rec:record

§93D

g@3E DIM i:INTEGER

gpas

0046 ON ERROR GOTO 19

g94C SEEK #Path,SIZE(RecNo)+(RecNo-1)*SIZE(rec)
9965 GET #Path,rec

PP6F SEEK #Path, @

2978 END

9974

P97B 199 REM No such record

gg8F ON ERROR

9992 rec.key:=" "

GPA2 rec.Start:=RecNo

PIAE FOR i:=1 TO 5

PPBE rec.text(i):=""

ggcc NEXT 1

9907 SEEK #Path,g

PPEQ END

PROCEDURE DBEditRec

ggag TYPE record=Start:INTEGER; Key:STRING[32]; text(5):STRING[69

1

9026 PARAM Win:INTEGER

gg2D PARAM rec:record

9936

9937 DIM 1:INTEGER

P@3E

g@3F RUN gfx2(Win,"clear")

9951 INPUT #Win,"Key: ",rec.Key

gp67 FOR 1:=1 TO 5

ep77 INPUT #Win,"Text line: ",rec.text(i)
9096 NEXT {1

gPAl END

243

CHAPTER 16

let your coco twiddle its

Note: The programs in this chapter are designed for a fuli-sized, type
07 window. They can be modified for other window sizes and types, but
as written, they will only work correctly for one window size and type.

Some people say that switching your computer on and off
puts more wear on it than just constantly leaving it on. This could
be an old wives’ tale, or it could be a rumor started by cathode
ray tube (the screen on your computer) manufacturers. If you
leave your monitor on with your computer, you may find the
phosphor (the stuff that makes the screen light up) burnt through
in places where the same thing is displayed for long periods.

If you protect your phosphor by turning your monitor off or
turning its brightness way down, you can’t tell that your computer
ison. You are likely to walk up to your machine and push its power
switch to turn it on. We need a way for a Color Computer to show
that it is alive and well (and on) without damaging its monitor. The
CoCo should be able to sit around for days “twiddling its thumbs”
in some noticeable way.

Some people whistle “tunelessly” when they have nothing to
do. This sounds like a harmless way for a computer to spend idle

245

thumbs

time if you keep it in a private place. A quick listen will tell you
if itis running. If you use an intercom as an electronic baby sitter,
you can keep an ear on your machine from anywhere in your
house. The noise of the computer whistling might keep you
awake, but it certainly won't burn out the phosphor on the monitor.

If endearing little noises from your computer might disturb
someone, we will have to invent another harmless trick. Perhaps
a program that keeps something on the screen without damaging
the phosphor. OQur plan is to put a small image on the darkened
screen and keep it moving around. No part of the screen will get
abused because the image will never stay in one place for long,
but the moving image will make it clear that the machine is
running.

We are about to write two programs, one that makes little
noises and one that keeps a nondamaging display on the monitor.
For the suspenders-and-belt types, OS-9 would be happy to run
both programs at the same time — the low-key equivalent of a
siren and flashing lights.

SAVING THE OLD COLORS

Both programs will start by darkening the screen. Protecting
the phosphor is their official reason for existence and the only way
to meet that goal is to keep the screen black — mostly. Darkening
the screen is not hard; putting the colors back afterward is another

A story. Letting the programs leave the screen dark when they finish
would be a solution, but it would be seriously hostile behavior.
That would be unacceptable. We want to create friendly programs.

Selecting a new device window with black borders and
background would be a simple way to darken the screen, but we
can’t use any of the standard device windows by name. The “wild
card” device window, ~u, will give us an idle device window if there
is one, but in a very busy system, all the device windows may be
in use.

Overlay windows may offer a way out of our quandary. The
windowing system creates new overlay windows whenever it
needs them. They can preserve the screen that they cover; they
can even select their own foreground and background colors from
the underlying window’s palette. They can’t change the border
color or use a color that isn’t in the palette.

[t won't be easy to use overlay windows. If black isn’t in the
palette, we will have to put black in a palette register. The color
that was in that register will be gone. If the border isn’t black, we'll
have to change the border color. There’'s no direct way to save
the old border color or palette, but we must save them if we mean
to restore the screen to its original state.

Although there is no BASIC09 function or statement that wiil
return the palette or border color to a program, there is a general-

246

purpose function that we can appeal to when things look
desperate. SysCall is the magic procedure. It gives BASIC09
programs direct access to OS-9. This direct access to 0OS-9 makes
SysCall a powerful and dangerous tool.

0S-9 knows the palette and border color on a screen, and it
will reveal them to any program that knows how to ask. The
following BASIC09 procedure calls SysCall, which forwards two
IsGetStat system calls to OS-9. The first GetStat gets the
contents of the palette registers, and the second one gets the
palette register numbers for the three standard screen colors:
foreground, background and border.

THE LISTING: GetPalette

PROCEDURE GetPalette

goog PARAM Palette(l6):BYTE
ggac PARAM Selections(3):BYTE
2018 TYPE registers=cc,a,b,dp:BYTE; x,y,u:INTEGER
993D DIM regs:registers
2@46 DIM code:BYTE
@94D code :=$8D
2455 regs.a:=1
ga69 regs.b:=§91
g@6C regs.x:=ADDR(Palette)
go7A RUN syscall(code,regs)
g989 regs.b:=$96

95 RUN syscall(code,regs)

g

ggAL Selections(l):=regs.a \REM Forground palette register
@@CF Selections(2):=regs.b \REM background palette register
PIFB Selections(3):=LAND(regs.x,$FF) \REM border palette register
9127 END

Once we have a copy of the palette and border color, we can
change the screen colors as we see fit and restore the original
values any time we like.

We want to write a procedure that makes your computer
darken the screen and make random quiet noises until the user
presses a key. When a key is pressed, the procedure should
restore the screen to its original state and return to its caller.

Let's start by outlining the procedure. We won't worry about
details yet, just the high-level flow.

® Save the current colors

® Darken the screen

® Repeat

® Make a random noise

® Check for a key press

® Until a key is pressed

® Restore the original colors

247

HUMMING TO ITSELF

Is that the whole thing? Probably. It contains the steps that
generate the desired result: darken, generate noise, restore the
screen.

The first step isn’t as obvious as the other ones. It is implied
by the last step. If we are going to restore the colors, we must
have saved them.

Now let's look at the outline, line by line. We'll be ready to
code the procedure when we’re done.

We already talked about saving the current colors. Since we
just wrote a procedure that gets the information from OS-9, all
we need to do is call the procedure and save the values it returns.

If we planned to clear the screen or even write something on
it, we would have to open an overlay window. We can ask OS-
9 to save the data under an overlay window and restore it when
the window is closed. In this case we don’t need that kind of help.
We're just going to make noises. We don’t pian to write anything
on the screen. Whatever is on the screen will disappear when we
darken the screen, but we aren’t going to erase it, just adjust the
palette so all colors are displayed as black.

Since the colors on the screen are controlled by palette
registers, we can turn them black by making all the palette
registers code for black (the code for black is 0). There may be
as many as 16 or as few as two palette registers in use, but we’ll
ignore that. We saved all 16, so we may as well zero them all. The
gfx2 palette function is the tool we need. The code will look
something like:

FOR i:=0 to 15
RUN gfx2(“palette”,i,0)
NEXT i

The next step in the outline requires us to find a way to make
a random noise (well, get the computer to make a random noise).
Only one way to make noise is documented in the BASIC09 manual,
the bell function of gfx2. The bell function makes a noise with
afixed pitch, volume and duration. Notenough for random noises.
We are forced to use the SysCall procedure again.

Looking through the OS-9 technical manual we find SS. Tone
SetStat. It gets OS-9 to make a noise and lets us specify pitch,
volume and duration. It doesn’t let us change the timbre (char-
acter) of the note, but it's the best we can find.

Random values to describe tones can be generated by the
BASIC09 RND function. We'll use it three times for each sound to
give a duration, volume and frequency. The technical manual
gives the range of values it will accept for each parameter. These
values should be:

248

Duration (length) 0 to 255
Amplitude (loudness) 0 to 63
Frequency (frequency) 1 to 4095

We want short, quiet beeps. You can modify the values to your
taste, but the following ranges are a good starting point:

Duration 0to 40
Amplitude 0to 20
Frequency 1to 4095

The description of SS.Tore tells us to squeeze duration and
amplitude into one integer-sized register. To get a small number
into the MSB (Most Significant Byte) of an integer, we multiply
it by 256. We'll calculate the value for the X register like this:

regs.x := durationtvolume*256

After the procedure makes a noise, it should check for a key
press. We can’t just read a character: That would make the
procedure wait quietly for input. We have to use the Inkey
procedure. It will return a character if there is any input. If there
is no input, Inkey won't wait; it just returns an empty string.

The loop that keeps the procedure whistling will keep going
until Inkey gets something other than an empty string.

When the loop exits, the procedure should restore the color
information it changed. The procedure darkens the screen by
zeroing all the palette registers, so we have to set all the palette
registers back to their saved values.

Now that we understand the problem, it is easy to convert the
solution into BASIC09. Here's what it looks like:

THE LISTING: Hummer

PROCEDURE Hummer

9090 TYPE registers=cc,a,b,dp:BYTE; x,y,u:INTEGER
9925 DIM key:STRING[1]

ga31 DIM regs:registers

ga3A DIM callcode:INTEGER

ga41 DIM note:INTEGER

2948 DIM volume:INTEGER

Go4F DIM frequency:INTEGER

9956 DIM duration:INTEGER

295D DIM Palette(l6):BYTE

9069 DIM Selections(3):BYTE

@975 DIM i:INTEGER

gg7c BASE @

997E

P@7F (* Save the current palette and install a palette
goBg (* all full of black.

ggCc5 RUN GetPalette(Palette,Selections)

249

2904
PPE4
PPFB
o196
9197
g12A
g14C
P154
gleg
9168
g16C
P16E
g1A2
J1AF
g1B9
g1c3
g1D2
g1E6
g1F2
g291
9224
9234
§23F
g249
p269
p279
g28¢C
9297

A TERMINAL ON A TERMINAL

pr——
e

|
|

e
::ﬂk

FOR i:=@ TO 15
RUN gfx2("palette",i,@)
NEXT i

(¥ Set the values for syscall that
(* won't change in the repeat loop
callcode=$8E

regs.b:=§98
regs.a:=1
REPEAT

(* Pick a random duration, volume, and pitch for the
(* next note.
duration:=RND(4@)
volume :=RND(20)
frequency:=RND(4094)+1
regs.x:=duration+256%volume
regs.y:=frequency
RUN syscall(callcode,regs)
(* Keep looping until the user hits a key
RUN inkey(key)

UNTIL key<""

(* Restore the palette registers
FOR i:=@ TO 15

RUN gfx2("palette",i,Palette(i))
NEXT i
END

You have to keep the same display on a screen for days before
it will burn into the screen. Keeping a fixed image on the screen
for seconds, or even for hours, will do no harm. We will write a
program that shows the computer is running by displaying a small
image moving around on the screen. The motion is good for the
screen, and it makes it clear that the computer is running well.

We are not artists, so we will use a cartoon picture of what
we see in front of us, a Color Computer, a monitor and a mouse.

There are two easy ways to draw a picture on the screen. We
could use the drawing commands, mostly Lineand Fill. It's easy
to draw with these commands, but not fast. It is faster to load an
image into an image buffer and PUT it on the screen. We'll do it
the fast way.

An image has to be constructed before it can be put into an
image buffer. We could construct the picture by drawing it with
graphics functions (Lines, Circles and so forth) and copy it from
the screen to a buffer. That is the easy and sensible way to do
it, but just for fun, we’ll do it another way. It is possible to define
the picture in a buffer one dot at a time. That’s what we’ll do.

250

We have a picture something like this in mind:

oz |8

The first step in converting this into an image for the Color
Computer is to draw the picture with X’s.

);6:0.0.6.:0.0.0.0.0.0.6.0.0.:0:0.0.0.0.0.0.6.0.0.6.4
XXXX XX XX XX XX XXXX XXXX
D $.0.0.0.0.0.0.0.0.0.0:0.6.0.0.0.0.0.0.0.0.0.6:0.0. 0. G 6:0.0. ¢
. XXXX XX XX XX XX XXXXXX XXXXX
):0.0.0.0.6.0:6.0.0:0.0:0.0.0:0.0:0,0:0.0:0.0:0.0.6.0.6.¢

An icon of a Color Computer should be in color. Four colors
should be enough: black, white, green and red. Now we need to
redraw the picture with codes for the colors. The underscores and
X's will serve for black and white. We'll add asterisks for green
and dollar signs for red.

0:0.0.0.6:0.0.:0.0.0.0.6:0.0.0.0.0.0.0.0.:0.:6:0.0.6.0.0.0.0.0.

)0:0:0.0:0.0.:0:6:0.0:0:0.0.0.6.0.0.0.0.0.6:0.0.6:0.0.0.0.0.¢

XX Sedeve e XX
XX Fede XX
XX Fedevedededc X X

X X Fevedededevededededededededededededededededevedede e X
XX Fevede X X

X X Fevededededededededededededededededededevedevededeve X X

XX Fedededededededededededeiodededededededevededededede X

:0:0:06:0.0.0:0.0.0:0:0.0.6:0.0.6:0.0.6:0.0.0.0.0.:0.0.0.0'¢

:0:0.0.0:6.0.0.0.6.0.0:0.0.:0:6.0.9.0.0.0.6:0.0.:6.0.0.6.0.0.¢

00000000000000000000004
XXXXXXXXKXXXXXXXXKXXKKKKKX
XXXX_ XX_ XX XX XX X$XX__ $5S$5_

This picture has to be converted into numbers that the Color
Computer can understand. Since we will be using four colors,
each point (called a picture element or pixel) in theimage will need

two bits.
TABLE 16-A: Pixel Storage
2-color 1 bit per pixel 8 pixels per byte
4-color 2 bits per pixel 4 pixels per byte
16-color 4 bits per pixel 2 pixels per byte

The two-bit number for each pixel in a four-color image will
hold the number of the palette register for that pixel’s color.

The next step is to convert the picture to bits. For this we will

need to know which palette register will go with which color. It's
up to us, so let’s assign them this way:

Register Color

0 black
1 white
2 green
3 red

Now we have to recode the colors in the picture.

® Each _ will become 00 (binary 0)
® Each X will become 01 (binary 1)
® Each * will become 10 (binary 2)
® Each $ will become 11 (binary 3)

9902000000900 0009101019101010910101010109101010101016191010191010101¢1919101910059
Pp0000000000000001010191019101010101p10101019101091010101010191019191018101510990
$9p000008PPP02191101 0101 01010101010101910101010101019101010101010101091810999
PRPpPaPRePRPRPREELPL1A11g1a10101010101010101010101010910101010101910101001010009
PopIPEIREeIPIIPER1FLI1a1P10101010191010101010101010101010101010101010101301010000
PpPaEeaPpRpAPRee1aL1Ip1p1PLo1g1001010000
geaaPagpIeRIRgeIgLYL1pIALE1Lg101 0101010101 0191010101019101010101010101001010990
Q090099000083 030001911019101010101010101010191019191¢1219101019191910101301015000
PeapgageaapgeegoaLglipglelglalglglglglglplolglglolglelglglglplplolglalpleplalagpp
POBapRAeRIPaAPRP1@Lo1G10101010101010118101010101010101810101010101010101010900
P9999090909909009101018101010101010101910191210101010191819101019191010151810000
BIPIPEINIIPIPIPRPEEPIIIIIIAPAIIPIPBIIIPIRIPRGIGIAAIIPPIFEIAIIIIIIIPIPIIBOIIIIIIP
QUP0PPIPRAA00PPEAFIAIAVPIGRRIIIIFIPIIPIIEIIIPIPPIPIEIIIIPPORPIROGEFAPIPIIIIIGED
9999000090009 99901¢10101919101019101810161910191010191019101010000909009000899999
P90003000099000101910101210191¢191010101919101019191810101010191080930009000099
POpRP0P0PRPR1P1010100000101099091010098109100003101099P11101010990901111111108
gp0000090091010101910101910191¢1919101910101910191210919101019101p800999191019109
9999000991019101009001010000¢1F10099010100499101090001910101610100089109191010199
PopePRepRIRLIPIP1g1alalp1p1P1P1R1g1 10110101 010101010101010101010008300000000000

Now we need to break all that binary data into byte-size
chunks and convert the chunks out of binary. BASIC09 understands
numbers in decimal or hexadecimal. It's easy to convert binary
to hexadecimal, so we’ll aim for that. A byte contains eight bits
so we'll break the image into eight-bit columns:

252

P900gp9 PRPRIRY P1o1g101 g1919101 g1919101 P191p191 g1g1g1gl 91910101 G1019181 g1910009
$90900009 99999009 PLO1PLPL P1Q1P141 G1ELP1QL PLELELIPAL PLPLPLEl G1Q1Q191 PLO1g1g1 P1plgggg
99990000 0900099 g1pL1g1P 191¢101¢ 19191410 19191010 10191910 191091p10 19101010 P1910000
99889002 PPPEA0p9 F1911910 10191919 19101919 10101910 10101018 19101910 10101019 91910000
99990009 90099009 G1011918 191¢1019 19101910 19191919 19191019 19191019 19101610 91910009
go000008 PPPPP0PY 1911010 19101818 10191019 19191019 19191910 19191019 19101010 91019000
99009008 P999GP09 $1P11010 1911910 10101919 19191010 19191010 19101919 19101010 P1p10000
g29909999 9909009 91011019 1019101¢ 19191010 19101919 19101919 19191910 19191010 91910009
99990000 P00gp00e $1011010 19191910 19101019 19101019 19191010 10191919 19101010 91010000
90000099 99999900 91919191 P11g1p1 @1910101 P1g1p141 1919101 g1plgigl $1910101 gl91ggog
90900099 90090009 21919101 glg1p191 g1P10191 $1919191 $191g1p1 g1p191g1 P1010101 1910900
99099909 PIPPEIRR PPPIPIPR POPPPPOP PPPIINRY PPPIGIRY PPPPPIP BFIPPPPI PPGAFIPY FPPPRAP
P99909093 P9P0PI09 PPIIP0P FPPPPIPP PIFPPPI0 POPIPPGH PPIPIIPP PPPPVIIQ PPPIIIED FIPEIPPY
99099209 P0PP2099 PLELFIPL P1P10101 G1919101 PLP1g1pl @1p1Q1g1 PLP10100 PPP0P09P PPg0QPpQ
99090999 Pe@PgPQL $1p1g10l Plgiplgl plP1g1gL glplgipl giglglgl glpglgigl gagppgpg pegpaepg
20909999 PIPPPLAL PLP1PPGE PLELEGIF 1010000 §LO109P8 P1P1PPPP ¢1119101 PEggggll 11111109
99999999 9991191 G1010101 p1g19191 g1g1P1gl 21919101 g19101gl P1@1g1gl P@gPQpel g1p1p19g
ge0gee0 Q1010101 pageR1gL @PPPPLEL GoPE1pL PPEPP1PL §PP99101 PLP1P151 PPAOg1PL P1g1G100
Po90992p PLPLPLPL PLELAIPL P1P1G101 GLE1P1G) P1P10101 P1P101Q1 P1Q1P101 PPPRIIRE PRPPPPQg

Look at each byte as two four-bit groups, and translate the
groups according to the following table:

TABLE 16-B: Hex Translation Table
Bits Hex Character Bits Hex Character
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

This gives us:

99 99 55 55 55 55 55 55 55 5¢
99 99 55 55 55 55 55 55 55 5@
g0 9@ 5A AA AA AA AA AA AA 50
P9 9@ 5A AA AA AA AA AA AA 50
90 9 5A AA AA AA AA AA AA 50
00 9@ SA AA AA AA AA AA AA 50
90 00 SA AA AA AA AA AA AA 50
90 99 5A AA AA AA AA AA AA 50
00 90 S5A AA AA AA AA AA AA 50

99 9@ 55 55 55 55 55 55 55 5@
@9 @@ 55 55 55 55 55 55 55 59

29 99 09 99 99 99 93 29 99 @9
99 990 99 99 99 99 99 99 99 @9
99 99 55 55 55 55 55 54 @@ 99
g9 g1 55 55 55 55 55 55 @@ 99
99 95 59 59 59 59 58 75 @3 FC
P9 15 55 55 55 55 55 55 g1 54
99 55 @95 @5 @5 95 @5 55 @5 54
99 55 55 55 55 55 55 55 g 9g

253

And that's the table ready to go into BASIC09 Data statements.
See the end of the chapter for a BASIC09 program that does most
of this conversion.

We will continue with the procedure by doing an outline:

Save the screen information
Adjust the screen colors as necessary
Set up an image buffer for the CoCo image
Set up another image buffer to erase the CoCo
Repeat until a key is pressed
put the CoCo image at a random location
wait a moment
erase the CoCo image
see if a key has been pressed
Restore the old colors
Kill the image buffer

Saving the screen colors is tricky, but it’'s a solved problem.
Luckily we even put the operation in its own procedure so we can
simply call the GetPalette procedure to save the color informa-
tion. The Hummer procedure didn’t have to worry about saving the
contents of the screen. It could make every color in the palette
black and know that the screen was dark. This program will
display an image on the screen so we can’t make all the colors
black!

The OS-9 windowing package includes a tool for saving the
contents of a screen. If you start an overlay window over another
window, the contents of the bottom window can be saved. We’ll
let OS-9 help us out here. The procedure will start an overlay
window with the save switch on, and OS-9 will cover the current
screen with a new overlay window. When we are done, OS-9 will
put the original screen back.

Now we have to prepare the screen for the image. We will put
the four colors we need in the first four palette registers, darken
the screen borders, turn off the cursor and turn off “logic.”
Remembering to turn “logic” off is tricky — especially since most
of the time it’s not an issue. Normally, OS-9 writes things on the
screen by just drawing them in the right spot. When “logic” is
turned on, OS-9 has other ways of putting things on the screen.
Those other ways can really mess us up, so we are careful to turn
“logic" off in case some other program left it on.

The cartoon of a Color Computer has to go into an image
buffer before we can ask OS-9 to display it on the screen. We will
tell OS-9 that we want to load an image with the GPLoad gfx2
function and then send the bytes that define the buffer. We’'ll have
to do the GPLoad trick again for the blank image that we’ll use to
erase the computer image.

The GPLoad function needs several arguments. The graphics

254

type of the images is four-color, high resolution. The images are
40 pixels wide by 19 pixels high, and they use 190 bytes. The buffer
group and buffer number are a problem. We can code a constant
group and number into the procedure, but it's a bad idea. We'll
do it anyway, but in Chapter 17 we’ll show you a better way.

The loop that jumps the image around on the screen should
be almost like the main loop in Hummer. We need one extra trick.
We want the image to pause for a moment at each position. There
is a pause command in BASIC09, but it is not the command we want
now. The BASIC09 pause command puts BASIC09 into Debug mode.

One reliable way to make BASIC09 hesitate is to give it a bunch
of work to do. Running around an empty FOR loop about 10,000
times should take a noticeable interval.

When the REPERT Ioop ends, we are almost done. We'll have
to put the screen back the way we found it. We'll restore three
things:

® The palette registers
® The border color
® The original contents of the screen

We'll use the gfx2 Palette function to restore the colors, the
gfx2 Border function to restore the border color, and the gfx2
OWend command to close the overlay window we've been using
and restore the old screen.

We don’t actually need to kill the image buffer. The program
will work perfectly without this step. It’s just good practice for a
program to clean up after itself as much as possible. The gfx2
function Kil1Buff will remove a buffer from the system.

Remember, using buffer group one was a temporary shortcut.
What if some other program also wanted to use group one? We
need a standard way to choose group numbers so programs won't
interfere with each other. In the next chapter we'll show you a
procedure, GetPid, which will generate more useful group
numbers.

Here’s what the procedure that bounces the CoCo around on
its own screen looks like when you put it all together.

THE LISTING: BUSY

PROCEDURE busy

p999 (*

2093 (> Image data that (roughly) describes a cartoon of
ga36 (* a Color Computer with a monitor and a mouse.
9265 (*

gp68 DATA $09,$09,$55,855,855,855,855,855,855,850

P994 DATA $099,$99,855,855,855,855,855,855,855,850

agcg DATA $§9,809,$5A,5AA, SAA, SAA, SAA, SAA, SAA,$50

99EC DATA $§@,$00,55A,8AA,5AA, SAA, SAA, SAA, SAA, $50

255

9118 DATA $09,$90,85A,3AA, SAA, SAA, SAA, SAA, $AA, $50

9144 DATA $0@,$00,$5A, $AA, SAA, SAA, SAA, SAA, SAA, $50
179 DATA $0@,$0%,$5A,5AA, SAA, SAA, SAA, SAA, SAA, $50
g19¢ DATA $00,$00,85A,SAA,SAA,SAA,SAA, SAA, SAA, S50
g1c8 DATA $90,$00,$5A,5AA, SAA,SAA,SAA, SAA, SAA, S50
P1F4 DATA $99,8¢0,855,855,855,855,855,855,855,35¢
9229 DATA $0¢,$99,855,855,855,855,855,855,855,85¢
g24cC DATA $00,$00,500,$00,500,509, 500,309,599, 590
278 DATA $§9,$99,500,599,599,500,500,509,$00, 509
g2a4 DATA $@@,809,555,$55,855,855,855,854,800,500
p2ng DATA $@@,$01,$55,$55,$55,855,555,855,$90, $p0
g2FC DATA $09,$95,$50,$50,$59,850,559,575,503, $FC
@328 DATA $0@,$15,855,$55,855,855,855,855,801,854
9354 DATA $§@,855,895,$05,805,805,$05,$55,805,854
@380 DATA $§9,$55,5$55,$55,$55,$55,$55,$55,$0¢, $00
@3AC (¥ End of image data

g3cg

g3C1 (¥ Variables

@3CD DIM Buffer:BYTE

23D4 DIM palette(l6):BYTE

@3EQ DIM Selections(3):BYTE

g3EC DIM i:INTEGER

@3F3 DIM x,y:INTEGER

@3FE DIM key:STRING[1]

gaga BASE ¢

g49c

g4gD

P4LPE (* Save the current palette and put up an overlay screen
G446 (¢ with the right colors for the display we want
2476 RUN GetPalette(palette,Selections)

2485 RUN gfx2("owset",1,0,0,8¢,24,0,0)

G4AT RUN gfx2("palette",@,$0@)

@4BD RUN gfx2("palette",1,$3F)

@4D3 RUN gfx2("palette”,2,812)

P4E9 RUN gfx2("palette",b3,$24)

J4FF RUN gfx2("border",§)

#51¢9 RUN gfx2("curoff")

@51E RUN gfx2("logic","off")

g531

@#532 (% Load the CoCo image and the blank image into
@561 (* image buffers

g571 RUN gfx2("gpload"”,1,1,7,44,19,199)

@591 FOR i:=@ TO 189

@5A1 READ Buffer

@546 PUT #1,Buffer

J5AF NEXT i

@5BA RUN gfx2("gpload"”,1,2,7,4¢,19,199)

#5DA Buffer:=¢

@5EL FOR i:=@ TO 189

@5F1 PUT #1,Buffer

g5FA NEXT i

7695

g606 REPEAT

256

9698 x:=RND(639-40)

@616 y:=RND(191-19)

9623 RUN gfx2("put",1,1,x,y)

@63E FOR i:=1 TO 100p@@

P64F NEXT i

P65A RUN gfx2("put",1,2,x,y)

@675 RUN inkey(key)

@67F UNTIL key<>""

P68A

P68B (* Restore the old palette and close the overlay window
g6C2 FOR i:=@ TO 15

g6D2 RUN gfx2("palette",i,palette(i))
J6EE NEXT i

@6F9 RUN gfx2("border",Selections(2))
P70E RUN gfx2("owend")

@71B END

The image buffer is designed for a four-color screen, and the
random screen locations are generated for a 640-by-192 screen.
If you don’t run this procedure on a type 07 graphics window, it
won’t work right.

If you leave your computer on all the time, you should either
turn the monitor off or somehow arrange to dim the screen. Since
we are programmers, we sneer at the idea of dimming the monitor
with the front panel controls; we solve the problem with a program.

The first program was conservative. It turned the screen
entirely black and indicated that it was running by making cute
noises. Plain BASIC09 can change the screen to black and make
a bell-like noise, but it can’t restore the original colors or make
any other noises. We got the extra power we needed with the
SysCall procedure.

The second program was more adventurous than the first one.
It bounces a small cartoon of a Color Computer around on the
screen. The image doesn’t stay anywhere long enough to damage
the screen, but it quietly shows that the computer is running.

We spent lots of time building the image buffer for the
computer cartoon. We started with a drawing on graph paper and
gradually turned it into a list of codes that BASIC09 can send to
gfx2. Perhaps we learned that we don’'t want to do that again!
PicConvert can do most of the work automatically.

The SysCall procedure is a BASIC09 programmer’s secret
weapon. It brings all the power and danger of assembly language
programming to BASIC09. Look through the OS-9 technical
reference for a list of the system calls. You can get at all the user-
mode system calls with SysCall. Notice that it is easy to get into
bad trouble.

257

PRINCIPLES

POSSIBLE ENHANCEMENTS

If you feel like you should be able to do something, but you
can’'t find any way to do it with BASIC09, check the technical
reference. The SysCall procedure gives you access to the
0S-9 system calls, and every OS-9 service is available through
some system call.

The first possible enhancement is almost required. Use a
SysCall to get the procedure’s process number and use the
process number as the buffer group for Busy’s image buffer.

Both Hummer and Busy require full-size screens. Busy requires
a high resolution, four-color screen. If the screen attributes are
wrong, the programs will malfunction. It would be better if they
checked the screen attributes and returned a friendly message if
the attributes were wrong. It would be best if they changed the
screen attributes. Think about opening a device window with the
correct attributes.

There’s nothing sacred about the CoCo icon. Can you make
a little picture of yourself or a friend?

THE LISTING: PicConvert

PROCEDURE PicConvert

ppog
g93B
p@75
pp87
P94
ggal
FPAE.
ggBB
ggc2
PPCE
P@DA
PPES
PPrP
gLpe
g113
glapg
gLra47
§16E
9181
9187
g1AD
g1DC
#1DE
91E8
P1IF4
P1FF
p2gr
p216

REM
REM
REM
REM
REM
REM
REM
DIM
DIM
DIM
DIM
DIM
RUN

Convert a picture from characters to hex codes for bytes
This program works for 4-color pictures with the colors
represented by:

_ GColor @
X Color 1
* Color 2
$ Color 3
Pixel:BYTE

Line:STRING[320]
ThisByte:STRING[1]
i,ByteVal:INTEGER
WlPath,W2Path:BYTE
gfx2 ("dwprotsw" ,"off")

OPEN #WlPath,"/w" :WRITE
OPEN #W2Path,"/w" :UPDATE

RUN
RUN
RUN

gfx2(WlPath, "dwset",0,9,12,80,12,1,9)
gfx2(W2Path,"dwset" ,¢,0,0,8¢,12,1,2)
gfx2(W2Path,"select")

ON ERROR GOTO 209
PRINT #W2Path,TAB(15),"Enter Picture Description”

PRINT #W2Ppath,TAB(lf),"Encoded Picture Will Appear Below"
LOOP

INPUT #W2Path,Line
WHILE Line<>"" DO

ThisByte:=LEFT$(Line, 1)
Line:=RIGHTS$(Line,LEN(Line)-1)
Pixel:=@

FOR i:=§ TO 3

258

@226 199 ThisByte:=LEFTS$(Line,1)

@234 Line:=RIGHT$(Line,LEN(Line)-1)
P244 EXITIF ThisByte="" THEN

@250 IF i=@ THEN

@g25¢C GOTO 159

g269 ELSE

g264 WHILE i<=3 DO

9279 Pixel:=Pixel¥4

g27B i:=1+1

9286 ENDWHILE

g28A ENDIF

g28C ENDEXIT

#9299 IF ThisByte="_" THEN

@29D ByteVal:=@

P2A4L ELSE IF ThisByte="X" THEN
P2B4 ByteVal=1l

@2BB ELSE IF ThisByte="#" THEN
@2CB ByteVal=2

@202 ELSE IF ThisByte="$" THEN
P2E2 ByteVal=3

P2E9 ELSE

@2ED PRINT #WlPath,"Invalid character in picture."
@313 GOTO 109

9317 ENDIF

$319 ENDIF

g31B ENDIF

$31D ENDIF

@31F Pixel:=Pixel*4+ByteVal

@32E NEXT i

@339 PRINT #W1lPath USING "H2",6Pixel;
9349 ENDWHILE

@34D PRINT #W1Path

¥353 150 ENDLOOP
935A 209 PRINT "Done"

@365 RUN gfx2(WlPath, "dwend")

9377 RUN gfx2(W2Path,"dwend")

@389 RUN gfx2("select")

9397 CLOSE #W1Path,#W2Path 1
03A2 END

259

CHAPTER 17

putting it all together
™

We've created many useful programs. If we can hook them
together they will make a nice package. A menu is called for.

There’s nothing exciting about a menu. The procedure will
be big, but much simpler than the programs we have been working
with. Look for it at the end of this chapter. The trick is in
assembling the parts after we have the menu.

We have written a great deal of code. BASIC09 has to fit itself
(about 24K), the program code, and the program data into 64K
of memory. We have too much code for this.

BASICO09 lets us pack procedures. A packed procedure has the
information that BASIC09 uses for debugging and editing removed.
You don’t want to pack a procedure until it is completely
debugged. You particularly don't want to pack a procedure unless
you have it saved to disk! Remember that a packed procedure can’t
be edited. If you pack a procedure without saving it first, you will
have to type it in again (maybe recreate it) if you ever want to
change it.

261

PACKING AND COMBINING PROCEDURES

RUNB

A packed procedure is smaller than the unpacked procedure
it came from, but it takes a minimum of 8K of memory. Given that
our procedures are mostly a few hundred bytes tong, this doesn’t
sound like a good deal. At 8K per procedure and 24K for BASICO09,
we could fit five packed procedures into BASIC09's workspace.
Actually, we couldn't even fit five procedures; a program needs
some space for variables.

If packed procedures take 8K each, what’s the point in
packing? For one thing packed procedures are a little faster than
unpacked procedures. There is also a loophole in the 8K rule.

The version of 0S-9 on the Color Computer allocates memory
in 8K chunks. That’s why packed procedures need a minimum of
8K each. The loophole is that it allocates memory to the file it is
loading, not to the procedures. If we pack all our procedures into
one big file, 0OS-9 will put them all into one chunk of memory. The
combined length of the procedures we will combine is almost 16K,
so 16K will be the size of their block of memory.

When you run a file containing many procedures, OS-9 will
try to execute the first procedure in the file. It is happiest if the
name of the first procedure is the same as the name of the file.
We will put Menu at the beginning of the file and name the file Menu.

SOME OTHER WARNINGS

Even with all our procedures packed into 16K, there isn’t
enough space for BASIC09, our procedures, and the memory they
(particularly ScratchPad) need to run. RunB (at 12K) is about half
the size of BASIC09. RunB and the procedures use 32K of memory,
which leaves plenty for data.

0S-9 will use RunB automatically if you just type Menu. It will
notice that the file, Menu, contains packed BASIC09 procedures and
start RunB to interpret them. This is a good trick, but we can’t use
it. Without going into the details, when you use RunB this way,
0S-9 gives it 4K of memory for variables. There is no easy way
to get it to ask for more memory.

You will have to run RunB yourself. Start the program like this:

runb menu #24k

Remember that ScratchPad expects to find the standard
pointers loaded. Before you run Menu, load the pointers:

merge /d@/sys-stdptrs

You should probably use the GetPid procedure at the end of

262

the chapter to get a buffer number for Busy. Choosing buffer
number one was only acceptable as a temporary solution.

BUILDING THE MENU FILE

Basically, all we are going to do is pack all the procedures
we have written into one file. In detail, there’s a little more to it.
It is easiest to build the menu file in pieces:
® Start a clean BASIC09 with plenty of memory (we use 32K).
® | oad procedures for the ASCII programs:

ASCII_List
ASCII_Table
Control_Names
® Pack them into ASCII.chars: 9)
pack* >ASCII.chars ﬁaﬁ
® Kill the packed procedures:
kil1l*
® | oad the procedures we used for ScratchPad: ScratchPad,
Scroller, ScrollBottom, ScrollTop, ScrollXY, FileMenu,
ScrollScreen, GetFName, UpdScreenData, ApplyArrow, Paint-
Screen, WritFile, ReadFile, QuitMenu and ClearBuf
® Pack them into ScratchPad:
pack* >scratchpad
e Kill them:
l<ill*
® | oad the procedures for Busy and Hummer:
busy
hummer
getpalette
® Pack them into ScreenSaver:
pack* >screensaver

¢ Kill them:

lkill*

263

® Load the procedures for Calendar: Janl, DaysInMonths,
SetDatelInfo, WeekDayToDate, Calendar, Get_Month_Name, Print-
Month, WeelkInYear, CalcDate, Printieelk and NewMonth
® Pack them into Calendar:

pack* >calendar
¢ Kifl them:

kil l*
® |_oad the procedures for Rolladex: Rolladex, DBOpen, DBStart,
DBWindow, DBInteract, DBClose, DBDispRec, DBDisplay, DBBack,
DBSrch, DBUpd, DBFwd, DBReDisp, DBAdM, LShiftSet, FillSet,
DBSrchSet, DBSrchFile, DBGetRec and DBEdi tRec.
® Pack them into Rolladex:

paclkk* >rolladex
¢ Kill them:

l<111%*
¢ | oad the final version of Menu:

menu
® pack it into x:

pack* >x
® Kill it:

lkill*
® Change the data directory to the execution directory:

chd -d@-cmds
® Merge everything:

merge x ASCII_chars scratchpad screensaver calendar
rol ladex >menu

® Make Menu executable:
attr menu pe e
That’s all. Now you can run Menu:

runb menu 324k

264

THE LISTING: GetPid
PROCEDURE GetPid

o099 REM A Procedure to get a programs process id.

gg2c REM This can be used to get a graphics buffer that
295D REM won't get in any other program's way.

2985 REM (Provided everyone uses their process id as their buffer
ggcy REM number)

ggcA TYPE registers=cc,a,b,dp:BYTE; x,y,u:INTEGER

PYEF PARAM PId:INTEGER

JoF6 DIM regs:registers

QPFF DIM callcode:BYTE

g196 callcode:=$¢C

@10E RUN syscall(callcode,regs)

@11D PId:=regs.a

@128 END

THE LISTING: Menu
PROCEDURE Menu

gog9 DIM InputChr:STRING[1]

20@c DIM WaitChr:STRING[1]

gg18 DIM low,high:INTEGER

9923 DIM Keys:STRING[18]

@@2F DIM KeyNum:INTEGER

$236

@@37 Keys:="1LaApPcCsSnNdDqQ"

@@4LE REPEAT

gasg RUN gfx2("owset",1,0,9,39,19,1,2)
g972 PRINT " Menu "

@987 PRINT " a: Display ASCII Table"
goAL PRINT " 1: Display ASCII List™
ggcg PRINT " p: ScratchPad"

g@D4 PRINT " c: Calender"

PPE6 PRINT " s: Screensaverl"”

@PFC PRINT " n: Noisy saver"

g111 PRINT " d: Database"

@123 PRINT " q: Quit"

9131 PRINT " Selection: ";
g14C GET #@, InputChr

@155 KeyNum:=(SUBSTR(InputChr,Keys)+3)/2
g167 RUN gfx2("owend")

g174 ON KeyNum GOSUB 19¢,200,300,4090,500,609,707,80¢,909
@19F UNTIL KeyNum=9

P1AA END

@1AC 1¢gg REM Invalid selection

g1c3 RETURN

@1C5 2¢¢ REM ASCII List

g1D5 RUN gfx2("owset",1,5,3,15,2,1,3)
@1F7 INPUT "Lowbound:",6 low

2208 INPUT "Highbound:" ,high

g21A RUN gfx2("owend")

265

9227 RUN ASCII List(low,high)

#236 GET #¢,WaitChr

@23F RETURN

#241 399 REM ASCII Table
2252 RUN ASCII Table
g256 GET #@,WaitChr

@25F RETURN

@261 4@ REM Scratchpad

@271 RUN ScratchPad(ScratchState)
@27B RETURN

@27D 5¢@ REM Calender

g28B RUN Calender

§28F RETURN

9291 699 REM Run screensaver
P2A6 RUN busy

F2AA RETURN

@2AC 799 REM run noisy screensaver
g2cy RUN hummer

P2CB RETURN

g2CD 8¢¢ REM run database
@2DF RUN rolladex

P2E3 RETURN

@2E5 9¢9¢ REM quit

@2EF RETURN

POSSIBLE ENHANCEMENTS

The Menu procedure would work much better if it opened
overlay windows for some of the other procedures to run in.

266

special items index

+* editing command 52
-* editing command 52
-z option 62
/d0 6
/d1 6
/dd 146
/term 19, 42
/w1 through /w7 - 20
CLEAR key . 21,31,37,41,74,82
CTRL-@ 15
CTRL-A 13, 63, 82, 103
CTRL-C 14
CTRL-CLEAR 66
CTRL-D 14
CTRL-E 15
CTRL-ESC 14
CTRL-H 12
CTRL-W 13
CTRL-X 13
ESC 66
>/p 14

general index

Alarm Clock program 133
Ampersand 28,59
Animation 176, 177
ASCII - 155
Asterisk 56, 70
Autoex procedure .. . _____ 153
Available colors . 40
Back arrow key _ 12
Background patterns _ 81
Background task 28, 29
BACKUP 5,6, 8,10, 151
BAR (gfx2 function) 175
BASE 158
BASICO09 86, 108, 113
BASICOS structure 136
BASICO09 cornmand mode 86

267

BASICO09 edit mode 87
BASICO09 introduction 85
BASICO09 Tour Guide 86
Beep command 125
Blanks in strings 193
Boot S 3
Bottom up 201
BREAK key ___ 15
Buffer 106
BUILD ___ 25, 49
Byte variables 178,179
C™ editing command 52
Changing disk stepping rate 144
Character position 79
CHD 140, 141
Child processes 65
CHX 141

Closing overlay windows 47
Cls command 115
Cls procedure 114
CMDS directory 24,25,111,138
COBBLER 145
Colors 170-173
Color mixing 172-173
Colors, number of 170, 171
Command line 58
Command line prompt 29
Comment lines 56
Comments 70
Complete pathlist 139
Computer languages 85
Concurrent task 28
CONFIG 148
CREATE 224
CRT fatigue 245
Current data directory 26, 140, 141
Current execution directory 30, 115, 141
Customizing the shell file 152
DATA statement 158
Data directory 25
Data memory area 37
DATE 21
Default drive 146
DEINIZ 26, 31
Device descriptors 20, 148
Device drivers 20, 38
Device windows 36, 38, 223
Device window end 63
Device window set 43
Devices 154
DIR 11,12, 22, 26, 141
Directories 25, 138
Disk drives 2
DISPLAY 25, 35, 41, 80, 96
Draw a line and move 104
Draw pointer 95
Drawing a box 94
Drawing and windowing tools 93
Drawing program 127
DrawX procedure 104
DrawX_BAS 109
DSAVE tool 151
DUMP tool 76
Duplicate code 167
DWSet 43, 45
ECHO 71, 86
EDIT 51
Editing a file 49
Editing commands 53
Editor 50, 179-190, 191
English language tools 116
Errmsg file 12,23
Error #189 96
Error #207 87
Error #216 11, 86
Error messages 37
Errors 200, 208
Escape key 14
EX command 31, 48
Executable attribute 127, 264

268

Execution directory 25
Experimentation 180, 190
Extended directory listing 30
F$Alarm system call 133
Families of processes 65
File attributes 264
Files 193
Filing system 138
Filling an object 98
FORMAT 5-7
Formatting a disk 5
FORTRAN variable naming 158
FREE 7
Frozen windows 223, 224
GCSet command 80, 81, 83
Geometric shapes 91
GET 167
Getting organized 137
Getting rid of shell 48
GetX procedure 106
GetX_BAS 110
Gfx2 88, 114, 116, 125
Global change commands 54
GOSUB (on) 188, 189, 265
GOTO 167
GPLOAD 254, 255
Graph paper 94
Graphics Cursor Set 81
Graphics cursors 80, 83
Graphics primitives 78
Graphics window 39, 47,79, 82
Green screen 19
HELP 26, 23
Helpmsg file 23
Hexadecimal 161
Hexadecimal to decimal 253
High resolution mouse 113
Hourglass graphics cursor 80
I-code module 115, 142
IDENT 10, 116, 150
Image buffer number 255
Image buffers 250
Incremental development 89
Individual commands 27
INIZ 21,31, 41,42
INSLIN 197, 198
Instant graphics window 75
Intermediate code 141, 142
Interrupt key 14
Invisible draw pointer 96
Kernal 64
Keyboard mouse 16
L* editing command 52
Library code 217
LIST 14, 29, 50
LOAD 7
LOGIC 254
MAKDIR 150
Making a graceful exit 16
Making additional VDG windows 66
MDIR 19, 26
MERGE 41,77,104, 127
Merging display files 104

Merging fonts 42
Merging modules 115
Merging temporary files 126
Mixing colors 172,173
MODBUSTER 150
MODPATCH 144
Module directory 115
Module library 149
Modules 19
Modules directory 148
MONTYPE R 21
Multi-Pak Interface 2
Multi-Vue 37
Objects and verbs 92
ON GOSuUB 232
One disk drive 9
Organizing a floppy disk 138
Organizing a hard disk 143
0S9: prompt 4,25
0S9Boot file 138, 146
0S9Gen command 150
Outside in development 212, 213
Overlay menus 193, 194, 265
Overlay window 38, 254
Overlay window set 44
Overlay windows (closing) 233
Overlay windows 36
OWSet 44
PACK command 114
Packed procedures 261-264
Palette (saving) 246, 247
Palette 169-178, 230-231
Parameters (number of) 164
Parent processes 65
Patch file 145
Patching repeat key speed 145
Path descriptors 148
Pathname not found error 11
Pixel position 79
Pixels 39, 78, 252
Primitive drawing tools 91
Printing a hard copy 97

Problem decomposition
Procedure file

167, 168, 185, 190
28, 32, 49, 63, 67

Procedure Shapes 99
Procedure Size 167, 168
Process 30, 65
Process ID 265
PROCS tool 65
Productivity 211

Program development

89, 167, 168, 190, 201

Program enhancement 191
Programming 85
Prompt 4
PUT Graphics Cursor 81
PUTGC command 83
Reentrant 37
Rebooting 16
Redirect 46
Redirection 45,46, 57,77, 97
Redirection operators 37
Redisplay key 14
Removing device windows 47

269

Repeat key 13
RGB color monitor 21

Root directory 25, 138

Rounding 215

RS-232 pack 3

RUNB 162

SAVE command 114

Saving a copy of a file 57

Scaling 108

Scaling feature 96

Scratchpad 180

Screen editor 37, 179-190, 191

Screen saver 245

Screen types 00 through 08 39
Scrolling 197
SEEK 226
Selecting an object 92
Semicolon 27
Sequential commands 27
Setting up an environment 67
Shapes_BAS 108
Shell 25, 28, 30, 31, 37, 38, 82, 194
SHiFT-back arrow 13
Shift lock 15
Slow programs 181
Sound 245, 248
Sound characteristics 249
Speed 181
Standard input redirected 74
StartApps procedure 68, 71
Starting a new process 64
Start-up file 68, 138
Stdfonts file 42, 66, 76
Stdpats 4 file 133
Stdptrs file 133
String variables 182-184
Stripped down system disk 149
Stripshell procedure 152
Stub procedures 226-236
Subdirectories 142
Subroutines 224
SYS directory 12, 23, 138
SYSCALL 247, 265
System disk 6
System master disk 5,9, 20
Testing a procedure file 162
Text only windows 36
TMODE 13, 15, 20,147, 148, 194
Toggle 15
Tool kits 59
Top down 201
Top down development 212,213
TR command 59
Truncation 215
Type ahead 15
Type FF window 39
UNLINK 8
Unprintable characters 156
Uppercase lock 15
User directories 138
Using pipes 149
Utility programs 143
VDG device 42

Visual desktop 37

Wait key 13
WCREATE 35, 43, 45, 62
Window device descriptors 149
Window devices 30
Window selection (CLEARKkey) = 224
Window selection (program) ____ 224, 231
Window sizes . 40
Windowingsystem =~ === 20
Working directories _ 25
Working on several projects 67
Working systemdisk 5,19, 113
Working with patterns 98
Working without stopping 68
Writing tools in memory 32
XMODE 148

270

Also Available from Radio Shack . ..
THE COMPLETE RAINBOW GUIDE TO 0S-9

Add to your OS-9 reference library!

If you haven't already discovered the first book on
0S-9 by Dale Puckett and Peter Dibble, be sure to
pick one up at the Radio Shack store nearest you.

. 263190

Radie Shaek

Today’s programmers use short modules of
readable code to build complex programs.
The OS-9 operating system and the high level
languages it brings you make the job easy.

0S-9 has so many things going for it that you
need a guide as comprehensive and thorough
as The Complete Rainbow Guide to 0S-9 to
show you how to talk to OS-9 and realize the
potential of this extremely efficient implemen-
tation of the UNIX operating philosophy.

Co-authored by Dale L. Puckett and Peter
Dibble — two of the foremost authorities on
0S-9 — The Complete Rainbow Guide to
0S-9 demystifies the dynamic operating sys-
tem that gives the Color Computer more power
and flexibility than many of the high-cost
computers on the market. . . and gives you the
ability and confidence to reach new program-
ming heights.

With The Complete Rainbow Guide to 0S-9,
you will be prepared to take full advantage of
the multitasking system that is setting new
standards for Color Computer programming.
?’S&"SX‘.’S&B‘&ZT%“;’cm Computer Monthiy Magarine For Only $1 6.95!

From the Rainbow BOOkSheIf; Ask for Catalog Number 26-3190.

Coming Soon — Volume Il About Level Il!

If you already have The Complete Rainbow Guide to OS-9 Level Il Vol. I: A Beginners Guide to Windows and you
also have the previously published The Complete Rainbow Guide to OS-9, you'll want to be watching for the
next book by the Puckett/Dibble team. Volume Il of The Complete Rainbow Guide to OS-9 Lavel Il will provide a
comprehensive look at the power and versatility of OS-9 Level If, picking up where the other books have left off and
continuing in the same step-by-step manner that characterizes the teaching style of Dale Puckett and Peter Dibbie.
Release is expected in the Summer of 1988.

Radio fhaek

The Technology Store”

A DIVISION OF TANDY CORPORATION

THE OS-9
EVOLUTION
CONTINUES. ..

. .. in THE RAINBOW,
the Color Computer Monthly Magazine.

Keep informed on the latest OS-9 developments
with Dale Puckett's monthly column, “KISSable
08-9,” along with regular features by OS-9 experts
and authors including Peter Dibble.

Subscribe to THE RAINBOW, the #1 authority for
detailed, up-to-date information about everything
on the Color Computer.

~ A’“iﬁmg DNTAGY.
THE COLOR COMPUTER MONTHLY MAGAZINE
Golo Home Companion

Hoyme
Holp

Bal
firganites-

Take u spring hreak:

Plag:

se using
9% 4 omn

Dale Puckett and Peter Dibble, co-authors of The Complete Rainbow Guide

to OS-9and The Complete Rainbow Guide to OS-9 Level Il — Vol. I: A Beginners
Guide to Windows, are among dozens of Color Computer specialists who share
their expertise with those who follow THE RAINBOW®.

Address

THE RAINBOW offers up to 200 pages each month,
including as many as two dozen type-in-and-run program
listings, a host of articles and as many as 20 software and
hardware reviews — and all of it is written exclusively for
the Tandy Color Computer. THE RAINBOW features more
programs, more information and more in-depth treatment
of the Tandy Color Computer than any other magazine.

But what makes THE RAINBOW is its people. People like
Fred Scerbo, who writes special programs at the request
of readers. Experts like Dick White and Joseph Kolar, two
of the most knowledgeable writers on BASIC. Communi-
cators like Marty Goodman and Don Hutchison, who stay
abreast of telecommunications advances. Or, Dan Dow-
nard, RAINBOW technical consuitant, who answers our
readers’ toughest questions. Educators like Dr. Michael
Piog and Steve Blyn, who show how CoCo can be used
at home or school. Advanced programmers like Dale

YES! Sign me up for a one year (12 issues)
subscription to THE RAINBOW.

Name

Puckett and Peter Dibble, co-authors of this book, who
guide you through the sophisticated OS-9 operating
system. Electronics experts like Tony DiStefano, who
explain the “insides” of the CoCo. These people, and many
others, visit you monthly in THE RAINBOW.

Every single issue of THE RAINBOW covers the wide
spectrum of interest in the Tandy Color Computer — from
beginners tutorials and arcade games to telecommunica-
tions and business and finance programs. Helpful utilities
and do-it-yourself hardware projects make it easy and fun
to expand your CoCo's capabilities. Up to 20 product
reviews monthly by independent reader reviewers take the
guesswork out of buying new software and hardware
products.

Join the tens of thousands who have found THE RAIN-
BOW to be an absolute necessity for their CoCo.

THE RAINBOW
The Falsoft Building
P.O. Box 385
Prospect, KY 40059

AMER
RESS

Subscriptions to THE RAINBOW are
$31 a year in the United States. Can-
adian rate U.S. $38. Surface rate to

State ZIP

City . __
Payment Enclosed [, or
Charge to: Visa O MasterCard [American Express U

My Account # _ _

Signature Card Exp. Date

other countries U.S. $68; air rate U.S.
$103. All subscriptions begin with
the current issue. Please allow 5 to 6
weeks for first copy. U.S. currency
only, please. Kentucky residents
please add 5% sales tax. Prices sub-
ject to change.

In order to hold down non-gditorial costs, we do not bill

Toorder by phone (credit card orders only) call (800) 847-0309, 8 a.m. to 5 p.m. EST. For other inquiries call (502) 228-4492.

10 g !_' I}J'I 0 {].‘.;:_Ir'] r| {_Jf{ o]

ISBN 0-932471-09-9

9 7809327471093

	Cover
	The Complete Rainbow Guide to OS-9 Level II
	Acknowledgements
	Table of Contents
	Foreward
	Preface
	A Hands-on Approach
	What Do I Have At My Fingertips?
	Do I Need Additional Hardware?
	Prolog
	About the Authors
	Acknowledgements

	Chapter 1. Let's get Started
	What Do I Need To STart OS-9?
	First, Turn Everything On
	It's Time to Boot OS-9
	The Big Moment Is Here
	Untitled
	But, I Don't Care About The Time
	How To Prepare A Working System Disk
	Now To Finish The Job
	On To The Backup
	If You Only Have One Disk Drive
	Why Use 56K?
	When You Make A Mistake
	What If I Change My Mind While Typing?
	Are There Any Shortcuts?
	The Repeat Key
	Pushing A Job Into The Background
	The Great Escape
	Other OS-9 Magic
	The "I Quit" Key
	The "CTRL-NOTHING" Key
	Turning The Keyboard Mouse On and Off
	Rebooting
	I Quit

	Chapter 2. Playing Around
	Let's Open The Built In Windows
	How Can We Use These Windows?
	You Can Print Many Things In Windows
	What Are Execution And Data Directories?
	Using DEINIZ
	Running Programs In Windows
	But There's One Thing You Can't Do!
	Setting Up For Some real Work
	If You're A Writer

	Chapter 3. Let's Define Our Own Windows
	Our First Hand-Crafted Screen
	A Few Additional Points About Windows
	Making Text Windows
	The Basic Window Types
	The Basic Window Colors
	Making A Device Window
	Merging In The Fonts
	Creating Overlay Windows
	What If I Change My Mind?
	Make A Graphics Window To Draw
	Breaking Windows

	Chapter 4. Automating The Window Game
	Changing A File
	Editing Procedure Files
	The Listing: EnglishScreen
	Translating Your Commands Manually
	The Listing: Translate
	The Listing: MakeScreens
	Procedures Can Help Remove Windows
	Using The Shell's Editing Keys
	It's Easy To Create Processes
	Processes, Like People, Have Many Characters
	Children Inherit Their Parent's Properties
	Other Window Cautions

	Chapter 5. Getting Ready To Draw
	The Listing: StartUp
	Setting Up Our System To Do A Lot Of Work
	The Listing: StartApps
	Making A Graphics Screen To Experiment In
	The Listing: Makegw
	The Listing: ReadyDraw
	Planning Our Attack

	Chapter 6. First Steps With Basic09
	Setting The Scene
	The First Step
	Listing Your Work
	Enjoying The New Program
	To Sum Up

	Chapter 7. Drawing With OS-9 Primitives
	 A New Philosophy
	Drawing A Box
	The Listing: Shapes
	Using The Line Drawing Commands
	The Listing: DrawX
	The Listing: GetX
	The Listing: PutX
	Doing The Same Thing With RunB
	The Listing: MyShapes
	The Listing: DrawX.Bas
	The Listing: GetX.Bas

	Chapter 8. Building Friendly Tools
	English Language Commands Make Sense
	Gaining Efficiency By Combining Modules
	The Listing: English.Language.Tools
	Getting Your Tools In GFX2
	Making A Mini-Drawing Program
	The Listing: LetsDraw
	Setting A CoCo Alarm!

	Chapter 9. Of File Trees And Other Things OS-9
	Getting Organized
	OS-9 Helps Organize Programs, Too
	Why Current Working Directories Are Important
	How OS-9 Finds Your Programs
	Basic09 I-Code Is Executed Automatically
	Subdirectories Help You Organize Your Tools
	Organize Your Tools By Subject
	Using Modpatch To Set Disk Drive Step Rate
	Using Modpatch To Set Repeat Key Speed
	The Magic of /DD
	Only Patch When You Must
	Tmode VS Xmode
	Making New System Disks
	Config A System Disk Using A Pipe
	Backing Up A Single-Sided Original Disk On A Double-Sided Drive
	About Customizing Your Disks
	Testing A Procedure File While You Type It
	Splitting The Shell Module From The Shell File
	Naming A Program AutoEX or StartUp
	When You Get Lost
	How To Tell A Device From A File

	Chapter 10. A Real Basic09 Program:
	A Little Background
	A Program To Print The ASCII Table
	Dealing With The Unprintable Characters
	The Listing: Second_Try
	Another Approach
	The Listing: Third_Try
	Putting It Together
	The Listing: DisplayCharacters
	The Listing: Prompter
	The Listing: ASCII_Table
	The Listing: ASCII_List
	The Listing: Control_Names
	The Listing: Prompter2
	The Listing: Menu
	What Have We Learned?
	Possible Enhancements

	Chapter 11. Selecting Colors: The Palette
	Color Identifiers
	Text Windows Are Different
	Mixing Colors For The Palette
	Experimenting With The Palette
	Controlling The Palette From Basci09
	The Listing: Bars
	The Listing: Palette
	The Listing: Marbles
	The Listing: Bounce

	Chapter 12. Getting Serious: A Screen-Oriented Text Editor
	Our First Screen Editor
	The Screen Data Structure
	The Listing: Paint_1
	The Listing: Paint_15
	The Listing: Paint_2
	The Listing: Paint_3
	The Listing: Exp_1
	The Listing: Exp_2
	The Listing: Exp_3
	Controlling The Screen
	The Listing: ScratchPad_1
	The Listing: UpdScreenData
	The Listing: ApplyArrow_1
	The Listing: WrapXY_1
	The Listing: ApplyArrow_2
	The Listing: ApplyArrow_3
	The Listing: WrapXY

	Chapter 13. Souping Up ScratchPad
	Goals
	Going Beyond One Screen
	Supporting Files
	A Window With Trimming
	And Now The Program
	The Listing: ScratchPad
	Watching For Scrolling
	The Listing: ScrollXY
	The Listing: ScrollScreen
	The Listing: ScrollBottom
	The Listing: ScrollTop
	The Listing: FileMenu
	The Listing: GetFName
	The Listing: ReadFile
	The Listing: WritFile
	Principles
	Recap
	The Listing: ScratchPad
	Possible Enhancements

	Chapter 14. Using Library Code
	Outside-In Development
	Goals
	Design
	The Listing: Calendar
	The Listing: Arrows
	The Listing: Correct
	Working Toward CalcDate
	Listing: PrintMonth
	Listing: Get_Month_Name
	The Listing: PrintWeek
	The Listing: CalcDate
	The Listing: Jan1
	The Listing: DaysInMonths
	The Listing: SetDateInfo
	The Listing: WeekDayToDate
	The Listing: WeekInYear
	The Listing: NewMonth
	Principles
	Possible Enhancements

	Chapter 15. Living Dangerously
	Setting Out Our Goals
	The Top Level
	The Listing: Rolladex
	Stubs
	The Listing: DBOpen
	The Listing: DBWinStub
	The Listing: DBClose
	The Listing: DBDisplay.stub
	The Listing: DBDispRec.stub
	The Listing: DBStart
	The Listing: FillSet
	The Listing: DBGetREC
	The Listing: DBWindow
	The Listing: DBDisplay
	The Listing: DBDispRec
	The Listing: DBInteract
	The Listing: DBReDisp
	The Listing: DBAdd
	Principles
	Possible Enhancements

	Chapter 16. Let Your CoCo Twiddle Its Thumbs
	Saving The Old Colors
	The Listing: GetPalette
	Humming To Itself
	The Listing: Hummer
	A Terminal On A Terminal
	The Listing: BUSY
	Principles
	Possible Enhancements
	The Listing: PicConvert

	Chapter 17. Putting It All Together
	Packing And Combining Procedures
	RunB
	Some Other Warnings
	Building The Menu File
	The Listing: GetPid
	The Listing: Menu
	Possible Enhancements

	Special Items Index
	General Index
	A-B-C
	C thru M
	M thru V
	V-W-X

	Back Cover

